Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,40 +5,57 @@ import spaces
|
|
| 5 |
import torch
|
| 6 |
import os
|
| 7 |
import time
|
| 8 |
-
from diffusers import
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
| 13 |
MAX_IMAGE_SIZE = 2048
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
@spaces.GPU(duration=75)
|
| 17 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 18 |
if randomize_seed:
|
| 19 |
seed = random.randint(0, MAX_SEED)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
timestamp = int(time.time())
|
| 34 |
filename = f"flux_generated_{timestamp}_{seed}.png"
|
| 35 |
|
| 36 |
# Save to /tmp directory (as requested)
|
| 37 |
tmp_path = os.path.join("/tmp", filename)
|
| 38 |
os.makedirs("/tmp", exist_ok=True)
|
| 39 |
-
|
| 40 |
|
| 41 |
-
return
|
|
|
|
|
|
|
| 42 |
|
| 43 |
examples = [
|
| 44 |
"a tiny astronaut hatching from an egg on the moon",
|
|
|
|
| 5 |
import torch
|
| 6 |
import os
|
| 7 |
import time
|
| 8 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
| 9 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 10 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 11 |
|
| 12 |
+
dtype = torch.bfloat16
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
|
| 15 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 16 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
| 17 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
| 18 |
torch.cuda.empty_cache()
|
| 19 |
+
|
| 20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 2048
|
| 22 |
|
| 23 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 24 |
|
| 25 |
@spaces.GPU(duration=75)
|
| 26 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 27 |
if randomize_seed:
|
| 28 |
seed = random.randint(0, MAX_SEED)
|
| 29 |
+
generator = torch.Generator().manual_seed(seed)
|
| 30 |
+
|
| 31 |
+
# Get the final image from the generator
|
| 32 |
+
final_img = None
|
| 33 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 34 |
+
prompt=prompt,
|
| 35 |
+
guidance_scale=guidance_scale,
|
| 36 |
+
num_inference_steps=num_inference_steps,
|
| 37 |
+
width=width,
|
| 38 |
+
height=height,
|
| 39 |
+
generator=generator,
|
| 40 |
+
output_type="pil",
|
| 41 |
+
good_vae=good_vae,
|
| 42 |
+
):
|
| 43 |
+
final_img = img
|
| 44 |
|
| 45 |
+
# Save image to /tmp directory
|
| 46 |
+
if final_img is not None:
|
| 47 |
+
# Create a unique filename with timestamp
|
| 48 |
timestamp = int(time.time())
|
| 49 |
filename = f"flux_generated_{timestamp}_{seed}.png"
|
| 50 |
|
| 51 |
# Save to /tmp directory (as requested)
|
| 52 |
tmp_path = os.path.join("/tmp", filename)
|
| 53 |
os.makedirs("/tmp", exist_ok=True)
|
| 54 |
+
final_img.save(tmp_path)
|
| 55 |
|
| 56 |
+
return final_img, seed, tmp_path
|
| 57 |
+
|
| 58 |
+
return final_img, seed, ""
|
| 59 |
|
| 60 |
examples = [
|
| 61 |
"a tiny astronaut hatching from an egg on the moon",
|