Spaces:
Running
Running
File size: 12,378 Bytes
e3c2163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Issue Analysis and Resolution Plan
## Executive Summary
This document analyzes the multiple issues observed in the application logs, identifies root causes, and provides a comprehensive resolution plan with file-level and line-level tasks.
## Issues Identified
### 0. Web Search Implementation Issues (FIXED β
)
**Problems**:
1. DuckDuckGo used by default instead of Serper (even when Serper API key available)
2. Serper used invalid `source="serper"` (should be `source="web"`)
3. SearchXNG used invalid `source="searchxng"` (should be `source="web"`)
4. Serper and SearchXNG missing title truncation (would cause validation errors)
5. Missing tool name mappings in SearchHandler
**Root Causes**:
- Default `web_search_provider` was `"duckduckgo"` instead of `"auto"`
- No auto-detection logic to prefer Serper when API key available
- Source type mismatches with SourceName literal
- Missing title truncation in Serper/SearchXNG implementations
**Fixes Applied**:
- β
Changed default to `"auto"` with auto-detection logic
- β
Fixed Serper to use `source="web"` and add title truncation
- β
Fixed SearchXNG to use `source="web"` and add title truncation
- β
Added tool name mappings in SearchHandler
- β
Improved factory to auto-detect best available provider
**Status**: β
**FIXED** - All web search issues resolved
---
### 1. Citation Title Validation Error (FIXED β
)
**Error**: `1 validation error for Citation\ntitle\n String should have at most 500 characters`
**Root Cause**: DuckDuckGo search results can return titles longer than 500 characters, but the `Citation` model enforces a maximum length of 500 characters.
**Location**: `src/tools/web_search.py:61`
**Fix Applied**: Added title truncation to 500 characters before creating Citation objects.
**Status**: β
**FIXED** - Code updated in `src/tools/web_search.py`
---
### 2. 403 Forbidden Errors on HuggingFace Inference API
**Error**: `status_code: 403, model_name: Qwen/Qwen3-Next-80B-A3B-Thinking, body: Forbidden`
**Root Causes**:
1. **OAuth Scope Missing**: The OAuth token may not have the `inference-api` scope required for accessing HuggingFace Inference API
2. **Model Access Restrictions**: Some models (e.g., `Qwen/Qwen3-Next-80B-A3B-Thinking`) may require:
- Gated model access approval
- Specific provider access
- Account-level permissions
3. **Provider Selection**: Pydantic AI's `HuggingFaceProvider` doesn't support explicit provider selection (e.g., "nebius", "hyperbolic"), which may be required for certain models
4. **Token Format**: The OAuth token might not be correctly extracted or formatted
**Evidence from Logs**:
- OAuth authentication succeeds: `OAuth user authenticated username=Tonic`
- Token is extracted: `OAuth token extracted from oauth_token.token attribute`
- But API calls fail: `status_code: 403, model_name: Qwen/Qwen3-Next-80B-A3B-Thinking, body: Forbidden`
**Impact**: All LLM operations fail, causing:
- Planner agent execution failures
- Observation generation failures
- Knowledge gap evaluation failures
- Tool selection failures
- Judge assessment failures
- Report writing failures
**Status**: β οΈ **INVESTIGATION REQUIRED**
---
### 3. 422 Unprocessable Entity Errors
**Error**: `status_code: 422, model_name: meta-llama/Llama-3.1-70B-Instruct, body: Unprocessable Entity`
**Root Cause**:
- Model/provider compatibility issues
- The model `meta-llama/Llama-3.1-70B-Instruct` on provider `hyperbolic` may be in staging mode or have specific requirements
- Request format may not match provider expectations
**Evidence from Logs**:
- `Model meta-llama/Llama-3.1-70B-Instruct is in staging mode for provider hyperbolic. Meant for test purposes only.`
- Followed by: `status_code: 422, model_name: meta-llama/Llama-3.1-70B-Instruct, body: Unprocessable Entity`
**Impact**: Judge assessment fails, causing research loops to continue indefinitely with low confidence scores.
**Status**: β οΈ **INVESTIGATION REQUIRED**
---
### 4. MCP Server Warning
**Warning**: `This MCP server includes a tool that has a gr.State input, which will not be updated between tool calls.`
**Root Cause**: Gradio MCP integration issue with state management.
**Impact**: Minor - functionality may be affected but not critical.
**Status**: βΉοΈ **INFORMATIONAL**
---
### 5. Modal TTS Function Setup Failure
**Error**: `modal_tts_function_setup_failed error='Local state is not initialized - app is not locally available'`
**Root Cause**: Modal TTS function requires local Modal app initialization, which isn't available in HuggingFace Spaces environment.
**Impact**: Text-to-speech functionality unavailable, but not critical for core functionality.
**Status**: βΉοΈ **INFORMATIONAL**
---
## Root Cause Analysis
### OAuth Token Flow
1. **Token Extraction** (`src/app.py:617-628`):
```python
if hasattr(oauth_token, "token"):
token_value = oauth_token.token
```
β
**Working correctly** - Logs confirm token extraction
2. **Token Passing** (`src/app.py:125`, `src/agent_factory/judges.py:54`):
```python
effective_api_key = oauth_token or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
hf_provider = HuggingFaceProvider(api_key=effective_api_key)
```
β
**Working correctly** - Token is passed to HuggingFaceProvider
3. **API Calls** (Pydantic AI internal):
- Pydantic AI's `HuggingFaceProvider` uses `AsyncInferenceClient` internally
- The `api_key` parameter should be passed to the underlying client
- β **Unknown**: Whether the token format or scope is correct
### HuggingFaceProvider Limitations
**Key Finding**: The code comments indicate:
```python
# Note: The hf_provider parameter is accepted but not used here because HuggingFaceProvider
# from pydantic-ai doesn't support provider selection. Provider selection happens at the
# InferenceClient level (used in HuggingFaceChatClient for advanced mode).
```
This means:
- `HuggingFaceProvider` doesn't support explicit provider selection (e.g., "nebius", "hyperbolic")
- Provider selection is automatic or uses default HuggingFace Inference API endpoint
- Some models may require specific providers, which can't be specified
### Model Access Issues
The logs show attempts to use:
- `Qwen/Qwen3-Next-80B-A3B-Thinking` - May require gated access
- `meta-llama/Llama-3.1-70B-Instruct` - May have provider-specific restrictions
- `Qwen/Qwen3-235B-A22B-Instruct-2507` - May require special permissions
---
## Resolution Plan
### Phase 1: Immediate Fixes (Completed)
β
**Task 1.1**: Fix Citation title validation error
- **File**: `src/tools/web_search.py`
- **Line**: 60-61
- **Change**: Add title truncation to 500 characters
- **Status**: β
**COMPLETED**
---
### Phase 2: OAuth Token Investigation and Fixes
#### Task 2.1: Add Token Validation and Debugging
**Files to Modify**:
- `src/utils/llm_factory.py`
- `src/agent_factory/judges.py`
- `src/app.py`
**Subtasks**:
1. Add token format validation (check if token is a valid string)
2. Add token length logging (without exposing actual token)
3. Add scope verification (if possible via API)
4. Add detailed error logging for 403 errors
**Line-Level Tasks**:
- `src/utils/llm_factory.py:139`: Add token validation before creating HuggingFaceProvider
- `src/agent_factory/judges.py:54`: Add token validation and logging
- `src/app.py:125`: Add token format validation
#### Task 2.2: Improve Error Handling for 403 Errors
**Files to Modify**:
- `src/agent_factory/judges.py`
- `src/agents/*.py` (all agent files)
**Subtasks**:
1. Catch `ModelHTTPError` with status_code 403 specifically
2. Provide user-friendly error messages
3. Suggest solutions (re-authenticate, check scope, use alternative model)
4. Log detailed error information for debugging
**Line-Level Tasks**:
- `src/agent_factory/judges.py:159`: Add specific 403 error handling
- `src/agents/knowledge_gap.py`: Add error handling in agent execution
- `src/agents/tool_selector.py`: Add error handling in agent execution
- `src/agents/thinking.py`: Add error handling in agent execution
- `src/agents/writer.py`: Add error handling in agent execution
#### Task 2.3: Add Fallback Mechanisms
**Files to Modify**:
- `src/agent_factory/judges.py`
- `src/utils/llm_factory.py`
**Subtasks**:
1. Define fallback model list (publicly available models)
2. Implement automatic fallback when primary model fails with 403
3. Log fallback model selection
4. Continue with fallback model if available
**Line-Level Tasks**:
- `src/agent_factory/judges.py:30-66`: Add fallback model logic in `get_model()`
- `src/utils/llm_factory.py:121-153`: Add fallback model logic in `get_pydantic_ai_model()`
#### Task 2.4: Document OAuth Scope Requirements
**Files to Create/Modify**:
- `docs/troubleshooting/oauth_403_errors.md` β
**CREATED**
- `README.md`: Add OAuth setup instructions
- `src/app.py:114-120`: Enhance existing comments
**Subtasks**:
1. Document required OAuth scopes
2. Provide troubleshooting steps
3. Add examples of correct OAuth configuration
4. Link to HuggingFace documentation
---
### Phase 3: 422 Error Handling
#### Task 3.1: Add 422 Error Handling
**Files to Modify**:
- `src/agent_factory/judges.py`
- `src/utils/llm_factory.py`
**Subtasks**:
1. Catch 422 errors specifically
2. Detect staging mode warnings
3. Automatically switch to alternative provider or model
4. Log provider/model compatibility issues
**Line-Level Tasks**:
- `src/agent_factory/judges.py:159`: Add 422 error handling
- `src/utils/llm_factory.py`: Add provider fallback logic
#### Task 3.2: Provider Selection Enhancement
**Files to Modify**:
- `src/utils/huggingface_chat_client.py`
- `src/app.py`
**Subtasks**:
1. Investigate if HuggingFaceProvider can be configured with provider
2. If not, use HuggingFaceChatClient for provider selection
3. Add provider fallback chain
4. Log provider selection and failures
**Line-Level Tasks**:
- `src/utils/huggingface_chat_client.py:29-64`: Enhance provider selection
- `src/app.py:154`: Consider using HuggingFaceChatClient for provider support
---
### Phase 4: Enhanced Logging and Monitoring
#### Task 4.1: Add Comprehensive Error Logging
**Files to Modify**:
- All agent files
- `src/agent_factory/judges.py`
- `src/utils/llm_factory.py`
**Subtasks**:
1. Log token presence (not value) at key points
2. Log model selection and provider
3. Log HTTP status codes and error bodies
4. Log fallback attempts and results
#### Task 4.2: Add User-Friendly Error Messages
**Files to Modify**:
- `src/app.py`
- `src/orchestrator/graph_orchestrator.py`
**Subtasks**:
1. Convert technical errors to user-friendly messages
2. Provide actionable solutions
3. Link to documentation
4. Suggest alternative models or configurations
---
## Implementation Priority
### High Priority (Blocking Issues)
1. β
Citation title validation (COMPLETED)
2. OAuth token validation and debugging
3. 403 error handling with fallback
4. User-friendly error messages
### Medium Priority (Quality Improvements)
5. 422 error handling
6. Provider selection enhancement
7. Comprehensive logging
### Low Priority (Nice to Have)
8. MCP server warning fix
9. Modal TTS setup (environment-specific)
---
## Testing Plan
### Unit Tests
- Test Citation title truncation with various lengths
- Test token validation logic
- Test fallback model selection
- Test error handling for 403, 422 errors
### Integration Tests
- Test OAuth token flow end-to-end
- Test model fallback chain
- Test provider selection
- Test error recovery
### Manual Testing
- Verify OAuth login with correct scope
- Test with various models
- Test error scenarios
- Verify user-friendly error messages
---
## Success Criteria
1. β
Citation validation errors eliminated
2. 403 errors handled gracefully with fallback
3. 422 errors handled with provider/model fallback
4. Clear error messages for users
5. Comprehensive logging for debugging
6. Documentation updated with troubleshooting steps
---
## References
- [HuggingFace OAuth Scopes](https://huggingface.co/docs/hub/oauth#currently-supported-scopes)
- [Pydantic AI HuggingFace Provider](https://ai.pydantic.dev/models/huggingface/)
- [HuggingFace Inference API](https://huggingface.co/docs/api-inference/index)
- [HuggingFace Inference Providers](https://huggingface.co/docs/api-inference/inference_providers)
|