Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from transformers import (
|
| 6 |
+
ViTFeatureExtractor,
|
| 7 |
+
ViTForImageClassification,
|
| 8 |
+
pipeline,
|
| 9 |
+
AutoFeatureExtractor,
|
| 10 |
+
AutoModelForObjectDetection,
|
| 11 |
+
CLIPTokenizerFast,
|
| 12 |
+
CLIPTextModel
|
| 13 |
+
)
|
| 14 |
+
import torch
|
| 15 |
+
from torchvision.transforms import functional as F
|
| 16 |
+
import emoji
|
| 17 |
+
|
| 18 |
+
# Load models
|
| 19 |
+
@st.cache_resource
|
| 20 |
+
def load_models():
|
| 21 |
+
age_model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
|
| 22 |
+
age_transforms = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier')
|
| 23 |
+
|
| 24 |
+
gender_model = ViTForImageClassification.from_pretrained('rizvandwiki/gender-classification-2')
|
| 25 |
+
gender_transforms = ViTFeatureExtractor.from_pretrained('rizvandwiki/gender-classification-2')
|
| 26 |
+
|
| 27 |
+
emotion_model = ViTForImageClassification.from_pretrained('dima806/facial_emotions_image_detection')
|
| 28 |
+
emotion_transforms = ViTFeatureExtractor.from_pretrained('dima806/facial_emotions_image_detection')
|
| 29 |
+
|
| 30 |
+
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
| 31 |
+
|
| 32 |
+
action_model = ViTForImageClassification.from_pretrained('rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224')
|
| 33 |
+
action_transforms = ViTFeatureExtractor.from_pretrained('rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224')
|
| 34 |
+
|
| 35 |
+
prompt_generator = pipeline("text2text-generation", model="succinctly/text2image-prompt-generator")
|
| 36 |
+
|
| 37 |
+
clip_tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32")
|
| 38 |
+
clip_model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 39 |
+
|
| 40 |
+
return (age_model, age_transforms, gender_model, gender_transforms,
|
| 41 |
+
emotion_model, emotion_transforms, object_detector,
|
| 42 |
+
action_model, action_transforms, prompt_generator,
|
| 43 |
+
clip_tokenizer, clip_model)
|
| 44 |
+
|
| 45 |
+
models = load_models()
|
| 46 |
+
(age_model, age_transforms, gender_model, gender_transforms,
|
| 47 |
+
emotion_model, emotion_transforms, object_detector,
|
| 48 |
+
action_model, action_transforms, prompt_generator,
|
| 49 |
+
clip_tokenizer, clip_model) = models
|
| 50 |
+
|
| 51 |
+
def predict(image, model, transforms):
|
| 52 |
+
inputs = transforms(image, return_tensors='pt')
|
| 53 |
+
output = model(**inputs)
|
| 54 |
+
proba = output.logits.softmax(1)
|
| 55 |
+
return proba.argmax(1).item()
|
| 56 |
+
|
| 57 |
+
def detect_attributes(image):
|
| 58 |
+
age = predict(image, age_model, age_transforms)
|
| 59 |
+
gender = predict(image, gender_model, gender_transforms)
|
| 60 |
+
emotion = predict(image, emotion_model, emotion_transforms)
|
| 61 |
+
action = predict(image, action_model, action_transforms)
|
| 62 |
+
|
| 63 |
+
objects = object_detector(image)
|
| 64 |
+
|
| 65 |
+
return {
|
| 66 |
+
'age': age_model.config.id2label[age],
|
| 67 |
+
'gender': gender_model.config.id2label[gender],
|
| 68 |
+
'emotion': emotion_model.config.id2label[emotion],
|
| 69 |
+
'action': action_model.config.id2label[action],
|
| 70 |
+
'objects': [obj['label'] for obj in objects]
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
def generate_prompt(attributes):
|
| 74 |
+
prompt = f"A {attributes['age']} {attributes['gender']} person feeling {attributes['emotion']} "
|
| 75 |
+
prompt += f"while {attributes['action']}. "
|
| 76 |
+
if attributes['objects']:
|
| 77 |
+
prompt += f"Surrounded by {', '.join(attributes['objects'])}. "
|
| 78 |
+
return prompt
|
| 79 |
+
|
| 80 |
+
def generate_emoji(prompt):
|
| 81 |
+
inputs = clip_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
| 82 |
+
outputs = clip_model(**inputs)
|
| 83 |
+
embedding = outputs.last_hidden_state.mean(dim=1)
|
| 84 |
+
|
| 85 |
+
# Simple emoji mapping based on embedding features
|
| 86 |
+
if embedding[0, 0] > 0:
|
| 87 |
+
return emoji.emojize(":grinning_face:")
|
| 88 |
+
elif embedding[0, 1] > 0:
|
| 89 |
+
return emoji.emojize(":smiling_face_with_heart-eyes:")
|
| 90 |
+
elif embedding[0, 2] > 0:
|
| 91 |
+
return emoji.emojize(":face_with_tears_of_joy:")
|
| 92 |
+
elif embedding[0, 3] > 0:
|
| 93 |
+
return emoji.emojize(":thinking_face:")
|
| 94 |
+
else:
|
| 95 |
+
return emoji.emojize(":neutral_face:")
|
| 96 |
+
|
| 97 |
+
st.title("Image Attribute Detection and Emoji Generation")
|
| 98 |
+
|
| 99 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 100 |
+
|
| 101 |
+
if uploaded_file is not None:
|
| 102 |
+
image = Image.open(uploaded_file)
|
| 103 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 104 |
+
|
| 105 |
+
if st.button('Analyze and Generate Emoji'):
|
| 106 |
+
with st.spinner('Detecting attributes...'):
|
| 107 |
+
attributes = detect_attributes(image)
|
| 108 |
+
|
| 109 |
+
st.write("Detected Attributes:")
|
| 110 |
+
for key, value in attributes.items():
|
| 111 |
+
st.write(f"{key.capitalize()}: {value}")
|
| 112 |
+
|
| 113 |
+
with st.spinner('Generating prompt...'):
|
| 114 |
+
prompt = generate_prompt(attributes)
|
| 115 |
+
st.write("Generated Prompt:")
|
| 116 |
+
st.write(prompt)
|
| 117 |
+
|
| 118 |
+
with st.spinner('Generating emoji...'):
|
| 119 |
+
emoji_result = generate_emoji(prompt)
|
| 120 |
+
st.write("Generated Emoji:")
|
| 121 |
+
st.write(emoji_result)
|