Heidel Medina.
commited on
Commit
·
28808bd
1
Parent(s):
e935b66
fixed a few minor issues in main.py
Browse files
main.py
CHANGED
|
@@ -8,41 +8,51 @@ from stable_whisper.text_output import result_to_any, sec2srt
|
|
| 8 |
import tempfile
|
| 9 |
import re
|
| 10 |
import textwrap
|
|
|
|
| 11 |
|
|
|
|
| 12 |
def process_media(
|
| 13 |
model_size, source_lang, upload, model_type,
|
| 14 |
max_chars, max_words, extend_in, extend_out, collapse_gaps,
|
| 15 |
max_lines_per_segment, line_penalty, longest_line_char_penalty, *args
|
| 16 |
):
|
|
|
|
| 17 |
if upload is None:
|
| 18 |
-
return None, None, None, None
|
| 19 |
|
| 20 |
temp_path = upload.name
|
| 21 |
base_path = os.path.splitext(temp_path)[0]
|
| 22 |
word_transcription_path = base_path + '.json'
|
| 23 |
|
|
|
|
| 24 |
if os.path.exists(word_transcription_path):
|
| 25 |
print(f"Transcription data file found at {word_transcription_path}")
|
| 26 |
result = stable_whisper.WhisperResult(word_transcription_path)
|
| 27 |
else:
|
| 28 |
print(f"Can't find transcription data file at {word_transcription_path}. Starting transcribing ...")
|
|
|
|
|
|
|
| 29 |
if model_type == "faster whisper":
|
| 30 |
-
|
|
|
|
| 31 |
else:
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
try:
|
| 34 |
result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, denoiser="demucs")
|
| 35 |
except Exception as e:
|
| 36 |
-
return None, None, None, None
|
| 37 |
result.save_as_json(word_transcription_path)
|
| 38 |
|
|
|
|
| 39 |
if max_chars or max_words:
|
| 40 |
result.split_by_length(
|
| 41 |
max_chars=int(max_chars) if max_chars else None,
|
| 42 |
max_words=int(max_words) if max_words else None
|
| 43 |
)
|
| 44 |
|
| 45 |
-
# -----
|
| 46 |
extend_start = float(extend_in) if extend_in else 0.0
|
| 47 |
extend_end = float(extend_out) if extend_out else 0.0
|
| 48 |
collapse_gaps_under = float(collapse_gaps) if collapse_gaps else 0.0
|
|
@@ -52,12 +62,10 @@ def process_media(
|
|
| 52 |
next = result[i+1]
|
| 53 |
|
| 54 |
if next.start - cur.end < extend_start + extend_end:
|
| 55 |
-
# Not enough time to add the entire desired extensions -> add proportionally
|
| 56 |
k = extend_end / (extend_start + extend_end) if (extend_start + extend_end) > 0 else 0
|
| 57 |
mid = cur.end * (1 - k) + next.start * k
|
| 58 |
cur.end = next.start = mid
|
| 59 |
else:
|
| 60 |
-
# Add full desired extensions
|
| 61 |
cur.end += extend_end
|
| 62 |
next.start -= extend_start
|
| 63 |
|
|
@@ -68,16 +76,11 @@ def process_media(
|
|
| 68 |
result[0].start = max(0, result[0].start - extend_start)
|
| 69 |
result[-1].end += extend_end
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
# float(line_penalty) if line_penalty else 22.01,
|
| 76 |
-
# float(longest_line_char_penalty) if longest_line_char_penalty else 1.0
|
| 77 |
-
# )
|
| 78 |
|
| 79 |
-
# Use custom SRT block output
|
| 80 |
-
subtitles_path = tempfile.NamedTemporaryFile(delete=False, suffix=".srt", mode="w", encoding="utf-8").name
|
| 81 |
result_to_any(
|
| 82 |
result=result,
|
| 83 |
filepath=subtitles_path,
|
|
@@ -91,23 +94,21 @@ def process_media(
|
|
| 91 |
word_level=False,
|
| 92 |
)
|
| 93 |
srt_file_path = subtitles_path
|
| 94 |
-
|
| 95 |
transcript_txt = result.to_txt()
|
| 96 |
|
| 97 |
mime, _ = mimetypes.guess_type(temp_path)
|
| 98 |
audio_out = temp_path if mime and mime.startswith("audio") else None
|
| 99 |
video_out = temp_path if mime and mime.startswith("video") else None
|
| 100 |
|
| 101 |
-
return audio_out, video_out, transcript_txt, srt_file_path
|
| 102 |
|
| 103 |
def optimize_text(text, max_lines_per_segment, line_penalty, longest_line_char_penalty):
|
| 104 |
text = text.strip()
|
| 105 |
words = text.split()
|
| 106 |
|
| 107 |
-
# Compute prefix sums
|
| 108 |
psum = [0]
|
| 109 |
for w in words:
|
| 110 |
-
psum += [psum[-1] + len(w) + 1]
|
| 111 |
|
| 112 |
bestScore = 10 ** 30
|
| 113 |
bestSplit = None
|
|
@@ -290,7 +291,7 @@ with gr.Blocks() as interface:
|
|
| 290 |
source_lang = gr.Dropdown(
|
| 291 |
choices=WHISPER_LANGUAGES,
|
| 292 |
label="Source Language",
|
| 293 |
-
value="
|
| 294 |
interactive=True
|
| 295 |
)
|
| 296 |
model_type = gr.Dropdown(
|
|
|
|
| 8 |
import tempfile
|
| 9 |
import re
|
| 10 |
import textwrap
|
| 11 |
+
import torch
|
| 12 |
|
| 13 |
+
# --- Main function to process the media file --- #
|
| 14 |
def process_media(
|
| 15 |
model_size, source_lang, upload, model_type,
|
| 16 |
max_chars, max_words, extend_in, extend_out, collapse_gaps,
|
| 17 |
max_lines_per_segment, line_penalty, longest_line_char_penalty, *args
|
| 18 |
):
|
| 19 |
+
# ----- is file empty? checker ----- #
|
| 20 |
if upload is None:
|
| 21 |
+
return None, None, None, None
|
| 22 |
|
| 23 |
temp_path = upload.name
|
| 24 |
base_path = os.path.splitext(temp_path)[0]
|
| 25 |
word_transcription_path = base_path + '.json'
|
| 26 |
|
| 27 |
+
# ---- Load .json or transcribe ---- #
|
| 28 |
if os.path.exists(word_transcription_path):
|
| 29 |
print(f"Transcription data file found at {word_transcription_path}")
|
| 30 |
result = stable_whisper.WhisperResult(word_transcription_path)
|
| 31 |
else:
|
| 32 |
print(f"Can't find transcription data file at {word_transcription_path}. Starting transcribing ...")
|
| 33 |
+
|
| 34 |
+
#-- Check if CUDA is available or not --#
|
| 35 |
if model_type == "faster whisper":
|
| 36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
+
model = stable_whisper.load_faster_whisper(model_size, device=device)
|
| 38 |
else:
|
| 39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 40 |
+
model = stable_whisper.load_model(model_size, device=device)
|
| 41 |
+
|
| 42 |
try:
|
| 43 |
result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, denoiser="demucs")
|
| 44 |
except Exception as e:
|
| 45 |
+
return None, None, None, None # Remove the 5th value
|
| 46 |
result.save_as_json(word_transcription_path)
|
| 47 |
|
| 48 |
+
# ADVANCED SETTINGS #
|
| 49 |
if max_chars or max_words:
|
| 50 |
result.split_by_length(
|
| 51 |
max_chars=int(max_chars) if max_chars else None,
|
| 52 |
max_words=int(max_words) if max_words else None
|
| 53 |
)
|
| 54 |
|
| 55 |
+
# ----- Anti-flickering ----- #
|
| 56 |
extend_start = float(extend_in) if extend_in else 0.0
|
| 57 |
extend_end = float(extend_out) if extend_out else 0.0
|
| 58 |
collapse_gaps_under = float(collapse_gaps) if collapse_gaps else 0.0
|
|
|
|
| 62 |
next = result[i+1]
|
| 63 |
|
| 64 |
if next.start - cur.end < extend_start + extend_end:
|
|
|
|
| 65 |
k = extend_end / (extend_start + extend_end) if (extend_start + extend_end) > 0 else 0
|
| 66 |
mid = cur.end * (1 - k) + next.start * k
|
| 67 |
cur.end = next.start = mid
|
| 68 |
else:
|
|
|
|
| 69 |
cur.end += extend_end
|
| 70 |
next.start -= extend_start
|
| 71 |
|
|
|
|
| 76 |
result[0].start = max(0, result[0].start - extend_start)
|
| 77 |
result[-1].end += extend_end
|
| 78 |
|
| 79 |
+
# --- Custom SRT block output --- #
|
| 80 |
+
original_filename = os.path.splitext(os.path.basename(temp_path))[0]
|
| 81 |
+
srt_dir = tempfile.gettempdir()
|
| 82 |
+
subtitles_path = os.path.join(srt_dir, f"{original_filename}.srt")
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
|
|
|
| 84 |
result_to_any(
|
| 85 |
result=result,
|
| 86 |
filepath=subtitles_path,
|
|
|
|
| 94 |
word_level=False,
|
| 95 |
)
|
| 96 |
srt_file_path = subtitles_path
|
|
|
|
| 97 |
transcript_txt = result.to_txt()
|
| 98 |
|
| 99 |
mime, _ = mimetypes.guess_type(temp_path)
|
| 100 |
audio_out = temp_path if mime and mime.startswith("audio") else None
|
| 101 |
video_out = temp_path if mime and mime.startswith("video") else None
|
| 102 |
|
| 103 |
+
return audio_out, video_out, transcript_txt, srt_file_path # Only 4 values
|
| 104 |
|
| 105 |
def optimize_text(text, max_lines_per_segment, line_penalty, longest_line_char_penalty):
|
| 106 |
text = text.strip()
|
| 107 |
words = text.split()
|
| 108 |
|
|
|
|
| 109 |
psum = [0]
|
| 110 |
for w in words:
|
| 111 |
+
psum += [psum[-1] + len(w) + 1]
|
| 112 |
|
| 113 |
bestScore = 10 ** 30
|
| 114 |
bestSplit = None
|
|
|
|
| 291 |
source_lang = gr.Dropdown(
|
| 292 |
choices=WHISPER_LANGUAGES,
|
| 293 |
label="Source Language",
|
| 294 |
+
value="tl", # default to Tagalog
|
| 295 |
interactive=True
|
| 296 |
)
|
| 297 |
model_type = gr.Dropdown(
|