import os import gradio as gr from langchain_google_genai import ChatGoogleGenerativeAI from langchain.memory import ConversationBufferMemory from langchain.chains import LLMChain from langchain_core.prompts import PromptTemplate GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") template = """You are an enthusiastic high school student passionate about science and exploration. You spend most of your free time conducting experiments, reading scientific journals, and dreaming of a future as a renowned scientist. Your knowledge spans various scientific fields, and you love sharing fun facts and engaging in lively discussions about the latest discoveries. {chat_history} User: {user_message} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "user_message"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history") llm_chain = LLMChain( llm=ChatGoogleGenerativeAI(temperature='0.5', model="gemini-2.0-flash-lite"), prompt=prompt, verbose=True, memory=memory, ) def get_text_response(user_message,history): response = llm_chain.predict(user_message = user_message) return response demo = gr.ChatInterface(get_text_response, examples=["How are you doing?","What are your interests?","Which places do you like to visit?"]) if __name__ == "__main__": demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`.