new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Contributions to Robust and Efficient Methods for Analysis of High Dimensional Data

A ubiquitous feature of data of our era is their extra-large sizes and dimensions. Analyzing such high-dimensional data poses significant challenges, since the feature dimension is often much larger than the sample size. This thesis introduces robust and computationally efficient methods to address several common challenges associated with high-dimensional data. In my first manuscript, I propose a coherent approach to variable screening that accommodates nonlinear associations. I develop a novel variable screening method that transcends traditional linear assumptions by leveraging mutual information, with an intended application in neuroimaging data. This approach allows for accurate identification of important variables by capturing nonlinear as well as linear relationships between the outcome and covariates. Building on this foundation, I develop new optimization methods for sparse estimation using nonconvex penalties in my second manuscript. These methods address notable challenges in current statistical computing practices, facilitating computationally efficient and robust analyses of complex datasets. The proposed method can be applied to a general class of optimization problems. In my third manuscript, I contribute to robust modeling of high-dimensional correlated observations by developing a mixed-effects model based on Tsallis power-law entropy maximization and discussed the theoretical properties of such distribution. This model surpasses the constraints of conventional Gaussian models by accommodating a broader class of distributions with enhanced robustness to outliers. Additionally, I develop a proximal nonlinear conjugate gradient algorithm that accelerates convergence while maintaining numerical stability, along with rigorous statistical properties for the proposed framework.

  • 1 authors
·
Sep 9, 2025

Partial Correlations in Compositional Data Analysis

Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.

  • 1 authors
·
Apr 20, 2019

Extending Mixture of Experts Model to Investigate Heterogeneity of Trajectories: When, Where and How to Add Which Covariates

Researchers are usually interested in examining the impact of covariates when separating heterogeneous samples into latent classes that are more homogeneous. The majority of theoretical and empirical studies with such aims have focused on identifying covariates as predictors of class membership in the structural equation modeling framework. In other words, the covariates only indirectly affect the sample heterogeneity. However, the covariates' influence on between-individual differences can also be direct. This article presents a mixture model that investigates covariates to explain within-cluster and between-cluster heterogeneity simultaneously, known as a mixture-of-experts (MoE) model. This study aims to extend the MoE framework to investigate heterogeneity in nonlinear trajectories: to identify latent classes, covariates as predictors to clusters, and covariates that explain within-cluster differences in change patterns over time. Our simulation studies demonstrate that the proposed model generally estimates the parameters unbiasedly, precisely and exhibits appropriate empirical coverage for a nominal 95% confidence interval. This study also proposes implementing structural equation model forests to shrink the covariate space of the proposed mixture model. We illustrate how to select covariates and construct the proposed model with longitudinal mathematics achievement data. Additionally, we demonstrate that the proposed mixture model can be further extended in the structural equation modeling framework by allowing the covariates that have direct effects to be time-varying.

  • 2 authors
·
Jul 5, 2020

Adaptive Safety Evaluation for Connected and Automated Vehicles with Sparse Control Variates

Safety performance evaluation is critical for developing and deploying connected and automated vehicles (CAVs). One prevailing way is to design testing scenarios using prior knowledge of CAVs, test CAVs in these scenarios, and then evaluate their safety performances. However, significant differences between CAVs and prior knowledge could severely reduce the evaluation efficiency. Towards addressing this issue, most existing studies focus on the adaptive design of testing scenarios during the CAV testing process, but so far they cannot be applied to high-dimensional scenarios. In this paper, we focus on the adaptive safety performance evaluation by leveraging the testing results, after the CAV testing process. It can significantly improve the evaluation efficiency and be applied to high-dimensional scenarios. Specifically, instead of directly evaluating the unknown quantity (e.g., crash rates) of CAV safety performances, we evaluate the differences between the unknown quantity and known quantity (i.e., control variates). By leveraging the testing results, the control variates could be well designed and optimized such that the differences are close to zero, so the evaluation variance could be dramatically reduced for different CAVs. To handle the high-dimensional scenarios, we propose the sparse control variates method, where the control variates are designed only for the sparse and critical variables of scenarios. According to the number of critical variables in each scenario, the control variates are stratified into strata and optimized within each stratum using multiple linear regression techniques. We justify the proposed method's effectiveness by rigorous theoretical analysis and empirical study of high-dimensional overtaking scenarios.

  • 6 authors
·
Dec 1, 2022

iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.

  • 7 authors
·
Oct 10, 2023

Predictive Multiplicity in Probabilistic Classification

Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.

  • 3 authors
·
Jun 2, 2022

Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation

Ensuring equitable treatment (fairness) across protected attributes (such as gender or ethnicity) is a critical issue in machine learning. Most existing literature focuses on binary classification, but achieving fairness in regression tasks-such as insurance pricing or hiring score assessments-is equally important. Moreover, anti-discrimination laws also apply to continuous attributes, such as age, for which many existing methods are not applicable. In practice, multiple protected attributes can exist simultaneously; however, methods targeting fairness across several attributes often overlook so-called "fairness gerrymandering", thereby ignoring disparities among intersectional subgroups (e.g., African-American women or Hispanic men). In this paper, we propose a distance covariance regularisation framework that mitigates the association between model predictions and protected attributes, in line with the fairness definition of demographic parity, and that captures both linear and nonlinear dependencies. To enhance applicability in the presence of multiple protected attributes, we extend our framework by incorporating two multivariate dependence measures based on distance covariance: the previously proposed joint distance covariance (JdCov) and our novel concatenated distance covariance (CCdCov), which effectively address fairness gerrymandering in both regression and classification tasks involving protected attributes of various types. We discuss and illustrate how to calibrate regularisation strength, including a method based on Jensen-Shannon divergence, which quantifies dissimilarities in prediction distributions across groups. We apply our framework to the COMPAS recidivism dataset and a large motor insurance claims dataset.

  • 5 authors
·
Sep 9, 2025

Chronos-2: From Univariate to Universal Forecasting

Pretrained time series models have enabled inference-only forecasting systems that produce accurate predictions without task-specific training. However, existing approaches largely focus on univariate forecasting, limiting their applicability in real-world scenarios where multivariate data and covariates play a crucial role. We present Chronos-2, a pretrained model capable of handling univariate, multivariate, and covariate-informed forecasting tasks in a zero-shot manner. Chronos-2 employs a group attention mechanism that facilitates in-context learning (ICL) through efficient information sharing across multiple time series within a group, which may represent sets of related series, variates of a multivariate series, or targets and covariates in a forecasting task. These general capabilities are achieved through training on synthetic datasets that impose diverse multivariate structures on univariate series. Chronos-2 delivers state-of-the-art performance across three comprehensive benchmarks: fev-bench, GIFT-Eval, and Chronos Benchmark II. On fev-bench, which emphasizes multivariate and covariate-informed forecasting, Chronos-2's universal ICL capabilities lead to substantial improvements over existing models. On tasks involving covariates, it consistently outperforms baselines by a wide margin. Case studies in the energy and retail domains further highlight its practical advantages. The in-context learning capabilities of Chronos-2 establish it as a general-purpose forecasting model that can be used "as is" in real-world forecasting pipelines.

amazon Amazon
·
Oct 17, 2025 3

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.

  • 5 authors
·
Mar 21, 2022

A Flexible Parametric Modelling Framework for Survival Analysis

We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.

  • 3 authors
·
Jan 10, 2019

RoLA: A Real-Time Online Lightweight Anomaly Detection System for Multivariate Time Series

A multivariate time series refers to observations of two or more variables taken from a device or a system simultaneously over time. There is an increasing need to monitor multivariate time series and detect anomalies in real time to ensure proper system operation and good service quality. It is also highly desirable to have a lightweight anomaly detection system that considers correlations between different variables, adapts to changes in the pattern of the multivariate time series, offers immediate responses, and provides supportive information regarding detection results based on unsupervised learning and online model training. In the past decade, many multivariate time series anomaly detection approaches have been introduced. However, they are unable to offer all the above-mentioned features. In this paper, we propose RoLA, a real-time online lightweight anomaly detection system for multivariate time series based on a divide-and-conquer strategy, parallel processing, and the majority rule. RoLA employs multiple lightweight anomaly detectors to monitor multivariate time series in parallel, determine the correlations between variables dynamically on the fly, and then jointly detect anomalies based on the majority rule in real time. To demonstrate the performance of RoLA, we conducted an experiment based on a public dataset provided by the FerryBox of the One Ocean Expedition. The results show that RoLA provides satisfactory detection accuracy and lightweight performance.

  • 2 authors
·
May 25, 2023

Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations

Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of model improvement on performance in different subpopulations, and has the potential to inform the development of more equitable and responsible machine learning models.

  • 5 authors
·
May 4, 2023

Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations

There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.

  • 2 authors
·
May 1, 2025

TTS-VAR: A Test-Time Scaling Framework for Visual Auto-Regressive Generation

Scaling visual generation models is essential for real-world content creation, yet requires substantial training and computational expenses. Alternatively, test-time scaling has garnered growing attention due to resource efficiency and promising performance. In this work, we present TTS-VAR, the first general test-time scaling framework for visual auto-regressive (VAR) models, modeling the generation process as a path searching problem. To dynamically balance computational efficiency with exploration capacity, we first introduce an adaptive descending batch size schedule throughout the causal generation process. Besides, inspired by VAR's hierarchical coarse-to-fine multi-scale generation, our framework integrates two key components: (i) At coarse scales, we observe that generated tokens are hard for evaluation, possibly leading to erroneous acceptance of inferior samples or rejection of superior samples. Noticing that the coarse scales contain sufficient structural information, we propose clustering-based diversity search. It preserves structural variety through semantic feature clustering, enabling later selection on samples with higher potential. (ii) In fine scales, resampling-based potential selection prioritizes promising candidates using potential scores, which are defined as reward functions incorporating multi-scale generation history. Experiments on the powerful VAR model Infinity show a notable 8.7% GenEval score improvement (from 0.69 to 0.75). Key insights reveal that early-stage structural features effectively influence final quality, and resampling efficacy varies across generation scales. Code is available at https://github.com/ali-vilab/TTS-VAR.

  • 7 authors
·
Jul 24, 2025 2

CSD-VAR: Content-Style Decomposition in Visual Autoregressive Models

Disentangling content and style from a single image, known as content-style decomposition (CSD), enables recontextualization of extracted content and stylization of extracted styles, offering greater creative flexibility in visual synthesis. While recent personalization methods have explored the decomposition of explicit content style, they remain tailored for diffusion models. Meanwhile, Visual Autoregressive Modeling (VAR) has emerged as a promising alternative with a next-scale prediction paradigm, achieving performance comparable to that of diffusion models. In this paper, we explore VAR as a generative framework for CSD, leveraging its scale-wise generation process for improved disentanglement. To this end, we propose CSD-VAR, a novel method that introduces three key innovations: (1) a scale-aware alternating optimization strategy that aligns content and style representation with their respective scales to enhance separation, (2) an SVD-based rectification method to mitigate content leakage into style representations, and (3) an Augmented Key-Value (K-V) memory enhancing content identity preservation. To benchmark this task, we introduce CSD-100, a dataset specifically designed for content-style decomposition, featuring diverse subjects rendered in various artistic styles. Experiments demonstrate that CSD-VAR outperforms prior approaches, achieving superior content preservation and stylization fidelity.

  • 5 authors
·
Jul 18, 2025 4

How to Detect Network Dependence in Latent Factor Models? A Bias-Corrected CD Test

In a recent paper Juodis and Reese (2022) (JR) show that the application of the CD test proposed by Pesaran (2004) to residuals from panels with latent factors results in over-rejection. They propose a randomized test statistic to correct for over-rejection, and add a screening component to achieve power. This paper considers the same problem but from a different perspective, and shows that the standard CD test remains valid if the latent factors are weak in the sense the strength is less than half. In the case where latent factors are strong, we propose a bias-corrected version, CD*, which is shown to be asymptotically standard normal under the null of error cross-sectional independence and have power against network type alternatives. This result is shown to hold for pure latent factor models as well as for panel regression models with latent factors. The case where the errors are serially correlated is also considered. Small sample properties of the CD* test are investigated by Monte Carlo experiments and are shown to have the correct size for strong and weak factors as well as for Gaussian and non-Gaussian errors. In contrast, it is found that JR's test tends to over-reject in the case of panels with non-Gaussian errors, and has low power against spatial network alternatives. In an empirical application, using the CD* test, it is shown that there remains spatial error dependence in a panel data model for real house price changes across 377 Metropolitan Statistical Areas in the U.S., even after the effects of latent factors are filtered out.

  • 2 authors
·
Sep 1, 2021

One-connection rule for structural equation models

Linear structural equation models are multivariate statistical models encoded by mixed graphs. In particular, the set of covariance matrices for distributions belonging to a linear structural equation model for a fixed mixed graph G=(V, D,B) is parameterized by a rational function with parameters for each vertex and edge in G. This rational parametrization naturally allows for the study of these models from an algebraic and combinatorial point of view. Indeed, this point of view has led to a collection of results in the literature, mainly focusing on questions related to identifiability and determining relationships between covariances (i.e., finding polynomials in the Gaussian vanishing ideal). So far, a large proportion of these results has focused on the case when D, the directed part of the mixed graph G, is acyclic. This is due to the fact that in the acyclic case, the parametrization becomes polynomial and there is a description of the entries of the covariance matrices in terms of a finite sum. We move beyond the acyclic case and give a closed form expression for the entries of the covariance matrices in terms of the one-connections in a graph obtained from D through some small operations. This closed form expression then allows us to show that if G is simple, then the parametrization map is generically finite-to-one. Finally, having a closed form expression for the covariance matrices allows for the development of an algorithm for systematically exploring possible polynomials in the Gaussian vanishing ideal.

  • 4 authors
·
Oct 1, 2022

Adaptive Testing for Connected and Automated Vehicles with Sparse Control Variates in Overtaking Scenarios

Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs). Due to the black-box property and various types of CAVs, how to test and evaluate CAVs adaptively remains a major challenge. Many approaches have been proposed to adaptively generate testing scenarios during the testing process. However, most existing approaches cannot be applied to complex scenarios, where the variables needed to define such scenarios are high dimensional. Towards filling this gap, the adaptive testing with sparse control variates method is proposed in this paper. Instead of adaptively generating testing scenarios, our approach evaluates CAVs' performances by adaptively utilizing the testing results. Specifically, each testing result is adjusted using multiple linear regression techniques based on control variates. As the regression coefficients can be adaptively optimized for the CAV under test, using the adjusted results can reduce the estimation variance, compared with using the testing results directly. To overcome the high dimensionality challenge, sparse control variates are utilized only for the critical variables of testing scenarios. To validate the proposed method, the high-dimensional overtaking scenarios are investigated, and the results demonstrate that our approach can further accelerate the evaluation process by about 30 times.

  • 5 authors
·
Jul 19, 2022

Sliced Wasserstein Estimation with Control Variates

The sliced Wasserstein (SW) distances between two probability measures are defined as the expectation of the Wasserstein distance between two one-dimensional projections of the two measures. The randomness comes from a projecting direction that is used to project the two input measures to one dimension. Due to the intractability of the expectation, Monte Carlo integration is performed to estimate the value of the SW distance. Despite having various variants, there has been no prior work that improves the Monte Carlo estimation scheme for the SW distance in terms of controlling its variance. To bridge the literature on variance reduction and the literature on the SW distance, we propose computationally efficient control variates to reduce the variance of the empirical estimation of the SW distance. The key idea is to first find Gaussian approximations of projected one-dimensional measures, then we utilize the closed-form of the Wasserstein-2 distance between two Gaussian distributions to design the control variates. In particular, we propose using a lower bound and an upper bound of the Wasserstein-2 distance between two fitted Gaussians as two computationally efficient control variates. We empirically show that the proposed control variate estimators can help to reduce the variance considerably when comparing measures over images and point-clouds. Finally, we demonstrate the favorable performance of the proposed control variate estimators in gradient flows to interpolate between two point-clouds and in deep generative modeling on standard image datasets, such as CIFAR10 and CelebA.

  • 2 authors
·
Apr 30, 2023

Unveiling Intrinsic Dimension of Texts: from Academic Abstract to Creative Story

Intrinsic dimension (ID) is an important tool in modern LLM analysis, informing studies of training dynamics, scaling behavior, and dataset structure, yet its textual determinants remain underexplored. We provide the first comprehensive study grounding ID in interpretable text properties through cross-encoder analysis, linguistic features, and sparse autoencoders (SAEs). In this work, we establish three key findings. First, ID is complementary to entropy-based metrics: after controlling for length, the two are uncorrelated, with ID capturing geometric complexity orthogonal to prediction quality. Second, ID exhibits robust genre stratification: scientific prose shows low ID (~8), encyclopedic content medium ID (~9), and creative/opinion writing high ID (~10.5) across all models tested. This reveals that contemporary LLMs find scientific text "representationally simple" while fiction requires additional degrees of freedom. Third, using SAEs, we identify causal features: scientific signals (formal tone, report templates, statistics) reduce ID; humanized signals (personalization, emotion, narrative) increase it. Steering experiments confirm these effects are causal. Thus, for contemporary models, scientific writing appears comparatively "easy", whereas fiction, opinion, and affect add representational degrees of freedom. Our multi-faceted analysis provides practical guidance for the proper use of ID and the sound interpretation of ID-based results.

  • 8 authors
·
Nov 19, 2025 3

BioFusionNet: Deep Learning-Based Survival Risk Stratification in ER+ Breast Cancer Through Multifeature and Multimodal Data Fusion

Breast cancer is a significant health concern affecting millions of women worldwide. Accurate survival risk stratification plays a crucial role in guiding personalised treatment decisions and improving patient outcomes. Here we present BioFusionNet, a deep learning framework that fuses image-derived features with genetic and clinical data to achieve a holistic patient profile and perform survival risk stratification of ER+ breast cancer patients. We employ multiple self-supervised feature extractors, namely DINO and MoCoV3, pretrained on histopathology patches to capture detailed histopathological image features. We then utilise a variational autoencoder (VAE) to fuse these features, and harness the latent space of the VAE to feed into a self-attention network, generating patient-level features. Next, we develop a co-dual-cross-attention mechanism to combine the histopathological features with genetic data, enabling the model to capture the interplay between them. Additionally, clinical data is incorporated using a feed-forward network (FFN), further enhancing predictive performance and achieving comprehensive multimodal feature integration. Furthermore, we introduce a weighted Cox loss function, specifically designed to handle imbalanced survival data, which is a common challenge in the field. The proposed model achieves a mean concordance index (C-index) of 0.77 and a time-dependent area under the curve (AUC) of 0.84, outperforming state-of-the-art methods. It predicts risk (high versus low) with prognostic significance for overall survival (OS) in univariate analysis (HR=2.99, 95% CI: 1.88--4.78, p<0.005), and maintains independent significance in multivariate analysis incorporating standard clinicopathological variables (HR=2.91, 95% CI: 1.80--4.68, p<0.005). The proposed method not only improves model performance but also addresses a critical gap in handling imbalanced data.

  • 4 authors
·
Feb 16, 2024

Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice

Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.

Weighted least-squares approximation with determinantal point processes and generalized volume sampling

We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

  • 2 authors
·
Dec 21, 2023

Kernel Density Estimators in Large Dimensions

This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.

  • 2 authors
·
Aug 11, 2024

Learning Interactions Between Continuous Treatments and Covariates with a Semiparametric Model

Estimating the impact of continuous treatment variables (e.g., dosage amount) on binary outcomes presents significant challenges in modeling and estimation because many existing approaches make strong assumptions that do not hold for certain continuous treatment variables. For instance, traditional logistic regression makes strong linearity assumptions that do not hold for continuous treatment variables like time of initiation. In this work, we propose a semiparametric regression framework that decomposes effects into two interpretable components: a prognostic score that captures baseline outcome risk based on a combination of clinical, genetic, and sociodemographic features, and a treatment-interaction score that flexibly models the optimal treatment level via a nonparametric link function. By connecting these two parametric scores with Nadaraya-Watson regression, our approach is both interpretable and flexible. The potential of our approach is demonstrated through numerical simulations that show empirical estimation convergence. We conclude by applying our approach to a real-world case study using the International Warfarin Pharmacogenomics Consortium (IWPC) dataset to show our approach's clinical utility by deriving personalized warfarin dosing recommendations that integrate both genetic and clinical data, providing insights towards enhancing patient safety and therapeutic efficacy in anticoagulation therapy.

  • 3 authors
·
May 6, 2025

Chaos as an interpretable benchmark for forecasting and data-driven modelling

The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.

  • 1 authors
·
Oct 11, 2021

Image-based Treatment Effect Heterogeneity

Randomized controlled trials (RCTs) are considered the gold standard for estimating the average treatment effect (ATE) of interventions. One use of RCTs is to study the causes of global poverty -- a subject explicitly cited in the 2019 Nobel Memorial Prize awarded to Duflo, Banerjee, and Kremer "for their experimental approach to alleviating global poverty." Because the ATE is a population summary, anti-poverty experiments often seek to unpack the effect variation around the ATE by conditioning (CATE) on tabular variables such as age and ethnicity that were measured during the RCT data collection. Although such variables are key to unpacking CATE, using only such variables may fail to capture historical, geographical, or neighborhood-specific contributors to effect variation, as tabular RCT data are often only observed near the time of the experiment. In global poverty research, when the location of the experiment units is approximately known, satellite imagery can provide a window into such factors important for understanding heterogeneity. However, there is no method that specifically enables applied researchers to analyze CATE from images. In this paper, using a deep probabilistic modeling framework, we develop such a method that estimates latent clusters of images by identifying images with similar treatment effects distributions. Our interpretable image CATE model also includes a sensitivity factor that quantifies the importance of image segments contributing to the effect cluster prediction. We compare the proposed methods against alternatives in simulation; also, we show how the model works in an actual RCT, estimating the effects of an anti-poverty intervention in northern Uganda and obtaining a posterior predictive distribution over effects for the rest of the country where no experimental data was collected. We make all models available in open-source software.

CoRA: Covariate-Aware Adaptation of Time Series Foundation Models

Time Series Foundation Models (TSFMs) have shown significant impact through their model capacity, scalability, and zero-shot generalization. However, due to the heterogeneity of inter-variate dependencies and the backbone scalability on large-scale multivariate datasets, most TSFMs are typically pre-trained on univariate time series. This limitation renders them oblivious to crucial information from diverse covariates in real-world forecasting tasks. To further enhance the performance of TSFMs, we propose a general covariate-aware adaptation (CoRA) framework for TSFMs. It leverages pre-trained backbones of foundation models while effectively incorporating exogenous covariates from various modalities, including time series, language, and images, to improve the quality of predictions. Technically, CoRA maintains the equivalence of initialization and parameter consistency during adaptation. With preserved backbones of foundation models as frozen feature extractors, the outcome embeddings from foundation models are empirically demonstrated more informative than raw data. Further, CoRA employs a novel Granger Causality Embedding (GCE) to automatically evaluate covariates regarding their causal predictability with respect to the target variate. We incorporate these weighted embeddings with a zero-initialized condition-injection mechanism, avoiding catastrophic forgetting of pre-trained foundation models and gradually integrates exogenous information. Extensive experiments show that CoRA of TSFMs surpasses state-of-the-art covariate-aware deep forecasters with full or few-shot training samples, achieving 31.1% MSE reduction on covariate-aware forecasting. Compared to other adaptation methods, CoRA exhibits strong compatibility with various advanced TSFMs and extends the scope of covariates to other modalities, presenting a practical paradigm for the application of TSFMs.

  • 8 authors
·
Oct 14, 2025

What Benefits Drive Membership in Medicare Advantage Plans?

We seek to identify the most relevant benefits offered by Medicare Advantage Health Plans that drive membership and market share. As an example, we explore plans operating in a single county in New Jersey between 2018 and 2023. A dataset of benefits from publicly available data sources was created and the variance inflation factor was applied to identify the correlation between the extracted features, to avoid multicollinearity and overparameterization problems. We categorized the variable Market Share and used it as a multinomial response variable with three categories: less than 0.3\%, 0.3\% to 1.5\%, and over 1.5\%. Categories were chosen to achieve approximately uniform distribution of plans (47, 60, and 65 respectively). We built a multinomial Lasso model using 5-fold cross-validation to tune the penalty parameter. Lasso forced some features to be dropped from the model, which reduces the risk of overfitting and increases the interpretability of the results. For each category, important variables are different. Certain brands drive market share, as do PPO plans and prescription drug coverage. Benefits, particularly ancillary benefits that are not part of CMS's required benefits, appear to have little influence, while financial terms such as deductibles, copays, and out-of-pocket limits are associated with higher market share. Finally, we evaluated the predictive accuracy of the Lasso model with the test set. The accuracy is 0.76.

  • 2 authors
·
Nov 3, 2025

How can the use of different modes of survey data collection introduce bias? A simple introduction to mode effects using directed acyclic graphs (DAGs)

Survey data are self-reported data collected directly from respondents by a questionnaire or an interview and are commonly used in epidemiology. Such data are traditionally collected via a single mode (e.g. face-to-face interview alone), but use of mixed-mode designs (e.g. offering face-to-face interview or online survey) has become more common. This introduces two key challenges. First, individuals may respond differently to the same question depending on the mode; these differences due to measurement are known as 'mode effects'. Second, different individuals may participate via different modes; these differences in sample composition between modes are known as 'mode selection'. Where recognised, mode effects are often handled by straightforward approaches such as conditioning on survey mode. However, while reducing mode effects, this and other equivalent approaches may introduce collider bias in the presence of mode selection. The existence of mode effects and the consequences of na\"ive conditioning may be underappreciated in epidemiology. This paper offers a simple introduction to these challenges using directed acyclic graphs by exploring a range of possible data structures. We discuss the potential implications of using conditioning- or imputation-based approaches and outline the advantages of quantitative bias analyses for dealing with mode effects.

  • 4 authors
·
Oct 1, 2025

Visual Autoregressive Modeling for Instruction-Guided Image Editing

Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On standard benchmarks, it outperforms leading diffusion-based methods by 30\%+ higher GPT-Balance score. Moreover, it completes a 512times512 editing in 1.2 seconds, making it 2.2times faster than the similarly sized UltraEdit. The models are available at https://github.com/HiDream-ai/VAREdit.

  • 8 authors
·
Aug 21, 2025 3

Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data

Characterizing the relationship between neural population activity and behavioral data is a central goal of neuroscience. While latent variable models (LVMs) are successful in describing high-dimensional time-series data, they are typically only designed for a single type of data, making it difficult to identify structure shared across different experimental data modalities. Here, we address this shortcoming by proposing an unsupervised LVM which extracts temporally evolving shared and independent latents for distinct, simultaneously recorded experimental modalities. We do this by combining Gaussian Process Factor Analysis (GPFA), an interpretable LVM for neural spiking data with temporally smooth latent space, with Gaussian Process Variational Autoencoders (GP-VAEs), which similarly use a GP prior to characterize correlations in a latent space, but admit rich expressivity due to a deep neural network mapping to observations. We achieve interpretability in our model by partitioning latent variability into components that are either shared between or independent to each modality. We parameterize the latents of our model in the Fourier domain, and show improved latent identification using this approach over standard GP-VAE methods. We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time. We show that the multi-modal GP-VAE (MM-GPVAE) is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials. Finally, we demonstrate our framework on two real world multi-modal experimental settings: Drosophila whole-brain calcium imaging alongside tracked limb positions, and Manduca sexta spike train measurements from ten wing muscles as the animal tracks a visual stimulus.

  • 5 authors
·
Oct 4, 2023

Learning from the Best, Differently: A Diversity-Driven Rethinking on Data Selection

High-quality pre-training data is crutial for large language models, where quality captures factual reliability and semantic value, and diversity ensures broad coverage and distributional heterogeneity. Existing approaches typically rely on single or multiple-dimensional score-based selection. However, directly selecting top-scored data often degrades performance, and sampling from a broader range is required to recover results. The above non-monotonicity between dataset scores and downstream benchmark results reveals a fundamental bias: score-based methods collapse correlated dimensions, causing top-scored data to appear high-quality while systematically overlooking diversity. We argue that ensuring diversity requires decomposing correlated metrics into orthogonal feature dimensions, from which the top-scored data can be directly selected. Therefore, we proposed the Orthogonal Diversity-Aware Selection (ODiS) algorithm, which preserves both quality and diversity during data selection. First, ODiS evaluates data from multiple dimensions, covering language quality, knowledge quality, and comprehension difficulty. The multi-dimensional scores are then decorrelated via Principal Component Analysis (PCA), yielding orthogonal evaluation dimensions. For each dimension, a Roberta-based scorer is trained to regress the data onto PCA-projected scores, enabling scalable inference on large corpora. Finally, ODiS constructs the training dataset by selecting top-scored data within each orthogonal dimension, thereby ensuring both quality and diversity. Empirical results show that ODiS-selected data exhibit less than 2\% inter-dimension overlap, confirming orthogonality between dimensions. More importantly, models trained with ODiS-selected data significantly outperform other baselines on downstream benchmarks, highlighting the necessity of orthogonal, diversity-aware data selection for LLMs.

  • 9 authors
·
Oct 20, 2025 3

Comparison of Clustering Algorithms for Statistical Features of Vibration Data Sets

Vibration-based condition monitoring systems are receiving increasing attention due to their ability to accurately identify different conditions by capturing dynamic features over a broad frequency range. However, there is little research on clustering approaches in vibration data and the resulting solutions are often optimized for a single data set. In this work, we present an extensive comparison of the clustering algorithms K-means clustering, OPTICS, and Gaussian mixture model clustering (GMM) applied to statistical features extracted from the time and frequency domains of vibration data sets. Furthermore, we investigate the influence of feature combinations, feature selection using principal component analysis (PCA), and the specified number of clusters on the performance of the clustering algorithms. We conducted this comparison in terms of a grid search using three different benchmark data sets. Our work showed that averaging (Mean, Median) and variance-based features (Standard Deviation, Interquartile Range) performed significantly better than shape-based features (Skewness, Kurtosis). In addition, K-means outperformed GMM slightly for these data sets, whereas OPTICS performed significantly worse. We were also able to show that feature combinations as well as PCA feature selection did not result in any significant performance improvements. With an increase in the specified number of clusters, clustering algorithms performed better, although there were some specific algorithmic restrictions.

  • 4 authors
·
May 11, 2023

Segmentation variability and radiomics stability for predicting Triple-Negative Breast Cancer subtype using Magnetic Resonance Imaging

Most papers caution against using predictive models for disease stratification based on unselected radiomic features, as these features are affected by contouring variability. Instead, they advocate for the use of the Intraclass Correlation Coefficient (ICC) as a measure of stability for feature selection. However, the direct effect of segmentation variability on the predictive models is rarely studied. This study investigates the impact of segmentation variability on feature stability and predictive performance in radiomics-based prediction of Triple-Negative Breast Cancer (TNBC) subtype using Magnetic Resonance Imaging. A total of 244 images from the Duke dataset were used, with segmentation variability introduced through modifications of manual segmentations. For each mask, explainable radiomic features were selected using the Shapley Additive exPlanations method and used to train logistic regression models. Feature stability across segmentations was assessed via ICC, Pearson's correlation, and reliability scores quantifying the relationship between feature stability and segmentation variability. Results indicate that segmentation accuracy does not significantly impact predictive performance. While incorporating peritumoral information may reduce feature reproducibility, it does not diminish feature predictive capability. Moreover, feature selection in predictive models is not inherently tied to feature stability with respect to segmentation, suggesting that an overreliance on ICC or reliability scores for feature selection might exclude valuable predictive features.

  • 7 authors
·
Apr 2, 2025

Cousins Of The Vendi Score: A Family Of Similarity-Based Diversity Metrics For Science And Machine Learning

Measuring diversity accurately is important for many scientific fields, including machine learning (ML), ecology, and chemistry. The Vendi Score was introduced as a generic similarity-based diversity metric that extends the Hill number of order q=1 by leveraging ideas from quantum statistical mechanics. Contrary to many diversity metrics in ecology, the Vendi Score accounts for similarity and does not require knowledge of the prevalence of the categories in the collection to be evaluated for diversity. However, the Vendi Score treats each item in a given collection with a level of sensitivity proportional to the item's prevalence. This is undesirable in settings where there is a significant imbalance in item prevalence. In this paper, we extend the other Hill numbers using similarity to provide flexibility in allocating sensitivity to rare or common items. This leads to a family of diversity metrics -- Vendi scores with different levels of sensitivity -- that can be used in a variety of applications. We study the properties of the scores in a synthetic controlled setting where the ground truth diversity is known. We then test their utility in improving molecular simulations via Vendi Sampling. Finally, we use the Vendi scores to better understand the behavior of image generative models in terms of memorization, duplication, diversity, and sample quality.

  • 2 authors
·
Oct 19, 2023

Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives

Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.

  • 4 authors
·
Jun 30, 2025

M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation

There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into intra-scale modeling, which captures local spatial dependencies within each scale, and inter-scale modeling, which models cross-scale relationships progressively from coarse-to-fine scales. This decoupling structure allows to rebuild VAR in a more computationally efficient manner. Specifically, for intra-scale modeling -- crucial for generating high-fidelity images -- we retain the original bidirectional self-attention design to ensure comprehensive modeling; for inter-scale modeling, which semantically connects different scales but is computationally intensive, we apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead. We term this new framework M-VAR. Extensive experiments demonstrate that our method outperforms existing models in both image quality and generation speed. For example, our 1.5B model, with fewer parameters and faster inference speed, outperforms the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 impressively registers 1.78 FID on ImageNet 256times256 and outperforms the prior-art autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models LDM/DiT by 1.82/0.49, respectively. Code is avaiable at https://github.com/OliverRensu/MVAR.

  • 6 authors
·
Nov 15, 2024

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.

  • 4 authors
·
Mar 29, 2022

Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves

Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.

  • 2 authors
·
Dec 9, 2024

Chinese vs. World Bank Development Projects: Insights from Earth Observation and Computer Vision on Wealth Gains in Africa, 2002-2013

Debates about whether development projects improve living conditions persist, partly because observational estimates can be biased by incomplete adjustment and because reliable outcome data are scarce at the neighborhood level. We address both issues in a continent-scale, sector-specific evaluation of Chinese and World Bank projects across 9,899 neighborhoods in 36 African countries (2002 to 2013), representative of 88% of the population. First, we use a recent dataset that measures living conditions with a machine-learned wealth index derived from contemporaneous satellite imagery, yielding a consistent panel of 6.7 km square mosaics. Second, to strengthen identification, we proxy officials' map-based placement criteria using pre-treatment daytime satellite images and fuse these with rich tabular covariates to estimate funder- and sector-specific ATEs via inverse-probability weighting. Incorporating imagery systematically shrinks effects relative to tabular-only models, indicating prior work likely overstated benefits. On average, both donors raise wealth, with larger gains for China; sector extremes in our sample include Trade and Tourism for the World Bank (+6.27 IWI points), and Emergency Response for China (+14.32). Assignment-mechanism analyses show World Bank placement is generally more predictable from imagery alone, as well as from tabular covariates. This suggests that Chinese project placements are more driven by non-visible, political, or event-driven factors than World Bank placements. To probe residual concerns about selection on observables, we also estimate within-neighborhood (unit) fixed-effects models at a spatial resolution about 450 times finer than prior fixed effects analyses, leveraging the computer-vision-imputed IWI panels; these deliver smaller but directionally consistent effects.

Exploring the cloud of feature interaction scores in a Rashomon set

Interactions among features are central to understanding the behavior of machine learning models. Recent research has made significant strides in detecting and quantifying feature interactions in single predictive models. However, we argue that the feature interactions extracted from a single pre-specified model may not be trustworthy since: a well-trained predictive model may not preserve the true feature interactions and there exist multiple well-performing predictive models that differ in feature interaction strengths. Thus, we recommend exploring feature interaction strengths in a model class of approximately equally accurate predictive models. In this work, we introduce the feature interaction score (FIS) in the context of a Rashomon set, representing a collection of models that achieve similar accuracy on a given task. We propose a general and practical algorithm to calculate the FIS in the model class. We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics. Additionally, we introduce a Halo plot for visualizing the feature interaction variance in high-dimensional space and a swarm plot for analyzing FIS in a Rashomon set. Experiments with recidivism prediction and image classification illustrate how feature interactions can vary dramatically in importance for similarly accurate predictive models. Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.

  • 4 authors
·
May 17, 2023

Diffusion-Driven Generation of Minimally Preprocessed Brain MRI

The purpose of this study is to present and compare three denoising diffusion probabilistic models (DDPMs) that generate 3D T_1-weighted MRI human brain images. Three DDPMs were trained using 80,675 image volumes from 42,406 subjects spanning 38 publicly available brain MRI datasets. These images had approximately 1 mm isotropic resolution and were manually inspected by three human experts to exclude those with poor quality, field-of-view issues, and excessive pathology. The images were minimally preprocessed to preserve the visual variability of the data. Furthermore, to enable the DDPMs to produce images with natural orientation variations and inhomogeneity, the images were neither registered to a common coordinate system nor bias field corrected. Evaluations included segmentation, Frechet Inception Distance (FID), and qualitative inspection. Regarding results, all three DDPMs generated coherent MR brain volumes. The velocity and flow prediction models achieved lower FIDs than the sample prediction model. However, all three models had higher FIDs compared to real images across multiple cohorts. In a permutation experiment, the generated brain regional volume distributions differed statistically from real data. However, the velocity and flow prediction models had fewer statistically different volume distributions in the thalamus and putamen. In conclusion this work presents and releases the first 3D non-latent diffusion model for brain data without skullstripping or registration. Despite the negative results in statistical testing, the presented DDPMs are capable of generating high-resolution 3D T_1-weighted brain images. All model weights and corresponding inference code are publicly available at https://github.com/piksl-research/medforj .

  • 4 authors
·
Oct 29, 2025

HMAR: Efficient Hierarchical Masked Auto-Regressive Image Generation

Visual Auto-Regressive modeling (VAR) has shown promise in bridging the speed and quality gap between autoregressive image models and diffusion models. VAR reformulates autoregressive modeling by decomposing an image into successive resolution scales. During inference, an image is generated by predicting all the tokens in the next (higher-resolution) scale, conditioned on all tokens in all previous (lower-resolution) scales. However, this formulation suffers from reduced image quality due to the parallel generation of all tokens in a resolution scale; has sequence lengths scaling superlinearly in image resolution; and requires retraining to change the sampling schedule. We introduce Hierarchical Masked Auto-Regressive modeling (HMAR), a new image generation algorithm that alleviates these issues using next-scale prediction and masked prediction to generate high-quality images with fast sampling. HMAR reformulates next-scale prediction as a Markovian process, wherein the prediction of each resolution scale is conditioned only on tokens in its immediate predecessor instead of the tokens in all predecessor resolutions. When predicting a resolution scale, HMAR uses a controllable multi-step masked generation procedure to generate a subset of the tokens in each step. On ImageNet 256x256 and 512x512 benchmarks, HMAR models match or outperform parameter-matched VAR, diffusion, and autoregressive baselines. We develop efficient IO-aware block-sparse attention kernels that allow HMAR to achieve faster training and inference times over VAR by over 2.5x and 1.75x respectively, as well as over 3x lower inference memory footprint. Finally, HMAR yields additional flexibility over VAR; its sampling schedule can be changed without further training, and it can be applied to image editing tasks in a zero-shot manner.

  • 9 authors
·
Jun 4, 2025

A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning

We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.

  • 2 authors
·
Jun 16, 2023

A foundation model with multi-variate parallel attention to generate neuronal activity

Learning from multi-variate time-series with heterogeneous channel configurations remains a fundamental challenge for deep neural networks (DNNs), particularly in clinical domains such as intracranial electroencephalography (iEEG), where channel setups vary widely across subjects. In this work, we introduce multi-variate parallel attention (MVPA), a novel self-attention mechanism that disentangles content, temporal, and spatial attention, enabling flexible, generalizable, and efficient modeling of time-series data with varying channel counts and configurations. We use MVPA to build MVPFormer, a generative foundation model for human electrophysiology, trained to predict the evolution of iEEG signals across diverse subjects. To support this and future effort by the community, we release the SWEC iEEG dataset, the largest publicly available iEEG dataset to date, comprising nearly 10,000 hours of recordings from heterogeneous clinical sources. MVPFormer leverages MVPA to achieve strong generalization across subjects, demonstrating expert-level performance in seizure detection and outperforming state-of-the-art Transformer baselines on our SWEC, the MAYO, and the FNUSA dataset. We further validate MVPA on standard time-series forecasting and classification tasks, where it matches or exceeds existing attention-based models. Together, our contributions establish MVPA as a general-purpose attention mechanism for heterogeneous time-series and MVPFormer as the first open-source, open-weights, and open-data iEEG foundation model with state-of-the-art clinical performance. The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://mb-neuro.medical-blocks.ch/public_access/databases/ieeg/swec_ieeg.

  • 5 authors
·
Jun 25, 2025

Can Multimodal LLMs Perform Time Series Anomaly Detection?

Large language models (LLMs) have been increasingly used in time series analysis. However, the potential of multimodal LLMs (MLLMs), particularly vision-language models, for time series remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. Motivated by this, we raise a critical and practical research question: Can multimodal LLMs perform time series anomaly detection? To answer this, we propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD). Our approach transforms time series numerical data into the image format and feed these images into various MLLMs, including proprietary models (GPT-4o and Gemini-1.5) and open-source models (LLaVA-NeXT and Qwen2-VL), each with one larger and one smaller variant. In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs. Starting with the univariate case (point- and range-wise anomalies), we extend our evaluation to more practical scenarios, including multivariate and irregular time series scenarios, and variate-wise anomalies. Our study reveals several key insights: 1) MLLMs detect range- and variate-wise anomalies more effectively than point-wise anomalies. 2) MLLMs are highly robust to irregular time series, even with 25% of the data missing. 3) Open-source MLLMs perform comparably to proprietary models in TSAD. While open-source MLLMs excel on univariate time series, proprietary MLLMs demonstrate superior effectiveness on multivariate time series. To the best of our knowledge, this is the first work to comprehensively investigate MLLMs for TSAD, particularly for multivariate and irregular time series scenarios. We release our dataset and code at https://github.com/mllm-ts/VisualTimeAnomaly to support future research.

  • 6 authors
·
Feb 24, 2025