File size: 12,806 Bytes
a596a48
3462e1b
0c0b9d5
f29e699
a596a48
 
caca053
 
 
a596a48
 
 
 
 
 
 
15f0919
 
 
b83e69b
 
 
 
 
 
 
 
 
 
15f0919
b83e69b
15f0919
b83e69b
 
 
 
 
 
 
 
15f0919
b83e69b
15f0919
b83e69b
15f0919
b83e69b
15f0919
b83e69b
 
 
 
 
 
 
 
 
 
 
15f0919
 
b83e69b
15f0919
b83e69b
 
15f0919
 
b83e69b
 
 
 
 
 
 
 
 
 
 
 
 
a596a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec573e5
3462e1b
ec573e5
a596a48
3462e1b
a596a48
3462e1b
a596a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3462e1b
a596a48
caca053
0c0b9d5
17f8afb
0c0b9d5
 
3462e1b
 
 
 
36940bd
3462e1b
 
 
 
caca053
 
0c0b9d5
caca053
36940bd
ec573e5
3462e1b
ec573e5
3462e1b
 
 
 
 
 
 
caca053
3462e1b
a596a48
a6a7e6f
 
 
a596a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83e69b
15f0919
b83e69b
 
15f0919
b83e69b
15f0919
b83e69b
 
 
15f0919
b83e69b
 
 
15f0919
b83e69b
 
 
 
 
15f0919
b83e69b
 
 
 
 
15f0919
 
b83e69b
15f0919
a596a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef953ab
a596a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a971c3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
from huggingface_hub import InferenceClient
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

import gradio as gr
import warnings
import uuid


MODEL_OPTIONS = [
    "allenai/Olmo-3-32B-Think",
    "allenai/Olmo-3-7B-Instruct",
    "allenai/Olmo-3-7B-Think",
    "ArliAI/QwQ-32B-ArliAI-RpR-v4",
    "baichuan-inc/Baichuan-M2-32B",
    "darkc0de/XortronCriminalComputingConfig",
    "deepseek-ai/DeepSeek-R1",
    "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
    "deepseek-ai/DeepSeek-V3.1-Terminus",
    "deepseek-ai/DeepSeek-V3.2-Exp",
    "DeepHat/DeepHat-V1-7B",
    "dphn/Dolphin-Mistral-24B-Venice-Edition",
    "Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1",
    "google/gemma-2-2b-it",
    "Gryphe/MythoMax-L2-13b",
    "HuggingFaceH4/zephyr-7b-beta",
    "HuggingFaceTB/SmolLM3-3B",
    "inclusionAI/Ling-1T",
    "Intelligent-Internet/II-Medical-8B",
    "meta-llama/Llama-3-8B-Instruct",
    "meta-llama/Llama-3.1-8B",
    "meta-llama/Llama-3.1-8B-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.3-70B-Instruct",
    "meta-llama/Llama-Guard-3-8B",
    "meta-llama/Meta-Llama-3-8B",
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "MiniMaxAI/MiniMax-M2",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "moonshotai/Kimi-K2-Instruct",
    "moonshotai/Kimi-K2-Instruct-0905",
    "moonshotai/Kimi-K2-Thinking",
    "moonshotai/Kimi-K2-Tinking",
    "nvidia/NVIDIA-Nemotron-Nano-12B-v2",
    "openai/gpt-oss-120b",
    "openai/gpt-oss-20b",
    "PrimeIntellect/INTELLECT-3-FP8",
    "Qwen/Qwen2.5-1.5B-Instruct",
    "Qwen/Qwen2.5-7B",
    "Qwen/Qwen2.5-7B-Instruct",
    "Qwen/Qwen2.5-Coder-1.5B-Instruct",
    "Qwen/Qwen2.5-Coder-7B-Instruct",
    "Qwen/Qwen3-1.7B",
    "Qwen/Qwen3-14B",
    "Qwen/Qwen3-30B-A3B",
    "Qwen/Qwen3-30B-A3B-Instruct-2507",
    "Qwen/Qwen3-32B",
    "Qwen/Qwen3-4B-Instruct-2507",
    "Qwen/Qwen3-4B-Thinking-2507",
    "Qwen/Qwen3-8B",
    "Qwen/Qwen3-235B-A22B-Instruct-2507",
    "Qwen/Qwen3-Coder-30B-A3B-Instruct",
    "Qwen/Qwen3-Next-80B-A3B-Instruct",
    "Qwen/Qwen3-Next-80B-A3B-Thinking",
    "zai-org/GLM-4.5",
    "zai-org/GLM-4.5-Air",
    "zai-org/GLM-4.6",
]


# Suppress warnings
def warn(*args, **kwargs):
    pass


warnings.warn = warn
warnings.filterwarnings("ignore")


# ---------------------------
# Get credentials from environment variables
# ---------------------------
def get_huggingface_token():
    """
    Get HuggingFace API token from environment.
    Set this in your Space settings under Settings > Repository secrets:
    - HF_TOKEN or HUGGINGFACE_TOKEN
    """
    token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
    
    if not token:
        raise ValueError(
            "HF_TOKEN not found. Please set it in your HuggingFace Space secrets."
        )
    
    return token


# ---------------------------
# LLM
# ---------------------------
def get_llm(model_id: str = MODEL_OPTIONS[0], max_tokens: int = 256, temperature: float = 0.8):
    """
    Returns InferenceClient for HuggingFace models.
    """
    token = get_huggingface_token()
    client = InferenceClient(token=token)
    
    return client, model_id, max_tokens, temperature


# ---------------------------
# Document loader
# ---------------------------
def document_loader(file):
    # Handle file path string from Gradio
    file_path = file if isinstance(file, str) else file.name
    loader = PyPDFLoader(file_path)
    loaded_document = loader.load()
    return loaded_document


# ---------------------------
# Text splitter
# ---------------------------
def text_splitter(data, chunk_size: int = 500, chunk_overlap: int = 50):
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap,
        length_function=len,
    )
    chunks = splitter.split_documents(data)
    return chunks


# ---------------------------
# Embedding model
# ---------------------------
def get_embedding_model(model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
    """
    Create HuggingFace embedding model.
    Using sentence-transformers for efficient embeddings.
    """
    embedding = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs={'device': 'cpu'},
        encode_kwargs={'normalize_embeddings': True}
    )
    return embedding


# ---------------------------
# Vector DB
# ---------------------------
def vector_database(chunks, embedding_model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
    embedding_model = get_embedding_model(embedding_model_name)
    
    # Create unique collection name to avoid reusing cached data
    collection_name = f"rag_collection_{uuid.uuid4().hex[:8]}"

    vectordb = Chroma.from_documents(
        chunks, 
        embedding_model,
        collection_name=collection_name
    )
    return vectordb


# ---------------------------
# Retriever
# ---------------------------
def retriever(file, chunk_size: int = 500, chunk_overlap: int = 50, embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2"):
    splits = document_loader(file)
    chunks = text_splitter(splits, chunk_size, chunk_overlap)
    vectordb = vector_database(chunks, embedding_model)
    retriever_obj = vectordb.as_retriever()
    return retriever_obj


# ---------------------------
# QA Chain
# ---------------------------
def retriever_qa(file, query, model_choice, max_tokens, temperature, embedding_model, chunk_size, chunk_overlap):
    if not file:
        return "Please upload a PDF file first."
    
    if not query.strip():
        return "Please enter a query."
    
    try:
        selected_model = model_choice or MODEL_OPTIONS[0]
        client, model_id, max_tok, temp = get_llm(selected_model, int(max_tokens), float(temperature))
        retriever_obj = retriever(file, int(chunk_size), int(chunk_overlap), embedding_model)
        
        # Get relevant documents
        docs = retriever_obj.invoke(query)
        context = "\n\n".join(doc.page_content for doc in docs)
        
        # Create messages for chat completion
        messages = [
            {
                "role": "system",
                "content": "You are a helpful assistant that answers questions based on the provided context. You may also rely on your general knowledge if needed."
            },
            {
                "role": "user",
                "content": f"""Context:
{context}

Question: {query}

Please answer the question based on the context provided above. You may also rely on your general knowledge if needed."""
            }
        ]
        
        # Call chat completion API
        response = client.chat_completion(
            messages=messages,
            model=model_id,
            max_tokens=max_tok,
            temperature=temp
        )
        
        return response.choices[0].message.content
    except Exception as e:
        import traceback
        error_details = traceback.format_exc()
        return f"Error: {str(e)}\n\nDetails:\n{error_details}"


# ---------------------------
# Gradio Interface
# ---------------------------
with gr.Blocks(title="QA Bot - PDF Question Answering") as demo:
    gr.Markdown("# πŸ“„ QA Bot - PDF Question Answering")
    gr.Markdown(
        "Upload a PDF document and ask questions about its content. "
        "Powered by HuggingFace models and LangChain."
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(
                label="Upload PDF File",
                file_count="single",
                file_types=[".pdf"],
                type="filepath"
            )
            
            query_input = gr.Textbox(
                label="Your Question",
                lines=3,
                placeholder="Ask a question about the uploaded document..."
            )
            
            model_dropdown = gr.Dropdown(
                label="LLM Model",
                choices=MODEL_OPTIONS,
                value=MODEL_OPTIONS[0],
            )
            
            with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                max_tokens_slider = gr.Slider(
                    label="Max New Tokens",
                    minimum=50,
                    maximum=2048,
                    value=256,
                    step=1,
                    info="Maximum number of tokens in the generated output"
                )
                
                temperature_slider = gr.Slider(
                    label="Temperature",
                    minimum=0.0,
                    maximum=2.0,
                    value=0.8,
                    step=0.1,
                    info="Controls randomness/creativity of responses"
                )
                
                truncate_slider = gr.Dropdown(
                    label="Embedding Model",
                    choices=[
                        "ai-forever/ru-en-RoSBERTa",
                        "BAAI/bge-base-en-v1.5",
                        "BAAI/bge-base-zh-v1.5",
                        "BAAI/bge-large-en-v1.5",
                        "BAAI/bge-m3",
                        "BAAI/bge-small-en-v1.5",
                        "cointegrated/rubert-tiny2",
                        "google/embeddinggemma-300m",
                        "intfloat/multilingual-e5-base",
                        "intfloat/multilingual-e5-large",
                        "intfloat/multilingual-e5-small",
                        "jhgan/ko-sroberta-multitask",
                        "lokeshch19/ModernPubMedBERT",
                        "mixedbread-ai/mxbai-embed-large-v1",
                        "mixedbread-ai/mxbai-embed-xsmall-v1",
                        "MongoDB/mdbr-leaf-mt",
                        "pritamdeka/S-Biomed-Roberta-snli-multinli-stsb",
                        "pritamdeka/S-PubMedBert-MS-MARCO",
                        "Qwen/Qwen3-Embedding-8B",
                        "sentence-transformers/all-MiniLM-L6-v2",
                        "sentence-transformers/all-MiniLM-L12-v2",
                        "sentence-transformers/all-mpnet-base-v2",
                        "sentence-transformers/clip-ViT-B-32-multilingual-v1",
                        "sentence-transformers/LaBSE",
                        "sentence-transformers/msmarco-MiniLM-L6-v3",
                        "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
                        "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
                        "shibing624/text2vec-base-chinese",
                        "Snowflake/snowflake-arctic-embed-l-v2.0",
                        "Snowflake/snowflake-arctic-embed-m-v1.5",
                    ],
                    value="sentence-transformers/all-MiniLM-L6-v2",
                    info="Model used for generating embeddings"
                )
                
                chunk_size_slider = gr.Slider(
                    label="Chunk Size",
                    minimum=100,
                    maximum=2000,
                    value=500,
                    step=50,
                    info="Size of text chunks for processing"
                )
                
                chunk_overlap_slider = gr.Slider(
                    label="Chunk Overlap",
                    minimum=0,
                    maximum=500,
                    value=50,
                    step=10,
                    info="Overlap between consecutive chunks"
                )
            
            submit_btn = gr.Button("Ask Question", variant="primary")
        
        with gr.Column(scale=1):
            output_text = gr.Textbox(
                label="Answer",
                lines=15
            )
    
    submit_btn.click(
        fn=retriever_qa,
        inputs=[
            file_input,
            query_input,
            model_dropdown,
            max_tokens_slider,
            temperature_slider,
            truncate_slider,
            chunk_size_slider,
            chunk_overlap_slider
        ],
        outputs=output_text
    )
    
    gr.Markdown(
        """
        """
    )


# ---------------------------
# Launch the app
# ---------------------------
if __name__ == "__main__":
    demo.launch()