File size: 10,754 Bytes
25d1318 edb58b2 25d1318 b7c8304 25d1318 0e36fde 25d1318 cd26071 25d1318 3c736c0 25d1318 cd26071 daad6f1 cd26071 25d1318 919b484 a29ea14 25d1318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: pytorch
license: other
tags:
- real_time
- bu_iot
- android
pipeline_tag: object-detection
---

# Facial-Attribute-Detection: Optimized for Qualcomm Devices
Detects attributes (eye closeness, mask presence, eyeglasses presence, sunglasses presence) that apply to a given face. This model's architecture was developed by Qualcomm. The model was trained by Qualcomm on a proprietary dataset of faces, but can be used on any image.
This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/face_attrib_net) library to export with custom configurations. More details on model performance across various devices, can be found [here](#performance-summary).
Qualcomm AI Hub Models uses [Qualcomm AI Hub Workbench](https://workbench.aihub.qualcomm.com) to compile, profile, and evaluate this model. [Sign up](https://myaccount.qualcomm.com/signup) to run these models on a hosted Qualcomm® device.
## Getting Started
There are two ways to deploy this model on your device:
### Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/face_attrib_net/releases/v0.46.0/face_attrib_net-onnx-float.zip)
| ONNX | w8a8 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/face_attrib_net/releases/v0.46.0/face_attrib_net-onnx-w8a8.zip)
| QNN_DLC | float | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/face_attrib_net/releases/v0.46.0/face_attrib_net-qnn_dlc-float.zip)
| QNN_DLC | w8a8 | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/face_attrib_net/releases/v0.46.0/face_attrib_net-qnn_dlc-w8a8.zip)
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/face_attrib_net/releases/v0.46.0/face_attrib_net-tflite-float.zip)
| TFLITE | w8a8 | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/face_attrib_net/releases/v0.46.0/face_attrib_net-tflite-w8a8.zip)
For more device-specific assets and performance metrics, visit **[Facial-Attribute-Detection on Qualcomm® AI Hub](https://aihub.qualcomm.com/models/face_attrib_net)**.
### Option 2: Export with Custom Configurations
Use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/face_attrib_net) Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for [Facial-Attribute-Detection on GitHub](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/face_attrib_net) for usage instructions.
## Model Details
**Model Type:** Model_use_case.object_detection
**Model Stats:**
- Model checkpoint: multitask_FR_state_dict.pt
- Input resolution: 128x128
- Number of parameters: 12.1M
- Model size (float): 46.3 MB
- Model size (w8a8): 12.3 MB
## Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit
|---|---|---|---|---|---|---
| Facial-Attribute-Detection | ONNX | float | Snapdragon® X Elite | 0.986 ms | 22 - 22 MB | NPU
| Facial-Attribute-Detection | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 0.859 ms | 0 - 145 MB | NPU
| Facial-Attribute-Detection | ONNX | float | Qualcomm® QCS8550 (Proxy) | 1.096 ms | 0 - 29 MB | NPU
| Facial-Attribute-Detection | ONNX | float | Qualcomm® QCS9075 | 1.503 ms | 0 - 3 MB | NPU
| Facial-Attribute-Detection | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.623 ms | 0 - 120 MB | NPU
| Facial-Attribute-Detection | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.554 ms | 0 - 120 MB | NPU
| Facial-Attribute-Detection | ONNX | w8a8 | Snapdragon® X Elite | 0.514 ms | 11 - 11 MB | NPU
| Facial-Attribute-Detection | ONNX | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.475 ms | 0 - 151 MB | NPU
| Facial-Attribute-Detection | ONNX | w8a8 | Qualcomm® QCS6490 | 35.118 ms | 21 - 28 MB | CPU
| Facial-Attribute-Detection | ONNX | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.615 ms | 0 - 128 MB | NPU
| Facial-Attribute-Detection | ONNX | w8a8 | Qualcomm® QCS9075 | 0.72 ms | 0 - 3 MB | NPU
| Facial-Attribute-Detection | ONNX | w8a8 | Qualcomm® QCM6690 | 16.742 ms | 20 - 30 MB | CPU
| Facial-Attribute-Detection | ONNX | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.358 ms | 0 - 124 MB | NPU
| Facial-Attribute-Detection | ONNX | w8a8 | Snapdragon® 7 Gen 4 Mobile | 12.327 ms | 19 - 28 MB | CPU
| Facial-Attribute-Detection | ONNX | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.339 ms | 0 - 127 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Snapdragon® X Elite | 0.999 ms | 0 - 0 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 0.652 ms | 0 - 81 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 4.312 ms | 0 - 53 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 0.867 ms | 0 - 2 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Qualcomm® SA8775P | 1.375 ms | 0 - 57 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Qualcomm® QCS9075 | 1.209 ms | 2 - 4 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 1.339 ms | 0 - 77 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Qualcomm® SA7255P | 4.312 ms | 0 - 53 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Qualcomm® SA8295P | 1.521 ms | 0 - 48 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.517 ms | 0 - 58 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.421 ms | 0 - 58 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Snapdragon® X Elite | 0.507 ms | 0 - 0 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.28 ms | 0 - 63 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® QCS6490 | 1.301 ms | 0 - 2 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® QCS8275 (Proxy) | 1.069 ms | 0 - 47 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.389 ms | 0 - 1 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® SA8775P | 0.564 ms | 0 - 50 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® QCS9075 | 0.466 ms | 0 - 2 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® QCM6690 | 2.948 ms | 0 - 49 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.633 ms | 0 - 65 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® SA7255P | 1.069 ms | 0 - 47 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Qualcomm® SA8295P | 0.802 ms | 0 - 45 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.237 ms | 0 - 50 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.484 ms | 0 - 46 MB | NPU
| Facial-Attribute-Detection | QNN_DLC | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.211 ms | 0 - 49 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 0.63 ms | 0 - 105 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 4.258 ms | 0 - 75 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 0.813 ms | 0 - 9 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Qualcomm® SA8775P | 1.372 ms | 0 - 77 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Qualcomm® QCS9075 | 1.194 ms | 0 - 24 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 1.327 ms | 0 - 99 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Qualcomm® SA7255P | 4.258 ms | 0 - 75 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Qualcomm® SA8295P | 1.507 ms | 0 - 63 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.493 ms | 0 - 65 MB | NPU
| Facial-Attribute-Detection | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.417 ms | 0 - 79 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.284 ms | 0 - 63 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® QCS6490 | 1.296 ms | 0 - 13 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® QCS8275 (Proxy) | 1.102 ms | 0 - 49 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.376 ms | 0 - 2 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® SA8775P | 0.586 ms | 0 - 51 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® QCS9075 | 0.487 ms | 0 - 13 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® QCM6690 | 2.962 ms | 0 - 42 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.63 ms | 0 - 65 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® SA7255P | 1.102 ms | 0 - 49 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Qualcomm® SA8295P | 0.836 ms | 0 - 43 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.241 ms | 0 - 42 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.496 ms | 0 - 43 MB | NPU
| Facial-Attribute-Detection | TFLITE | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.212 ms | 0 - 53 MB | NPU
## License
* The license for the original implementation of Facial-Attribute-Detection can be found
[here](https://github.com/quic/ai-hub-models/blob/main/LICENSE).
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|