File size: 24,156 Bytes
87f167e 5ea1cbe 87f167e 20e07f3 56a854b 87f167e a85d2eb 87f167e 20e07f3 a85d2eb 20e07f3 87f167e a85d2eb 87f167e a85d2eb 87f167e 5ea1cbe 87f167e 5ea1cbe a85d2eb 5ea1cbe a85d2eb 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e 5ea1cbe 87f167e a85d2eb 87f167e 5ea1cbe 87f167e ac08a55 87f167e 20e07f3 a85d2eb 20e07f3 a85d2eb 20e07f3 87f167e a85d2eb 87f167e 20e07f3 87f167e 4af7226 1fd7b36 4af7226 1fd7b36 4af7226 87f167e a85d2eb 5ea1cbe 87f167e 20e07f3 5ea1cbe 20e07f3 5ea1cbe 20e07f3 5ea1cbe 20e07f3 a85d2eb 56a854b a85d2eb 87f167e a85d2eb 87f167e 20e07f3 87f167e a85d2eb 87f167e a85d2eb 87f167e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import gradio as gr
import pandas as pd
# Local modules
from data_loaders import (
load_language_list, load_language_taxonomy, load_common_voice_data,
load_app_content, get_common_voice_stats
)
from commercial_services import (
fetch_azure_asr_languages, fetch_azure_tts_languages,
fetch_google_stt_languages, fetch_google_tts_languages,
fetch_aws_transcribe_languages, fetch_aws_polly_languages,
get_azure_locales_for_language, get_google_locales_for_language,
get_aws_locales_for_language,
check_elevenlabs_multilingual_v2_support, check_elevenlabs_turbo_v3_support
)
from huggingface_search import (
search_huggingface_models, search_huggingface_datasets, deduplicate_models
)
from language_metadata import get_language_metadata_html, get_default_metadata_html
# Configuration
LANGUAGE_CODES_FILE = "language-codes-full.csv"
APP_CONTENT_FILE = "app_content.md"
LANGUAGE_TAXONOMY_URL = "https://microsoft.github.io/linguisticdiversity/assets/lang2tax.txt"
COMMON_VOICE_DATA_FILE = "cv-corpus-24.0-2025-12-05.json"
COMMON_VOICE_VERSION = "24.0 (2025-12-05)"
# Language list will be loaded from CSV
# Structure: {iso_639_2: {"name": str, "iso_639_1": str, "french_name": str}}
LANGUAGES = {}
# Language taxonomy mapping (from Joshi et al.'s linguistic diversity paper)
# Structure: {language_name_lowercase: level}
LANGUAGE_TAXONOMY = {}
# Common Voice dataset
# Structure: {locale_code: {validHrs: float, totalHrs: float, splits: {gender: {...}}, ...}}
COMMON_VOICE_DATA = {}
# Taxonomy level descriptions
TAXONOMY_LEVELS = {
0: "The Left-Behinds",
1: "The Scraping-Bys",
2: "The Hopefuls",
3: "The Rising Stars",
4: "The Underdogs",
5: "The Winners"
}
# App content will be loaded from markdown file
APP_CONTENT = {
"title": "Speech Resource Finder",
"description": "Search for speech resources",
"full_content": ""
}
def search_language_resources(language_code, deduplicate=False):
"""
Search for ASR/TTS resources for a given language
Returns results organized by service type
deduplicate: if True, remove duplicate models (same base name) and keep only the one with most downloads
"""
all_logs = []
if not language_code:
return None, None, None, None, 0, 0, None, None, 0, 0, ""
lang_info = LANGUAGES.get(language_code)
if not lang_info:
return None, None, None, None, 0, 0, None, None, 0, 0, ""
language_name = lang_info['name']
iso_639_1 = lang_info['iso_639_1']
iso_639_2 = language_code # language_code IS the ISO 639-2 code
all_logs.append(f"=== Searching for {language_name} ({language_code}) ===")
all_logs.append(f"Language codes: ISO 639-1={iso_639_1}, ISO 639-2={iso_639_2}")
# Check Common Voice data
all_logs.append("\n[Common Voice Dataset]")
cv_stats = get_common_voice_stats(iso_639_2, iso_639_1, COMMON_VOICE_DATA)
if cv_stats:
all_logs.append(f" β
Available in Common Voice (locale: {cv_stats['locale']})")
all_logs.append(f" Valid hours: {cv_stats['valid_hrs']:.1f}h, Total hours: {cv_stats['total_hrs']:.1f}h")
all_logs.append(f" Gender balance: {cv_stats['male_pct']:.1f}% male, {cv_stats['female_pct']:.1f}% female")
else:
all_logs.append(f" β Not available in Common Voice")
# Fetch Azure data
all_logs.append("\n[Azure Speech Services]")
azure_asr = fetch_azure_asr_languages()
azure_tts = fetch_azure_tts_languages()
all_logs.append(f" Fetched {len(azure_asr)} ASR languages and {len(azure_tts)} TTS languages from Azure")
# Get matching Azure locales using ISO 639-1 code
azure_locales = get_azure_locales_for_language(iso_639_1)
all_logs.append(f" Matching Azure locales: {azure_locales}")
# Check Azure ASR support
azure_asr_locales = [loc for loc in azure_locales if loc in azure_asr]
azure_asr_available = len(azure_asr_locales) > 0
all_logs.append(f" Azure ASR: {'β
Supported' if azure_asr_available else 'β Not supported'} ({len(azure_asr_locales)} locales)")
# Check Azure TTS support and count voices
azure_tts_locales = [loc for loc in azure_locales if loc in azure_tts]
azure_tts_available = len(azure_tts_locales) > 0
azure_total_voices = sum(azure_tts[loc]['voice_count'] for loc in azure_tts_locales)
all_logs.append(f" Azure TTS: {'β
Supported' if azure_tts_available else 'β Not supported'} ({len(azure_tts_locales)} locales, {azure_total_voices} voices)")
# Fetch Google Cloud data
all_logs.append("\n[Google Cloud Speech]")
google_stt = fetch_google_stt_languages()
google_tts = fetch_google_tts_languages()
all_logs.append(f" Fetched {len(google_stt)} STT languages and {len(google_tts)} TTS languages from Google Cloud")
# Get matching Google Cloud locales using ISO 639-1 code
google_locales = get_google_locales_for_language(iso_639_1)
all_logs.append(f" Matching Google Cloud locales: {google_locales}")
# Check Google Cloud STT support
google_stt_locales = [loc for loc in google_locales if loc in google_stt]
google_stt_available = len(google_stt_locales) > 0
all_logs.append(f" Google STT: {'β
Supported' if google_stt_available else 'β Not supported'} ({len(google_stt_locales)} locales)")
# Check Google Cloud TTS support and count voices
google_tts_locales = [loc for loc in google_locales if loc in google_tts]
google_tts_available = len(google_tts_locales) > 0
google_total_voices = sum(google_tts[loc]['voice_count'] for loc in google_tts_locales)
all_logs.append(f" Google TTS: {'β
Supported' if google_tts_available else 'β Not supported'} ({len(google_tts_locales)} locales, {google_total_voices} voices)")
# Fetch AWS data
all_logs.append("\n[AWS (Transcribe + Polly)]")
aws_transcribe = fetch_aws_transcribe_languages()
aws_polly = fetch_aws_polly_languages()
all_logs.append(f" Fetched {len(aws_transcribe)} Transcribe languages and {len(aws_polly)} Polly languages from AWS")
# Get matching AWS locales using ISO 639-1 code
aws_locales = get_aws_locales_for_language(iso_639_1)
all_logs.append(f" Matching AWS locales: {aws_locales}")
# Check AWS Transcribe support
aws_transcribe_locales = [loc for loc in aws_locales if loc in aws_transcribe]
aws_transcribe_available = len(aws_transcribe_locales) > 0
all_logs.append(f" AWS Transcribe: {'β
Supported' if aws_transcribe_available else 'β Not supported'} ({len(aws_transcribe_locales)} locales)")
# Check AWS Polly support and count voices
aws_polly_locales = [loc for loc in aws_locales if loc in aws_polly]
aws_polly_available = len(aws_polly_locales) > 0
aws_total_voices = sum(aws_polly[loc]['voice_count'] for loc in aws_polly_locales)
all_logs.append(f" AWS Polly: {'β
Supported' if aws_polly_available else 'β Not supported'} ({len(aws_polly_locales)} locales, {aws_total_voices} voices)")
# Commercial Services
commercial_rows = []
# Azure Speech
if azure_asr_available:
azure_asr_text = f"β
{len(azure_asr_locales)} locale(s)"
else:
azure_asr_text = "β N/A"
if azure_tts_available:
azure_tts_text = f"β
{len(azure_tts_locales)} locale(s), {azure_total_voices} voice(s)"
else:
azure_tts_text = "β N/A"
commercial_rows.append({
"Service": "Azure Speech",
"ASR": azure_asr_text,
"TTS": azure_tts_text,
})
# Google Cloud Speech
if google_stt_available:
google_stt_text = f"β
{len(google_stt_locales)} locale(s)"
else:
google_stt_text = "β N/A"
if google_tts_available:
google_tts_text = f"β
{len(google_tts_locales)} locale(s), {google_total_voices} voice(s)"
else:
google_tts_text = "β N/A"
commercial_rows.append({
"Service": "Google Cloud Speech",
"ASR": google_stt_text,
"TTS": google_tts_text,
})
# AWS (Transcribe + Polly)
if aws_transcribe_available:
aws_transcribe_text = f"β
{len(aws_transcribe_locales)} locale(s)"
else:
aws_transcribe_text = "β N/A"
if aws_polly_available:
aws_polly_text = f"β
{len(aws_polly_locales)} locale(s), {aws_total_voices} voice(s)"
else:
aws_polly_text = "β N/A"
commercial_rows.append({
"Service": "AWS (Transcribe + Polly)",
"ASR": aws_transcribe_text,
"TTS": aws_polly_text,
})
# ElevenLabs Multilingual v2 (TTS only)
all_logs.append("\n[ElevenLabs]")
elevenlabs_v2_supported = check_elevenlabs_multilingual_v2_support(iso_639_1)
all_logs.append(f" Multilingual v2: {'β
Supported' if elevenlabs_v2_supported else 'β Not supported'}")
if elevenlabs_v2_supported:
elevenlabs_v2_tts_text = "β
Supported"
else:
elevenlabs_v2_tts_text = "β N/A"
commercial_rows.append({
"Service": "ElevenLabs Multilingual v2",
"ASR": "N/A", # ElevenLabs doesn't offer ASR
"TTS": elevenlabs_v2_tts_text,
})
# ElevenLabs Turbo v3 (TTS only)
elevenlabs_v3_supported = check_elevenlabs_turbo_v3_support(iso_639_2)
all_logs.append(f" Turbo v3: {'β
Supported' if elevenlabs_v3_supported else 'β Not supported'}")
if elevenlabs_v3_supported:
elevenlabs_v3_tts_text = "β
Supported"
else:
elevenlabs_v3_tts_text = "β N/A"
commercial_rows.append({
"Service": "ElevenLabs Turbo v3",
"ASR": "N/A", # ElevenLabs doesn't offer ASR
"TTS": elevenlabs_v3_tts_text,
})
commercial_df = pd.DataFrame(commercial_rows)
# HuggingFace Models - Search for real ASR and TTS models
all_logs.append("\n[HuggingFace Models]")
asr_models, asr_model_logs = search_huggingface_models(iso_639_1, iso_639_2, 'automatic-speech-recognition', max_results=100, max_pages=5)
all_logs.extend([f" [ASR] {log}" for log in asr_model_logs])
tts_models, tts_model_logs = search_huggingface_models(iso_639_1, iso_639_2, 'text-to-speech', max_results=100, max_pages=5)
all_logs.extend([f" [TTS] {log}" for log in tts_model_logs])
# Apply deduplication if requested
if deduplicate:
all_logs.append(f"\n[Deduplication]")
asr_before = len(asr_models)
asr_models = deduplicate_models(asr_models)
all_logs.append(f" ASR models: {asr_before} β {len(asr_models)} (removed {asr_before - len(asr_models)} duplicates)")
tts_before = len(tts_models)
tts_models = deduplicate_models(tts_models)
all_logs.append(f" TTS models: {tts_before} β {len(tts_models)} (removed {tts_before - len(tts_models)} duplicates)")
else:
# Add duplicates count of 1 for all models when not deduplicating
for model in asr_models:
model['duplicates'] = 1
for model in tts_models:
model['duplicates'] = 1
# Format ASR models with clickable names
asr_models_data = []
for model in asr_models:
asr_models_data.append({
"Model Name": f"[{model['name']}]({model['url']})",
"Downloads": model['downloads'],
"Likes": model['likes'],
"Size": model.get('size', ''),
"Duplicates": model.get('duplicates', 1)
})
if asr_models_data:
asr_models_df = pd.DataFrame(asr_models_data)
else:
# Empty dataframe if no models found
asr_models_df = pd.DataFrame(columns=["Model Name", "Downloads", "Likes", "Size", "Duplicates"])
# Format TTS models with clickable names
tts_models_data = []
for model in tts_models:
tts_models_data.append({
"Model Name": f"[{model['name']}]({model['url']})",
"Downloads": model['downloads'],
"Likes": model['likes'],
"Size": model.get('size', ''),
"Duplicates": model.get('duplicates', 1)
})
if tts_models_data:
tts_models_df = pd.DataFrame(tts_models_data)
else:
# Empty dataframe if no models found
tts_models_df = pd.DataFrame(columns=["Model Name", "Downloads", "Likes", "Size", "Duplicates"])
# HuggingFace Datasets - Search for real ASR and TTS datasets
all_logs.append("\n[HuggingFace Datasets]")
asr_datasets, asr_dataset_logs = search_huggingface_datasets(iso_639_1, iso_639_2, 'automatic-speech-recognition', max_results=100, max_pages=5)
all_logs.extend([f" [ASR] {log}" for log in asr_dataset_logs])
tts_datasets, tts_dataset_logs = search_huggingface_datasets(iso_639_1, iso_639_2, 'text-to-speech', max_results=100, max_pages=5)
all_logs.extend([f" [TTS] {log}" for log in tts_dataset_logs])
# Format ASR datasets with clickable names
asr_datasets_data = []
for dataset in asr_datasets:
asr_datasets_data.append({
"Dataset Name": f"[{dataset['name']}]({dataset['url']})",
"Downloads": dataset['downloads'],
"Likes": dataset['likes'],
"Size": dataset.get('size', '')
})
if asr_datasets_data:
asr_datasets_df = pd.DataFrame(asr_datasets_data)
else:
# Empty dataframe if no datasets found
asr_datasets_df = pd.DataFrame(columns=["Dataset Name", "Downloads", "Likes", "Size"])
# Format TTS datasets with clickable names
tts_datasets_data = []
for dataset in tts_datasets:
tts_datasets_data.append({
"Dataset Name": f"[{dataset['name']}]({dataset['url']})",
"Downloads": dataset['downloads'],
"Likes": dataset['likes'],
"Size": dataset.get('size', '')
})
if tts_datasets_data:
tts_datasets_df = pd.DataFrame(tts_datasets_data)
else:
# Empty dataframe if no datasets found
tts_datasets_df = pd.DataFrame(columns=["Dataset Name", "Downloads", "Likes", "Size"])
# Combine all logs
log_text = "\n".join(all_logs)
# Return CV stats, commercial services, models, datasets, and logs
return cv_stats, commercial_df, asr_models_df, tts_models_df, len(asr_models), len(tts_models), asr_datasets_df, tts_datasets_df, len(asr_datasets), len(tts_datasets), log_text
# Initialize - load language list and app content
print("Initializing Speech Resource Finder...")
APP_CONTENT = load_app_content(APP_CONTENT_FILE)
LANGUAGES = load_language_list(LANGUAGE_CODES_FILE)
LANGUAGE_TAXONOMY = load_language_taxonomy(LANGUAGE_TAXONOMY_URL)
COMMON_VOICE_DATA = load_common_voice_data(COMMON_VOICE_DATA_FILE)
# Create language choices for dropdown (code: name format for easy searching)
language_choices = [f"{code}: {info['name']}" for code, info in sorted(LANGUAGES.items(), key=lambda x: x[1]['name'])]
print(f"Created dropdown with {len(language_choices)} language options")
with gr.Blocks(title=APP_CONTENT["title"]) as demo:
gr.Markdown(f"# π {APP_CONTENT['title']}")
gr.Markdown(APP_CONTENT["description"])
with gr.Row(equal_height=True):
with gr.Column(scale=70):
language_dropdown = gr.Dropdown(
choices=language_choices,
label="Select Language",
info="Type to search for a language",
allow_custom_value=False,
filterable=True,
)
with gr.Column(scale=30):
language_metadata = gr.HTML(
"""<div style='padding: 15px; border: 2px solid #e0e0e0; border-radius: 4px; background-color: #fafafa; height: 100%; display: flex; align-items: center; justify-content: center; box-sizing: border-box;'>
<p style='margin: 0; color: #333; font-size: 14px;'>Select a language to see resource classification</p>
</div>""",
elem_id="language-metadata"
)
with gr.Row():
with gr.Column(scale=70):
gr.Markdown("## Commercial Services")
commercial_table = gr.Dataframe(
headers=["Service", "ASR", "TTS"],
interactive=False,
wrap=True,
)
with gr.Column(scale=30):
gr.Markdown("## Common Voice")
cv_info = gr.HTML(
"""<div style='padding: 15px; border: 2px solid #e0e0e0; border-radius: 4px; background-color: #fafafa;'>
<p style='margin: 0; color: #666; font-size: 13px;'>Select a language</p>
</div>""",
elem_id="cv-info"
)
gr.Markdown("## HuggingFace Models")
with gr.Row():
deduplicate_checkbox = gr.Checkbox(
label="Deduplicate models",
value=True,
info="Keep only the model with most downloads for each base name"
)
# Create tabs for ASR and TTS models with count labels
with gr.Tabs():
with gr.Tab(label="ASR Models") as asr_tab:
asr_count_label = gr.Markdown("*Loading...*")
asr_models_table = gr.Dataframe(
headers=["Model Name", "Downloads", "Likes", "Size", "Duplicates"],
interactive=False,
wrap=True,
datatype=["markdown", "number", "number", "str", "number"],
)
with gr.Tab(label="TTS Models") as tts_tab:
tts_count_label = gr.Markdown("*Loading...*")
tts_models_table = gr.Dataframe(
headers=["Model Name", "Downloads", "Likes", "Size", "Duplicates"],
interactive=False,
wrap=True,
datatype=["markdown", "number", "number", "str", "number"],
)
gr.Markdown("## HuggingFace Datasets")
# Create tabs for ASR and TTS datasets with count labels
with gr.Tabs():
with gr.Tab(label="ASR Datasets") as asr_datasets_tab:
asr_datasets_count_label = gr.Markdown("*Loading...*")
asr_datasets_table = gr.Dataframe(
headers=["Dataset Name", "Downloads", "Likes", "Size"],
interactive=False,
wrap=True,
datatype=["markdown", "number", "number", "str"],
)
with gr.Tab(label="TTS Datasets") as tts_datasets_tab:
tts_datasets_count_label = gr.Markdown("*Loading...*")
tts_datasets_table = gr.Dataframe(
headers=["Dataset Name", "Downloads", "Likes", "Size"],
interactive=False,
wrap=True,
datatype=["markdown", "number", "number", "str"],
)
with gr.Accordion("Logs", open=False):
log_textbox = gr.Textbox(
show_label=False,
lines=15,
max_lines=30,
interactive=False,
placeholder="Logs will appear here...",
autoscroll=True,
)
# About section with full content
with gr.Accordion("About this tool", open=False):
gr.Markdown(APP_CONTENT["full_content"])
def on_search(language_selection, deduplicate):
if not language_selection:
cv_default_html = """<div style='padding: 15px; border: 2px solid #e0e0e0; border-radius: 4px; background-color: #fafafa;'>
<p style='margin: 0; color: #666; font-size: 13px;'>Select a language</p>
</div>"""
return get_default_metadata_html(), cv_default_html, None, "", None, "", None, "", None, "", None, ""
# Extract the language code from "code: name" format
language_code = language_selection.split(":")[0].strip()
# Get language name and ISO 639-1 code
language_name = LANGUAGES.get(language_code, {}).get("name", "")
iso_639_1 = LANGUAGES.get(language_code, {}).get("iso_639_1", "")
# Generate metadata HTML (taxonomy + Wikipedia info)
metadata_html = get_language_metadata_html(language_code, language_name, iso_639_1, LANGUAGE_TAXONOMY)
cv_stats, commercial_df, asr_models_df, tts_models_df, asr_models_count, tts_models_count, asr_datasets_df, tts_datasets_df, asr_datasets_count, tts_datasets_count, logs = search_language_resources(language_code, deduplicate=deduplicate)
# Create Common Voice info HTML
if cv_stats:
cv_info_html = f"""<div style='padding: 15px; border: 2px solid #4caf50; border-radius: 4px; background-color: #ffffff;'>
<div style='margin-bottom: 12px;'>
<span style='font-size: 18px;'>β
</span>
<span style='font-weight: bold; color: #2e7d32; font-size: 14px; margin-left: 4px;'>Available</span>
</div>
<table style='width: 100%; border-collapse: collapse; font-size: 13px;'>
<tr>
<td style='padding: 3px 8px 3px 0; color: #666; width: 45%;'>Locale</td>
<td style='padding: 3px 0; color: #000; font-weight: 500;'>{cv_stats['locale']}</td>
</tr>
<tr>
<td style='padding: 3px 8px 3px 0; color: #666;'>Valid Hours</td>
<td style='padding: 3px 0; color: #000; font-weight: 500;'>{cv_stats['valid_hrs']:.1f}h</td>
</tr>
<tr>
<td style='padding: 3px 8px 3px 0; color: #666;'>Total Hours</td>
<td style='padding: 3px 0; color: #000; font-weight: 500;'>{cv_stats['total_hrs']:.1f}h</td>
</tr>
<tr>
<td style='padding: 3px 8px 3px 0; color: #666;'>Contributors</td>
<td style='padding: 3px 0; color: #000; font-weight: 500;'>{cv_stats['users_formatted']}</td>
</tr>
<tr>
<td style='padding: 3px 8px 3px 0; color: #666;'>Gender</td>
<td style='padding: 3px 0; color: #000; font-weight: 500;'>{cv_stats['male_pct']:.0f}% M / {cv_stats['female_pct']:.0f}% F</td>
</tr>
<tr>
<td style='padding: 3px 8px 3px 0; color: #666;'>Version</td>
<td style='padding: 3px 0; color: #000; font-weight: 500;'>{COMMON_VOICE_VERSION}</td>
</tr>
</table>
</div>"""
else:
cv_info_html = """<div style='padding: 15px; border: 2px solid #e0e0e0; border-radius: 4px; background-color: #fafafa;'>
<div style='margin-bottom: 8px;'>
<span style='font-size: 18px;'>β</span>
<span style='font-weight: bold; color: #666; font-size: 14px; margin-left: 4px;'>Not Available</span>
</div>
<p style='margin: 0; color: #999; font-size: 12px;'>Not in Common Voice dataset</p>
</div>"""
# Create count labels
asr_models_label = f"**Found {asr_models_count} ASR model(s)**"
tts_models_label = f"**Found {tts_models_count} TTS model(s)**"
asr_datasets_label = f"**Found {asr_datasets_count} ASR dataset(s)**"
tts_datasets_label = f"**Found {tts_datasets_count} TTS dataset(s)**"
return metadata_html, cv_info_html, commercial_df, asr_models_label, asr_models_df, tts_models_label, tts_models_df, asr_datasets_label, asr_datasets_df, tts_datasets_label, tts_datasets_df, logs
# Trigger search when language is selected
language_dropdown.change(
fn=on_search,
inputs=[language_dropdown, deduplicate_checkbox],
outputs=[language_metadata, cv_info, commercial_table, asr_count_label, asr_models_table, tts_count_label, tts_models_table, asr_datasets_count_label, asr_datasets_table, tts_datasets_count_label, tts_datasets_table, log_textbox],
)
# Trigger search when deduplicate checkbox is changed
deduplicate_checkbox.change(
fn=on_search,
inputs=[language_dropdown, deduplicate_checkbox],
outputs=[language_metadata, cv_info, commercial_table, asr_count_label, asr_models_table, tts_count_label, tts_models_table, asr_datasets_count_label, asr_datasets_table, tts_datasets_count_label, tts_datasets_table, log_textbox],
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True) |