Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDodging the Data Bottleneck: Automatic Subtitling with Automatically Segmented ST Corpora
Speech translation for subtitling (SubST) is the task of automatically translating speech data into well-formed subtitles by inserting subtitle breaks compliant to specific displaying guidelines. Similar to speech translation (ST), model training requires parallel data comprising audio inputs paired with their textual translations. In SubST, however, the text has to be also annotated with subtitle breaks. So far, this requirement has represented a bottleneck for system development, as confirmed by the dearth of publicly available SubST corpora. To fill this gap, we propose a method to convert existing ST corpora into SubST resources without human intervention. We build a segmenter model that automatically segments texts into proper subtitles by exploiting audio and text in a multimodal fashion, achieving high segmentation quality in zero-shot conditions. Comparative experiments with SubST systems respectively trained on manual and automatic segmentations result in similar performance, showing the effectiveness of our approach.
Direct Speech Translation for Automatic Subtitling
Automatic subtitling is the task of automatically translating the speech of audiovisual content into short pieces of timed text, i.e. subtitles and their corresponding timestamps. The generated subtitles need to conform to space and time requirements, while being synchronised with the speech and segmented in a way that facilitates comprehension. Given its considerable complexity, the task has so far been addressed through a pipeline of components that separately deal with transcribing, translating, and segmenting text into subtitles, as well as predicting timestamps. In this paper, we propose the first direct ST model for automatic subtitling that generates subtitles in the target language along with their timestamps with a single model. Our experiments on 7 language pairs show that our approach outperforms a cascade system in the same data condition, also being competitive with production tools on both in-domain and newly-released out-domain benchmarks covering new scenarios.
Optimizing Estonian TV Subtitles with Semi-supervised Learning and LLMs
This paper presents an approach for generating high-quality, same-language subtitles for Estonian TV content. We fine-tune the Whisper model on human-generated Estonian subtitles and enhance it with iterative pseudo-labeling and large language model (LLM) based post-editing. Our experiments demonstrate notable subtitle quality improvement through pseudo-labeling with an unlabeled dataset. We find that applying LLM-based editing at test time enhances subtitle accuracy, while its use during training does not yield further gains. This approach holds promise for creating subtitle quality close to human standard and could be extended to real-time applications.
Leveraging Broadcast Media Subtitle Transcripts for Automatic Speech Recognition and Subtitling
The recent advancement of speech recognition technology has been driven by large-scale datasets and attention-based architectures, but many challenges still remain, especially for low-resource languages and dialects. This paper explores the integration of weakly supervised transcripts from TV subtitles into automatic speech recognition (ASR) systems, aiming to improve both verbatim transcriptions and automatically generated subtitles. To this end, verbatim data and subtitles are regarded as different domains or languages, due to their distinct characteristics. We propose and compare several end-to-end architectures that are designed to jointly model both modalities with separate or shared encoders and decoders. The proposed methods are able to jointly generate a verbatim transcription and a subtitle. Evaluation on Flemish (Belgian Dutch) demonstrates that a model with cascaded encoders and separate decoders allows to represent the differences between the two data types most efficiently while improving on both domains. Despite differences in domain and linguistic variations, combining verbatim transcripts with subtitle data leads to notable ASR improvements without the need for extensive preprocessing. Additionally, experiments with a large-scale subtitle dataset show the scalability of the proposed approach. The methods not only improve ASR accuracy but also generate subtitles that closely match standard written text, offering several potential applications.
An investigation of phrase break prediction in an End-to-End TTS system
Purpose: This work explores the use of external phrase break prediction models to enhance listener comprehension in End-to-End Text-to-Speech (TTS) systems. Methods: The effectiveness of these models is evaluated based on listener preferences in subjective tests. Two approaches are explored: (1) a bidirectional LSTM model with task-specific embeddings trained from scratch, and (2) a pre-trained BERT model fine-tuned on phrase break prediction. Both models are trained on a multi-speaker English corpus to predict phrase break locations in text. The End-to-End TTS system used comprises a Tacotron2 model with Dynamic Convolutional Attention for mel spectrogram prediction and a WaveRNN vocoder for waveform generation. Results: The listening tests show a clear preference for text synthesized with predicted phrase breaks over text synthesized without them. Conclusion: These results confirm the value of incorporating external phrasing models within End-to-End TTS to enhance listener comprehension.
SBAAM! Eliminating Transcript Dependency in Automatic Subtitling
Subtitling plays a crucial role in enhancing the accessibility of audiovisual content and encompasses three primary subtasks: translating spoken dialogue, segmenting translations into concise textual units, and estimating timestamps that govern their on-screen duration. Past attempts to automate this process rely, to varying degrees, on automatic transcripts, employed diversely for the three subtasks. In response to the acknowledged limitations associated with this reliance on transcripts, recent research has shifted towards transcription-free solutions for translation and segmentation, leaving the direct generation of timestamps as uncharted territory. To fill this gap, we introduce the first direct model capable of producing automatic subtitles, entirely eliminating any dependence on intermediate transcripts also for timestamp prediction. Experimental results, backed by manual evaluation, showcase our solution's new state-of-the-art performance across multiple language pairs and diverse conditions.
Mark My Words: A Robust Multilingual Model for Punctuation in Text and Speech Transcripts
Punctuation plays a vital role in structuring meaning, yet current models often struggle to restore it accurately in transcripts of spontaneous speech, especially in the presence of disfluencies such as false starts and backtracking. These limitations hinder the performance of downstream tasks like translation, text to speech, summarization, etc. where sentence boundaries are critical for preserving quality. In this work, we introduce Cadence, a generalist punctuation restoration model adapted from a pretrained large language model. Cadence is designed to handle both clean written text and highly spontaneous spoken transcripts. It surpasses the previous state of the art in performance while expanding support from 14 to all 22 Indian languages and English. We conduct a comprehensive analysis of model behavior across punctuation types and language families, identifying persistent challenges under domain shift and with rare punctuation marks. Our findings demonstrate the efficacy of utilizing pretrained language models for multilingual punctuation restoration and highlight Cadence practical value for low resource NLP pipelines at scale.
ChapterBreak: A Challenge Dataset for Long-Range Language Models
While numerous architectures for long-range language models (LRLMs) have recently been proposed, a meaningful evaluation of their discourse-level language understanding capabilities has not yet followed. To this end, we introduce ChapterBreak, a challenge dataset that provides an LRLM with a long segment from a narrative that ends at a chapter boundary and asks it to distinguish the beginning of the ground-truth next chapter from a set of negative segments sampled from the same narrative. A fine-grained human annotation reveals that our dataset contains many complex types of chapter transitions (e.g., parallel narratives, cliffhanger endings) that require processing global context to comprehend. Experiments on ChapterBreak show that existing LRLMs fail to effectively leverage long-range context, substantially underperforming a segment-level model trained directly for this task. We publicly release our ChapterBreak dataset to spur more principled future research into LRLMs.
Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates
Subword units are an effective way to alleviate the open vocabulary problems in neural machine translation (NMT). While sentences are usually converted into unique subword sequences, subword segmentation is potentially ambiguous and multiple segmentations are possible even with the same vocabulary. The question addressed in this paper is whether it is possible to harness the segmentation ambiguity as a noise to improve the robustness of NMT. We present a simple regularization method, subword regularization, which trains the model with multiple subword segmentations probabilistically sampled during training. In addition, for better subword sampling, we propose a new subword segmentation algorithm based on a unigram language model. We experiment with multiple corpora and report consistent improvements especially on low resource and out-of-domain settings.
Generating clickbait spoilers with an ensemble of large language models
Clickbait posts are a widespread problem in the webspace. The generation of spoilers, i.e. short texts that neutralize clickbait by providing information that satisfies the curiosity induced by it, is one of the proposed solutions to the problem. Current state-of-the-art methods are based on passage retrieval or question answering approaches and are limited to generating spoilers only in the form of a phrase or a passage. In this work, we propose an ensemble of fine-tuned large language models for clickbait spoiler generation. Our approach is not limited to phrase or passage spoilers, but is also able to generate multipart spoilers that refer to several non-consecutive parts of text. Experimental evaluation demonstrates that the proposed ensemble model outperforms the baselines in terms of BLEU, METEOR and BERTScore metrics.
Lost in the Mix: Evaluating LLM Understanding of Code-Switched Text
Code-switching (CSW) is the act of alternating between two or more languages within a single discourse. This phenomenon is widespread in multilingual communities, and increasingly prevalent in online content, where users naturally mix languages in everyday communication. As a result, Large Language Models (LLMs), now central to content processing and generation, are frequently exposed to code-switched inputs. Given their widespread use, it is crucial to understand how LLMs process and reason about such mixed-language text. This paper presents a systematic evaluation of LLM comprehension under code-switching by generating CSW variants of established reasoning and comprehension benchmarks. While degradation is evident when foreign tokens disrupt English textx2013even under linguistic constraintsx2013embedding English into other languages often improves comprehension. Though prompting yields mixed results, fine-tuning offers a more stable path to degradation mitigation.
Open Subtitles Paraphrase Corpus for Six Languages
This paper accompanies the release of Opusparcus, a new paraphrase corpus for six European languages: German, English, Finnish, French, Russian, and Swedish. The corpus consists of paraphrases, that is, pairs of sentences in the same language that mean approximately the same thing. The paraphrases are extracted from the OpenSubtitles2016 corpus, which contains subtitles from movies and TV shows. The informal and colloquial genre that occurs in subtitles makes such data a very interesting language resource, for instance, from the perspective of computer assisted language learning. For each target language, the Opusparcus data have been partitioned into three types of data sets: training, development and test sets. The training sets are large, consisting of millions of sentence pairs, and have been compiled automatically, with the help of probabilistic ranking functions. The development and test sets consist of sentence pairs that have been checked manually; each set contains approximately 1000 sentence pairs that have been verified to be acceptable paraphrases by two annotators.
StochasTok: Improving Fine-Grained Subword Understanding in LLMs
Subword-level understanding is integral to numerous tasks, including understanding multi-digit numbers, spelling mistakes, abbreviations, rhyming, and wordplay. Despite this, current large language models (LLMs) still often struggle with seemingly simple subword-level tasks like How many 'r's in 'strawberry'?. A key factor behind these failures is tokenization which obscures the fine-grained structure of words. Current alternatives, such as character-level and dropout tokenization methods, significantly increase computational costs and provide inconsistent improvements. In this paper we revisit tokenization and introduce StochasTok, a simple, efficient stochastic tokenization scheme that randomly splits tokens during training, allowing LLMs to 'see' their internal structure. Our experiments show that pretraining with StochasTok substantially improves LLMs' downstream performance across multiple subword-level language games, including character counting, substring identification, and math tasks. Furthermore, StochasTok's simplicity allows seamless integration at any stage of the training pipeline; and we demonstrate that post-training with StochasTok can instill improved subword understanding into existing pretrained models, thus avoiding costly pretraining from scratch. These dramatic improvements achieved with a minimal change suggest StochasTok holds exciting potential when applied to larger, more capable models. Code open-sourced at: https://github.com/anyasims/stochastok.
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
Graph with Sequence: Broad-Range Semantic Modeling for Fake News Detection
The rapid proliferation of fake news on social media threatens social stability, creating an urgent demand for more effective detection methods. While many promising approaches have emerged, most rely on content analysis with limited semantic depth, leading to suboptimal comprehension of news content.To address this limitation, capturing broader-range semantics is essential yet challenging, as it introduces two primary types of noise: fully connecting sentences in news graphs often adds unnecessary structural noise, while highly similar but authenticity-irrelevant sentences introduce feature noise, complicating the detection process. To tackle these issues, we propose BREAK, a broad-range semantics model for fake news detection that leverages a fully connected graph to capture comprehensive semantics while employing dual denoising modules to minimize both structural and feature noise. The semantic structure denoising module balances the graph's connectivity by iteratively refining it between two bounds: a sequence-based structure as a lower bound and a fully connected graph as the upper bound. This refinement uncovers label-relevant semantic interrelations structures. Meanwhile, the semantic feature denoising module reduces noise from similar semantics by diversifying representations, aligning distinct outputs from the denoised graph and sequence encoders using KL-divergence to achieve feature diversification in high-dimensional space. The two modules are jointly optimized in a bi-level framework, enhancing the integration of denoised semantics into a comprehensive representation for detection. Extensive experiments across four datasets demonstrate that BREAK significantly outperforms existing fake news detection methods.
JESC: Japanese-English Subtitle Corpus
In this paper we describe the Japanese-English Subtitle Corpus (JESC). JESC is a large Japanese-English parallel corpus covering the underrepresented domain of conversational dialogue. It consists of more than 3.2 million examples, making it the largest freely available dataset of its kind. The corpus was assembled by crawling and aligning subtitles found on the web. The assembly process incorporates a number of novel preprocessing elements to ensure high monolingual fluency and accurate bilingual alignments. We summarize its contents and evaluate its quality using human experts and baseline machine translation (MT) systems.
Direct Models for Simultaneous Translation and Automatic Subtitling: FBK@IWSLT2023
This paper describes the FBK's participation in the Simultaneous Translation and Automatic Subtitling tracks of the IWSLT 2023 Evaluation Campaign. Our submission focused on the use of direct architectures to perform both tasks: for the simultaneous one, we leveraged the knowledge already acquired by offline-trained models and directly applied a policy to obtain the real-time inference; for the subtitling one, we adapted the direct ST model to produce well-formed subtitles and exploited the same architecture to produce timestamps needed for the subtitle synchronization with audiovisual content. Our English-German SimulST system shows a reduced computational-aware latency compared to the one achieved by the top-ranked systems in the 2021 and 2022 rounds of the task, with gains of up to 3.5 BLEU. Our automatic subtitling system outperforms the only existing solution based on a direct system by 3.7 and 1.7 SubER in English-German and English-Spanish respectively.
HowToCaption: Prompting LLMs to Transform Video Annotations at Scale
Instructional videos are an excellent source for learning multimodal representations by leveraging video-subtitle pairs extracted with automatic speech recognition systems (ASR) from the audio signal in the videos. However, in contrast to human-annotated captions, both speech and subtitles naturally differ from the visual content of the videos and thus provide only noisy supervision for multimodal learning. As a result, large-scale annotation-free web video training data remains sub-optimal for training text-video models. In this work, we propose to leverage the capability of large language models (LLMs) to obtain fine-grained video descriptions aligned with videos. Specifically, we prompt an LLM to create plausible video descriptions based on ASR narrations of the video for a large-scale instructional video dataset. To this end, we introduce a prompting method that is able to take into account a longer text of subtitles, allowing us to capture context beyond a single sentence. To align the captions to the video temporally, we prompt the LLM to generate timestamps for each produced caption based on the subtitles. In this way, we obtain human-style video captions at scale without human supervision. We apply our method to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption. Our evaluation shows that the resulting captions not only significantly improve the performance over many different benchmark datasets for text-video retrieval but also lead to a disentangling of textual narration from the audio, boosting performance in text-video-audio tasks.
Stop Clickbait: Detecting and Preventing Clickbaits in Online News Media
Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually don't live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesn't want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits.
BPE-Dropout: Simple and Effective Subword Regularization
Subword segmentation is widely used to address the open vocabulary problem in machine translation. The dominant approach to subword segmentation is Byte Pair Encoding (BPE), which keeps the most frequent words intact while splitting the rare ones into multiple tokens. While multiple segmentations are possible even with the same vocabulary, BPE splits words into unique sequences; this may prevent a model from better learning the compositionality of words and being robust to segmentation errors. So far, the only way to overcome this BPE imperfection, its deterministic nature, was to create another subword segmentation algorithm (Kudo, 2018). In contrast, we show that BPE itself incorporates the ability to produce multiple segmentations of the same word. We introduce BPE-dropout - simple and effective subword regularization method based on and compatible with conventional BPE. It stochastically corrupts the segmentation procedure of BPE, which leads to producing multiple segmentations within the same fixed BPE framework. Using BPE-dropout during training and the standard BPE during inference improves translation quality up to 3 BLEU compared to BPE and up to 0.9 BLEU compared to the previous subword regularization.
SemEval 2022 Task 12: Symlink- Linking Mathematical Symbols to their Descriptions
Given the increasing number of livestreaming videos, automatic speech recognition and post-processing for livestreaming video transcripts are crucial for efficient data management as well as knowledge mining. A key step in this process is punctuation restoration which restores fundamental text structures such as phrase and sentence boundaries from the video transcripts. This work presents a new human-annotated corpus, called BehancePR, for punctuation restoration in livestreaming video transcripts. Our experiments on BehancePR demonstrate the challenges of punctuation restoration for this domain. Furthermore, we show that popular natural language processing toolkits are incapable of detecting sentence boundary on non-punctuated transcripts of livestreaming videos, calling for more research effort to develop robust models for this area.
PySBD: Pragmatic Sentence Boundary Disambiguation
In this paper, we present a rule-based sentence boundary disambiguation Python package that works out-of-the-box for 22 languages. We aim to provide a realistic segmenter which can provide logical sentences even when the format and domain of the input text is unknown. In our work, we adapt the Golden Rules Set (a language-specific set of sentence boundary exemplars) originally implemented as a ruby gem - pragmatic_segmenter - which we ported to Python with additional improvements and functionality. PySBD passes 97.92% of the Golden Rule Set exemplars for English, an improvement of 25% over the next best open-source Python tool.
Improving Human Text Comprehension through Semi-Markov CRF-based Neural Section Title Generation
Titles of short sections within long documents support readers by guiding their focus towards relevant passages and by providing anchor-points that help to understand the progression of the document. The positive effects of section titles are even more pronounced when measured on readers with less developed reading abilities, for example in communities with limited labeled text resources. We, therefore, aim to develop techniques to generate section titles in low-resource environments. In particular, we present an extractive pipeline for section title generation by first selecting the most salient sentence and then applying deletion-based compression. Our compression approach is based on a Semi-Markov Conditional Random Field that leverages unsupervised word-representations such as ELMo or BERT, eliminating the need for a complex encoder-decoder architecture. The results show that this approach leads to competitive performance with sequence-to-sequence models with high resources, while strongly outperforming it with low resources. In a human-subject study across subjects with varying reading abilities, we find that our section titles improve the speed of completing comprehension tasks while retaining similar accuracy.
Tokenization Falling Short: The Curse of Tokenization
Language models typically tokenize raw text into sequences of subword identifiers from a predefined vocabulary, a process inherently sensitive to typographical errors, length variations, and largely oblivious to the internal structure of tokens-issues we term the curse of tokenization. In this study, we delve into these drawbacks and demonstrate that large language models (LLMs) remain susceptible to these problems. This study systematically investigates these challenges and their impact on LLMs through three critical research questions: (1) complex problem solving, (2) token structure probing, and (3) resilience to typographical variation. Our findings reveal that scaling model parameters can mitigate the issue of tokenization; however, LLMs still suffer from biases induced by typos and other text format variations. Our experiments show that subword regularization such as BPE-dropout can mitigate this issue. We will release our code and data to facilitate further research.
Adposition and Case Supersenses v2.6: Guidelines for English
This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/
Distributed Representations of Words and Phrases and their Compositionality
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
EVE: Towards End-to-End Video Subtitle Extraction with Vision-Language Models
The advent of Large Vision-Language Models (LVLMs) has advanced the video-based tasks, such as video captioning and video understanding. Some previous research indicates that taking texts in videos as input can further improve the performance of video understanding. As a type of indispensable information in short videos or movies, subtitles can assist LVLMs to better understand videos. Most existing methods for video subtitle extraction are based on a multi-stage framework, handling each frame independently. They can hardly exploit the temporal information of videos. Although some LVLMs exhibit the robust OCR capability, predicting accurate timestamps for subtitle texts is still challenging. In this paper, we propose an End-to-end Video Subtitle Extraction method, called EVE, which consists of three modules: a vision encoder, an adapter module, and a large language model. To effectively compress the visual tokens from the vision encoder, we propose a novel adapter InterleavedVT to interleave two modalities. It contains a visual compressor and a textual region compressor. The proposed InterleavedVT exploits both the merits of average pooling and Q-Former in token compression. Taking the temporal information of videos into account, we introduce a sliding-window mechanism in the textual region compressor. To benchmark the video subtitle extraction task, we propose a large dataset ViSa including 2.5M videos. Extensive experiments on ViSa demonstrate that the proposed EVE can outperform existing open-sourced tools and LVLMs.
PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
Beyond Film Subtitles: Is YouTube the Best Approximation of Spoken Vocabulary?
Word frequency is a key variable in psycholinguistics, useful for modeling human familiarity with words even in the era of large language models (LLMs). Frequency in film subtitles has proved to be a particularly good approximation of everyday language exposure. For many languages, however, film subtitles are not easily available, or are overwhelmingly translated from English. We demonstrate that frequencies extracted from carefully processed YouTube subtitles provide an approximation comparable to, and often better than, the best currently available resources. Moreover, they are available for languages for which a high-quality subtitle or speech corpus does not exist. We use YouTube subtitles to construct frequency norms for five diverse languages, Chinese, English, Indonesian, Japanese, and Spanish, and evaluate their correlation with lexical decision time, word familiarity, and lexical complexity. In addition to being strongly correlated with two psycholinguistic variables, a simple linear regression on the new frequencies achieves a new high score on a lexical complexity prediction task in English and Japanese, surpassing both models trained on film subtitle frequencies and the LLM GPT-4. Our code, the frequency lists, fastText word embeddings, and statistical language models are freely available at https://github.com/naist-nlp/tubelex.
Clickbait Classification and Spoiling Using Natural Language Processing
Clickbait is the practice of engineering titles to incentivize readers to click through to articles. Such titles with sensationalized language reveal as little information as possible. Occasionally, clickbait will be intentionally misleading, so natural language processing (NLP) can scan the article and answer the question posed by the clickbait title, or spoil it. We tackle two tasks: classifying the clickbait into one of 3 types (Task 1), and spoiling the clickbait (Task 2). For Task 1, we propose two binary classifiers to determine the final spoiler type. For Task 2, we experiment with two approaches: using a question-answering model to identify the span of text of the spoiler, and using a large language model (LLM) to generate the spoiler. Because the spoiler is contained in the article, we frame the second task as a question-answering approach for identifying the starting and ending positions of the spoiler. We created models for Task 1 that were better than the baselines proposed by the dataset authors and engineered prompts for Task 2 that did not perform as well as the baselines proposed by the dataset authors due to the evaluation metric performing worse when the output text is from a generative model as opposed to an extractive model.
Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions
Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.
When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.
"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing
Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.
ProsodyFM: Unsupervised Phrasing and Intonation Control for Intelligible Speech Synthesis
Prosody contains rich information beyond the literal meaning of words, which is crucial for the intelligibility of speech. Current models still fall short in phrasing and intonation; they not only miss or misplace breaks when synthesizing long sentences with complex structures but also produce unnatural intonation. We propose ProsodyFM, a prosody-aware text-to-speech synthesis (TTS) model with a flow-matching (FM) backbone that aims to enhance the phrasing and intonation aspects of prosody. ProsodyFM introduces two key components: a Phrase Break Encoder to capture initial phrase break locations, followed by a Duration Predictor for the flexible adjustment of break durations; and a Terminal Intonation Encoder which integrates a set of intonation shape tokens combined with a novel Pitch Processor for more robust modeling of human-perceived intonation change. ProsodyFM is trained with no explicit prosodic labels and yet can uncover a broad spectrum of break durations and intonation patterns. Experimental results demonstrate that ProsodyFM can effectively improve the phrasing and intonation aspects of prosody, thereby enhancing the overall intelligibility compared to four state-of-the-art (SOTA) models. Out-of-distribution experiments show that this prosody improvement can further bring ProsodyFM superior generalizability for unseen complex sentences and speakers. Our case study intuitively illustrates the powerful and fine-grained controllability of ProsodyFM over phrasing and intonation.
Masking meets Supervision: A Strong Learning Alliance
Pre-training with random masked inputs has emerged as a novel trend in self-supervised training. However, supervised learning still faces a challenge in adopting masking augmentations, primarily due to unstable training. In this paper, we propose a novel way to involve masking augmentations dubbed Masked Sub-branch (MaskSub). MaskSub consists of the main-branch and sub-branch, the latter being a part of the former. The main-branch undergoes conventional training recipes, while the sub-branch merits intensive masking augmentations, during training. MaskSub tackles the challenge by mitigating adverse effects through a relaxed loss function similar to a self-distillation loss. Our analysis shows that MaskSub improves performance, with the training loss converging faster than in standard training, which suggests our method stabilizes the training process. We further validate MaskSub across diverse training scenarios and models, including DeiT-III training, MAE finetuning, CLIP finetuning, BERT training, and hierarchical architectures (ResNet and Swin Transformer). Our results show that MaskSub consistently achieves impressive performance gains across all the cases. MaskSub provides a practical and effective solution for introducing additional regularization under various training recipes. Code available at https://github.com/naver-ai/augsub
Char2Subword: Extending the Subword Embedding Space Using Robust Character Compositionality
Byte-pair encoding (BPE) is a ubiquitous algorithm in the subword tokenization process of language models as it provides multiple benefits. However, this process is solely based on pre-training data statistics, making it hard for the tokenizer to handle infrequent spellings. On the other hand, though robust to misspellings, pure character-level models often lead to unreasonably long sequences and make it harder for the model to learn meaningful words. To alleviate these challenges, we propose a character-based subword module (char2subword) that learns the subword embedding table in pre-trained models like BERT. Our char2subword module builds representations from characters out of the subword vocabulary, and it can be used as a drop-in replacement of the subword embedding table. The module is robust to character-level alterations such as misspellings, word inflection, casing, and punctuation. We integrate it further with BERT through pre-training while keeping BERT transformer parameters fixed--and thus, providing a practical method. Finally, we show that incorporating our module to mBERT significantly improves the performance on the social media linguistic code-switching evaluation (LinCE) benchmark.
The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
The SIGMORPHON 2022 shared task on morpheme segmentation challenged systems to decompose a word into a sequence of morphemes and covered most types of morphology: compounds, derivations, and inflections. Subtask 1, word-level morpheme segmentation, covered 5 million words in 9 languages (Czech, English, Spanish, Hungarian, French, Italian, Russian, Latin, Mongolian) and received 13 system submissions from 7 teams and the best system averaged 97.29% F1 score across all languages, ranging English (93.84%) to Latin (99.38%). Subtask 2, sentence-level morpheme segmentation, covered 18,735 sentences in 3 languages (Czech, English, Mongolian), received 10 system submissions from 3 teams, and the best systems outperformed all three state-of-the-art subword tokenization methods (BPE, ULM, Morfessor2) by 30.71% absolute. To facilitate error analysis and support any type of future studies, we released all system predictions, the evaluation script, and all gold standard datasets.
Splintering Nonconcatenative Languages for Better Tokenization
Common subword tokenization algorithms like BPE and UnigramLM assume that text can be split into meaningful units by concatenative measures alone. This is not true for languages such as Hebrew and Arabic, where morphology is encoded in root-template patterns, or Malay and Georgian, where split affixes are common. We present SPLINTER, a pre-processing step which rearranges text into a linear form that better represents such nonconcatenative morphologies, enabling meaningful contiguous segments to be found by the tokenizer. We demonstrate SPLINTER's merit using both intrinsic measures evaluating token vocabularies in Hebrew, Arabic, and Malay; as well as on downstream tasks using BERT-architecture models trained for Hebrew.
Boundless Byte Pair Encoding: Breaking the Pre-tokenization Barrier
Pre-tokenization, the initial step in many modern tokenization pipelines, segments text into smaller units called pretokens, typically splitting on whitespace and punctuation. While this process encourages having full, individual words as tokens, it introduces a fundamental limitation in most tokenization algorithms such as Byte Pair Encoding (BPE). Specifically, pre-tokenization causes the distribution of tokens in a corpus to heavily skew towards common, full-length words. This skewed distribution limits the benefits of expanding to larger vocabularies, since the additional tokens appear with progressively lower counts. To overcome this barrier, we propose BoundlessBPE, a modified BPE algorithm that relaxes the pretoken boundary constraint. Our approach selectively merges two complete pretokens into a larger unit we term a superword. Superwords are not necessarily semantically cohesive. For example, the pretokens " of" and " the" might be combined to form the superword " of the". This merging strategy results in a substantially more uniform distribution of tokens across a corpus than standard BPE, and compresses text more effectively, with an approximate 20% increase in bytes per token.
MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset
Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available.
A Single Character can Make or Break Your LLM Evals
Common Large Language model (LLM) evaluations rely on demonstration examples to steer models' responses to the desired style. While the number of examples used has been studied and standardized, the choice of how to format examples is less investigated. In evaluation protocols and real world usage, users face the choice how to separate in-context examples: use a comma? new line? semi-colon? hashtag? etc.? Surprisingly, we find this seemingly minor choice can dramatically alter model response quality. Across leading model families (Llama, Qwen, Gemma), performance on MMLU for example can vary by pm 23% depending on the choice of delimiter. In fact, one can manipulate model rankings to put any model in the lead by only modifying the single character separating examples. We find LLMs' brittleness pervades topics, model families, and doesn't improve with scale. By probing attention head scores, we find that good-performing delimiters steer attention towards key tokens in the input. Finally, we explore methods to improve LLMs' robustness to the choice of delimiter. We find specifying the selected delimiter in the prompt boosts robustness and offer practical recommendations for the best-performing delimiters to select.
SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing
This paper describes SentencePiece, a language-independent subword tokenizer and detokenizer designed for Neural-based text processing, including Neural Machine Translation. It provides open-source C++ and Python implementations for subword units. While existing subword segmentation tools assume that the input is pre-tokenized into word sequences, SentencePiece can train subword models directly from raw sentences, which allows us to make a purely end-to-end and language independent system. We perform a validation experiment of NMT on English-Japanese machine translation, and find that it is possible to achieve comparable accuracy to direct subword training from raw sentences. We also compare the performance of subword training and segmentation with various configurations. SentencePiece is available under the Apache 2 license at https://github.com/google/sentencepiece.
Unsupervised Parsing by Searching for Frequent Word Sequences among Sentences with Equivalent Predicate-Argument Structures
Unsupervised constituency parsing focuses on identifying word sequences that form a syntactic unit (i.e., constituents) in target sentences. Linguists identify the constituent by evaluating a set of Predicate-Argument Structure (PAS) equivalent sentences where we find the constituent appears more frequently than non-constituents (i.e., the constituent corresponds to a frequent word sequence within the sentence set). However, such frequency information is unavailable in previous parsing methods that identify the constituent by observing sentences with diverse PAS. In this study, we empirically show that constituents correspond to frequent word sequences in the PAS-equivalent sentence set. We propose a frequency-based parser span-overlap that (1) computes the span-overlap score as the word sequence's frequency in the PAS-equivalent sentence set and (2) identifies the constituent structure by finding a constituent tree with the maximum span-overlap score. The parser achieves state-of-the-art level parsing accuracy, outperforming existing unsupervised parsers in eight out of ten languages. Additionally, we discover a multilingual phenomenon: participant-denoting constituents tend to have higher span-overlap scores than equal-length event-denoting constituents, meaning that the former tend to appear more frequently in the PAS-equivalent sentence set than the latter. The phenomenon indicates a statistical difference between the two constituent types, laying the foundation for future labeled unsupervised parsing research.
Movie Description
Audio Description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. In total the Large Scale Movie Description Challenge (LSMDC) contains a parallel corpus of 118,114 sentences and video clips from 202 movies. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are indeed more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in a challenge organized in the context of the workshop "Describing and Understanding Video & The Large Scale Movie Description Challenge (LSMDC)", at ICCV 2015.
AutoAD: Movie Description in Context
The objective of this paper is an automatic Audio Description (AD) model that ingests movies and outputs AD in text form. Generating high-quality movie AD is challenging due to the dependency of the descriptions on context, and the limited amount of training data available. In this work, we leverage the power of pretrained foundation models, such as GPT and CLIP, and only train a mapping network that bridges the two models for visually-conditioned text generation. In order to obtain high-quality AD, we make the following four contributions: (i) we incorporate context from the movie clip, AD from previous clips, as well as the subtitles; (ii) we address the lack of training data by pretraining on large-scale datasets, where visual or contextual information is unavailable, e.g. text-only AD without movies or visual captioning datasets without context; (iii) we improve on the currently available AD datasets, by removing label noise in the MAD dataset, and adding character naming information; and (iv) we obtain strong results on the movie AD task compared with previous methods.
Word Sense Linking: Disambiguating Outside the Sandbox
Word Sense Disambiguation (WSD) is the task of associating a word in a given context with its most suitable meaning among a set of possible candidates. While the task has recently witnessed renewed interest, with systems achieving performances above the estimated inter-annotator agreement, at the time of writing it still struggles to find downstream applications. We argue that one of the reasons behind this is the difficulty of applying WSD to plain text. Indeed, in the standard formulation, models work under the assumptions that a) all the spans to disambiguate have already been identified, and b) all the possible candidate senses of each span are provided, both of which are requirements that are far from trivial. In this work, we present a new task called Word Sense Linking (WSL) where, given an input text and a reference sense inventory, systems have to both identify which spans to disambiguate and then link them to their most suitable meaning.We put forward a transformer-based architecture for the task and thoroughly evaluate both its performance and those of state-of-the-art WSD systems scaled to WSL, iteratively relaxing the assumptions of WSD. We hope that our work will foster easier integration of lexical semantics into downstream applications.
Revisiting subword tokenization: A case study on affixal negation in large language models
In this work, we measure the impact of affixal negation on modern English large language models (LLMs). In affixal negation, the negated meaning is expressed through a negative morpheme, which is potentially challenging for LLMs as their tokenizers are often not morphologically plausible. We conduct extensive experiments using LLMs with different subword tokenization methods, which lead to several insights on the interaction between tokenization performance and negation sensitivity. Despite some interesting mismatches between tokenization accuracy and negation detection performance, we show that models can, on the whole, reliably recognize the meaning of affixal negation.
SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles
We present the results and the main findings of SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. The task featured two subtasks. Subtask SI is about Span Identification: given a plain-text document, spot the specific text fragments containing propaganda. Subtask TC is about Technique Classification: given a specific text fragment, in the context of a full document, determine the propaganda technique it uses, choosing from an inventory of 14 possible propaganda techniques. The task attracted a large number of participants: 250 teams signed up to participate and 44 made a submission on the test set. In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For both subtasks, the best systems used pre-trained Transformers and ensembles.
TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval
We introduce TV show Retrieval (TVR), a new multimodal retrieval dataset. TVR requires systems to understand both videos and their associated subtitle (dialogue) texts, making it more realistic. The dataset contains 109K queries collected on 21.8K videos from 6 TV shows of diverse genres, where each query is associated with a tight temporal window. The queries are also labeled with query types that indicate whether each of them is more related to video or subtitle or both, allowing for in-depth analysis of the dataset and the methods that built on top of it. Strict qualification and post-annotation verification tests are applied to ensure the quality of the collected data. Further, we present several baselines and a novel Cross-modal Moment Localization (XML ) network for multimodal moment retrieval tasks. The proposed XML model uses a late fusion design with a novel Convolutional Start-End detector (ConvSE), surpassing baselines by a large margin and with better efficiency, providing a strong starting point for future work. We have also collected additional descriptions for each annotated moment in TVR to form a new multimodal captioning dataset with 262K captions, named TV show Caption (TVC). Both datasets are publicly available. TVR: https://tvr.cs.unc.edu, TVC: https://tvr.cs.unc.edu/tvc.html.
Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
R-grams: Unsupervised Learning of Semantic Units in Natural Language
This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques. In contrast to previous work which has primarily been focused on subword units for machine translation, we are interested in the general properties of such segments above the word level. We call these segments r-grams, and discuss their properties and the effect they have on the token frequency distribution. The proposed approach is evaluated by demonstrating its viability in embedding techniques, both in monolingual and multilingual test settings. We also provide a number of qualitative examples of the proposed methodology, demonstrating its viability as a language-invariant segmentation procedure.
FeruzaSpeech: A 60 Hour Uzbek Read Speech Corpus with Punctuation, Casing, and Context
This paper introduces FeruzaSpeech, a read speech corpus of the Uzbek language, containing transcripts in both Cyrillic and Latin alphabets, freely available for academic research purposes. This corpus includes 60 hours of high-quality recordings from a single native female speaker from Tashkent, Uzbekistan. These recordings consist of short excerpts from a book and BBC News. This paper discusses the enhancement of the Word Error Rates (WERs) on CommonVoice 16.1's Uzbek data, Uzbek Speech Corpus data, and FeruzaSpeech data upon integrating FeruzaSpeech.
Filler Word Detection and Classification: A Dataset and Benchmark
Filler words such as `uh' or `um' are sounds or words people use to signal they are pausing to think. Finding and removing filler words from recordings is a common and tedious task in media editing. Automatically detecting and classifying filler words could greatly aid in this task, but few studies have been published on this problem to date. A key reason is the absence of a dataset with annotated filler words for model training and evaluation. In this work, we present a novel speech dataset, PodcastFillers, with 35K annotated filler words and 50K annotations of other sounds that commonly occur in podcasts such as breaths, laughter, and word repetitions. We propose a pipeline that leverages VAD and ASR to detect filler candidates and a classifier to distinguish between filler word types. We evaluate our proposed pipeline on PodcastFillers, compare to several baselines, and present a detailed ablation study. In particular, we evaluate the importance of using ASR and how it compares to a transcription-free approach resembling keyword spotting. We show that our pipeline obtains state-of-the-art results, and that leveraging ASR strongly outperforms a keyword spotting approach. We make PodcastFillers publicly available, in the hope that our work serves as a benchmark for future research.
WikiSplit++: Easy Data Refinement for Split and Rephrase
The task of Split and Rephrase, which splits a complex sentence into multiple simple sentences with the same meaning, improves readability and enhances the performance of downstream tasks in natural language processing (NLP). However, while Split and Rephrase can be improved using a text-to-text generation approach that applies encoder-decoder models fine-tuned with a large-scale dataset, it still suffers from hallucinations and under-splitting. To address these issues, this paper presents a simple and strong data refinement approach. Here, we create WikiSplit++ by removing instances in WikiSplit where complex sentences do not entail at least one of the simpler sentences and reversing the order of reference simple sentences. Experimental results show that training with WikiSplit++ leads to better performance than training with WikiSplit, even with fewer training instances. In particular, our approach yields significant gains in the number of splits and the entailment ratio, a proxy for measuring hallucinations.
AutoAD II: The Sequel -- Who, When, and What in Movie Audio Description
Audio Description (AD) is the task of generating descriptions of visual content, at suitable time intervals, for the benefit of visually impaired audiences. For movies, this presents notable challenges -- AD must occur only during existing pauses in dialogue, should refer to characters by name, and ought to aid understanding of the storyline as a whole. To this end, we develop a new model for automatically generating movie AD, given CLIP visual features of the frames, the cast list, and the temporal locations of the speech; addressing all three of the 'who', 'when', and 'what' questions: (i) who -- we introduce a character bank consisting of the character's name, the actor that played the part, and a CLIP feature of their face, for the principal cast of each movie, and demonstrate how this can be used to improve naming in the generated AD; (ii) when -- we investigate several models for determining whether an AD should be generated for a time interval or not, based on the visual content of the interval and its neighbours; and (iii) what -- we implement a new vision-language model for this task, that can ingest the proposals from the character bank, whilst conditioning on the visual features using cross-attention, and demonstrate how this improves over previous architectures for AD text generation in an apples-to-apples comparison.
Small Edits, Big Consequences: Telling Good from Bad Robustness in Large Language Models
Large language models (LLMs) now write code in settings where misreading a single word can break safety or cost money, yet we still expect them to overlook stray typos. To probe where useful robustness ends and harmful insensitivity begins, we compile 50 LeetCode problems and craft three minimal prompt perturbations that should vary in importance: (i) progressive underspecification deleting 10 % of words per step; (ii) lexical flip swapping a pivotal quantifier ("max" to "min"); and (iii) jargon inflation replacing a common noun with an obscure technical synonym. Six frontier models, including three "reasoning-tuned" versions, solve each mutated prompt, and their Python outputs are checked against the original test suites to reveal whether they reused the baseline solution or adapted. Among 11 853 generations we observe a sharp double asymmetry. Models remain correct in 85 % of cases even after 90 % of the prompt is missing, showing over-robustness to underspecification, yet only 54 % react to a single quantifier flip that reverses the task, with reasoning-tuned variants even less sensitive than their bases. Jargon edits lie in between, passing through 56 %. Current LLMs thus blur the line between harmless noise and meaning - changing edits, often treating both as ignorable. Masking salient anchors such as function names can force re - evaluation. We advocate evaluation and training protocols that reward differential sensitivity: stay steady under benign noise but adapt - or refuse - when semantics truly change.
RIVAL: Reinforcement Learning with Iterative and Adversarial Optimization for Machine Translation
Large language models (LLMs) possess strong multilingual capabilities, and combining Reinforcement Learning from Human Feedback (RLHF) with translation tasks has shown great potential. However, we observe that this paradigm performs unexpectedly poorly when applied to colloquial subtitle translation tasks. In this work, we investigate this issue and find that the offline reward model (RM) gradually diverges from the online LLM due to distributional shift, ultimately leading to undesirable training outcomes. To address this, we propose RIVAL, an adversarial training framework that formulates the process as a min-max game between the RM and the LLM. RIVAL iteratively updates the both models, with the RM trained to distinguish strong from weak translations (qualitative preference reward), and the LLM trained to enhance its translation for closing this gap. To stabilize training and improve generalizability, we also incorporate quantitative preference reward (e.g., BLEU) into the RM, enabling reference-free quality modeling aligned with human evaluation. Through extensive experiments, we demonstrate that the proposed adversarial training framework significantly improves upon translation baselines.
Scalable and Domain-General Abstractive Proposition Segmentation
Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.
Learning To Split and Rephrase From Wikipedia Edit History
Split and rephrase is the task of breaking down a sentence into shorter ones that together convey the same meaning. We extract a rich new dataset for this task by mining Wikipedia's edit history: WikiSplit contains one million naturally occurring sentence rewrites, providing sixty times more distinct split examples and a ninety times larger vocabulary than the WebSplit corpus introduced by Narayan et al. (2017) as a benchmark for this task. Incorporating WikiSplit as training data produces a model with qualitatively better predictions that score 32 BLEU points above the prior best result on the WebSplit benchmark.
FocusedAD: Character-centric Movie Audio Description
Movie Audio Description (AD) aims to narrate visual content during dialogue-free segments, particularly benefiting blind and visually impaired (BVI) audiences. Compared with general video captioning, AD demands plot-relevant narration with explicit character name references, posing unique challenges in movie understanding.To identify active main characters and focus on storyline-relevant regions, we propose FocusedAD, a novel framework that delivers character-centric movie audio descriptions. It includes: (i) a Character Perception Module(CPM) for tracking character regions and linking them to names; (ii) a Dynamic Prior Module(DPM) that injects contextual cues from prior ADs and subtitles via learnable soft prompts; and (iii) a Focused Caption Module(FCM) that generates narrations enriched with plot-relevant details and named characters. To overcome limitations in character identification, we also introduce an automated pipeline for building character query banks. FocusedAD achieves state-of-the-art performance on multiple benchmarks, including strong zero-shot results on MAD-eval-Named and our newly proposed Cinepile-AD dataset. Code and data will be released at https://github.com/Thorin215/FocusedAD .
Empowering Character-level Text Infilling by Eliminating Sub-Tokens
In infilling tasks, sub-tokens, representing instances where a complete token is segmented into two parts, often emerge at the boundaries of prefixes, middles, and suffixes. Traditional methods focused on training models at the token level, leading to sub-optimal performance in character-level infilling tasks during the inference stage. Alternately, some approaches considered character-level infilling, but they relied on predicting sub-tokens in inference, yet this strategy diminished ability in character-level infilling tasks due to the large perplexity of the model on sub-tokens. In this paper, we introduce FIM-SE, which stands for Fill-In-the-Middle with both Starting and Ending character constraints. The proposed method addresses character-level infilling tasks by utilizing a line-level format to avoid predicting any sub-token in inference. In addition, we incorporate two special tokens to signify the rest of the incomplete lines, thereby enhancing generation guidance. Extensive experiments demonstrate that our proposed approach surpasses previous methods, offering a significant advantage. Code is available at https://github.com/SenseLLM/FIM-SE.
BiSECT: Learning to Split and Rephrase Sentences with Bitexts
An important task in NLP applications such as sentence simplification is the ability to take a long, complex sentence and split it into shorter sentences, rephrasing as necessary. We introduce a novel dataset and a new model for this `split and rephrase' task. Our BiSECT training data consists of 1 million long English sentences paired with shorter, meaning-equivalent English sentences. We obtain these by extracting 1-2 sentence alignments in bilingual parallel corpora and then using machine translation to convert both sides of the corpus into the same language. BiSECT contains higher quality training examples than previous Split and Rephrase corpora, with sentence splits that require more significant modifications. We categorize examples in our corpus, and use these categories in a novel model that allows us to target specific regions of the input sentence to be split and edited. Moreover, we show that models trained on BiSECT can perform a wider variety of split operations and improve upon previous state-of-the-art approaches in automatic and human evaluations.
Lisa: Lazy Safety Alignment for Large Language Models against Harmful Fine-tuning Attack
Recent studies show that Large Language Models (LLMs) with safety alignment can be jail-broken by fine-tuning on a dataset mixed with harmful data. First time in the literature, we show that the jail-broken effect can be mitigated by separating states in the finetuning stage to optimize the alignment and user datasets. Unfortunately, our subsequent study shows that this simple Bi-State Optimization (BSO) solution experiences convergence instability when steps invested in its alignment state is too small, leading to downgraded alignment performance. By statistical analysis, we show that the excess drift towards consensus could be a probable reason for the instability. To remedy this issue, we propose Lazy(i) safety alignment (Lisa), which introduces a proximal term to constraint the drift of each state. Theoretically, the benefit of the proximal term is supported by the convergence analysis, wherein we show that a sufficient large proximal factor is necessary to guarantee Lisa's convergence. Empirically, our results on four downstream finetuning tasks show that Lisa with a proximal term can significantly increase alignment performance while maintaining the LLM's accuracy on the user tasks. Code is available at https://github.com/git-disl/Lisa.
Protecting Copyrighted Material with Unique Identifiers in Large Language Model Training
A primary concern regarding training large language models (LLMs) is whether they abuse copyrighted online text. With the increasing training data scale and the prevalence of LLMs in daily lives, two problems arise: 1) false positive membership inference results misled by similar examples; 2) membership inference methods are usually too complex for end users to understand and use. To address these issues, we propose an alternative insert-and-detect methodology, advocating that web users and content platforms employ \textit{unique identifiers} for reliable and independent membership inference. Users and platforms can create their identifiers, embed them in copyrighted text, and independently detect them in future LLMs. As an initial demonstration, we introduce \textbf{ghost sentences} and a user-friendly last-k words test, allowing end users to chat with LLMs for membership inference. Ghost sentences consist primarily of unique passphrases of random natural words, which can come with customized elements to bypass possible filter rules. The last-k words test requires a significant repetition time of ghost sentences~(ge10). For cases with fewer repetitions, we designed an extra perplexity test, as LLMs exhibit high perplexity when encountering unnatural passphrases. We also conduct a comprehensive study on the memorization and membership inference of ghost sentences, examining factors such as training data scales, model sizes, repetition times, insertion positions, wordlist of passphrases, alignment, etc. Our study shows the possibility of applying ghost sentences in real scenarios and provides instructions for the potential application.
The University of Edinburgh's Submission to the WMT22 Code-Mixing Shared Task (MixMT)
The University of Edinburgh participated in the WMT22 shared task on code-mixed translation. This consists of two subtasks: i) generating code-mixed Hindi/English (Hinglish) text generation from parallel Hindi and English sentences and ii) machine translation from Hinglish to English. As both subtasks are considered low-resource, we focused our efforts on careful data generation and curation, especially the use of backtranslation from monolingual resources. For subtask 1 we explored the effects of constrained decoding on English and transliterated subwords in order to produce Hinglish. For subtask 2, we investigated different pretraining techniques, namely comparing simple initialisation from existing machine translation models and aligned augmentation. For both subtasks, we found that our baseline systems worked best. Our systems for both subtasks were one of the overall top-performing submissions.
SuperBPE: Space Travel for Language Models
The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall.
Thai Semantic End-of-Turn Detection for Real-Time Voice Agents
Fluid voice-to-voice interaction requires reliable and low-latency detection of when a user has finished speaking. Traditional audio-silence end-pointers add hundreds of milliseconds of delay and fail under hesitations or language-specific phenomena. We present, to our knowledge, the first systematic study of Thai text-only end-of-turn (EOT) detection for real-time agents. We compare zero-shot and few-shot prompting of compact LLMs to supervised fine-tuning of lightweight transformers. Using transcribed subtitles from the YODAS corpus and Thai-specific linguistic cues (e.g., sentence-final particles), we formulate EOT as a binary decision over token boundaries. We report a clear accuracy-latency tradeoff and provide a public-ready implementation plan. This work establishes a Thai baseline and demonstrates that small, fine-tuned models can deliver near-instant EOT decisions suitable for on-device agents.
Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
Making Short-Form Videos Accessible with Hierarchical Video Summaries
Short videos on platforms such as TikTok, Instagram Reels, and YouTube Shorts (i.e. short-form videos) have become a primary source of information and entertainment. Many short-form videos are inaccessible to blind and low vision (BLV) viewers due to their rapid visual changes, on-screen text, and music or meme-audio overlays. In our formative study, 7 BLV viewers who regularly watched short-form videos reported frequently skipping such inaccessible content. We present ShortScribe, a system that provides hierarchical visual summaries of short-form videos at three levels of detail to support BLV viewers in selecting and understanding short-form videos. ShortScribe allows BLV users to navigate between video descriptions based on their level of interest. To evaluate ShortScribe, we assessed description accuracy and conducted a user study with 10 BLV participants comparing ShortScribe to a baseline interface. When using ShortScribe, participants reported higher comprehension and provided more accurate summaries of video content.
Mass-Producing Failures of Multimodal Systems with Language Models
Deployed multimodal systems can fail in ways that evaluators did not anticipate. In order to find these failures before deployment, we introduce MultiMon, a system that automatically identifies systematic failures -- generalizable, natural-language descriptions of patterns of model failures. To uncover systematic failures, MultiMon scrapes a corpus for examples of erroneous agreement: inputs that produce the same output, but should not. It then prompts a language model (e.g., GPT-4) to find systematic patterns of failure and describe them in natural language. We use MultiMon to find 14 systematic failures (e.g., "ignores quantifiers") of the CLIP text-encoder, each comprising hundreds of distinct inputs (e.g., "a shelf with a few/many books"). Because CLIP is the backbone for most state-of-the-art multimodal systems, these inputs produce failures in Midjourney 5.1, DALL-E, VideoFusion, and others. MultiMon can also steer towards failures relevant to specific use cases, such as self-driving cars. We see MultiMon as a step towards evaluation that autonomously explores the long tail of potential system failures. Code for MULTIMON is available at https://github.com/tsb0601/MultiMon.
From Text Segmentation to Smart Chaptering: A Novel Benchmark for Structuring Video Transcriptions
Text segmentation is a fundamental task in natural language processing, where documents are split into contiguous sections. However, prior research in this area has been constrained by limited datasets, which are either small in scale, synthesized, or only contain well-structured documents. In this paper, we address these limitations by introducing a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse. As part of this work, we introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines. Lastly, we expand the notion of text segmentation to a more practical "smart chaptering" task that involves the segmentation of unstructured content, the generation of meaningful segment titles, and a potential real-time application of the models.
MinWikiSplit: A Sentence Splitting Corpus with Minimal Propositions
We compiled a new sentence splitting corpus that is composed of 203K pairs of aligned complex source and simplified target sentences. Contrary to previously proposed text simplification corpora, which contain only a small number of split examples, we present a dataset where each input sentence is broken down into a set of minimal propositions, i.e. a sequence of sound, self-contained utterances with each of them presenting a minimal semantic unit that cannot be further decomposed into meaningful propositions. This corpus is useful for developing sentence splitting approaches that learn how to transform sentences with a complex linguistic structure into a fine-grained representation of short sentences that present a simple and more regular structure which is easier to process for downstream applications and thus facilitates and improves their performance.
FIX-CLIP: Dual-Branch Hierarchical Contrastive Learning via Synthetic Captions for Better Understanding of Long Text
CLIP has shown promising performance across many short-text tasks in a zero-shot manner. However, limited by the input length of the text encoder, CLIP struggles on under-stream tasks with long-text inputs (>77 tokens). To remedy this issue, we propose FIX-CLIP, which includes three novel modules: (1) A dual-branch training pipeline that aligns short and long texts with masked and raw images, respectively, which boosts the long-text representation while preserving the short-text ability. (2) Multiple learnable regional prompts with unidirectional masks in Transformer layers for regional information extraction. (3) A hierarchical feature alignment module in the intermediate encoder layers to promote the consistency of multi-scale features. Furthermore, we collect 30M images and utilize existing MLLMs to synthesize long-text captions for training. Extensive experiments show that FIX-CLIP achieves state-of-the-art performance on both long-text and short-text retrieval benchmarks. For downstream applications, we reveal that FIX-CLIP's text encoder delivers promising performance in a plug-and-play manner for diffusion models with long-text input. The code is available at https://github.com/bcwang-sjtu/Fix-CLIP.
Using Neural Network for Identifying Clickbaits in Online News Media
Online news media sometimes use misleading headlines to lure users to open the news article. These catchy headlines that attract users but disappointed them at the end, are called Clickbaits. Because of the importance of automatic clickbait detection in online medias, lots of machine learning methods were proposed and employed to find the clickbait headlines. In this research, a model using deep learning methods is proposed to find the clickbaits in Clickbait Challenge 2017's dataset. The proposed model gained the first rank in the Clickbait Challenge 2017 in terms of Mean Squared Error. Also, data analytics and visualization techniques are employed to explore and discover the provided dataset to get more insight from the data.
