new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

MM-HELIX: Boosting Multimodal Long-Chain Reflective Reasoning with Holistic Platform and Adaptive Hybrid Policy Optimization

While current Multimodal Large Language Models (MLLMs) have demonstrated proficiency in reasoning tasks such as mathematics and logic, their capacity for long-chain reflective reasoning, a prerequisite for solving complex real-world problems, remains largely underexplored. In this work, we first conduct an extensive empirical investigation to evaluate this capability. Leveraging a carefully designed data synthesis engine, we construct MM-HELIX, a multimodal benchmark consisting 1,260 samples of 42 challenging synthetic tasks that require iterative thinking and backtracking. Empirical results on this benchmark reveal that existing MLLMs exhibit significant performance deficits in long-chain reflective reasoning. To address this limitation, we generate post-training data and further explore learning paradigms for exploiting such data. We first develop the Step-Elicited Response Generation pipeline to create MM-HELIX-100K, a large-scale dataset of 100k high-quality, reflective reasoning traces for instruction-tuning stage. Given that standard Reinforcement Learning fails on complex tasks due to sparse reward signals and catastrophic forgetting after Supervised Fine-Tuning, we propose Adaptive Hybrid Policy Optimization (AHPO), a novel training strategy that dynamically unifies offline supervision and online optimization into a single stage. This strategy enables the model to learn from expert data when rewards are sparse and conduct independent exploration once proficient. When applied to the Qwen2.5-VL-7B baseline, our method achieves a +18.6\% accuracy improvement on MM-HELIX benchmark and demonstrates strong generalization with a +5.7\% average performance gain on general mathematic and logic tasks. Our work demonstrate that reflective reasoning in MLLMs can be effectively learned and generalized, paving the way for developing more capable MLLMs.

Inpainting-Guided Policy Optimization for Diffusion Large Language Models

Masked diffusion large language models (dLLMs) are emerging as promising alternatives to autoregressive LLMs, offering competitive performance while supporting unique generation capabilities such as inpainting. We explore how inpainting can inform RL algorithm design for dLLMs. Aligning LLMs with reinforcement learning faces an exploration challenge: sparse reward signals and sample waste when models fail to discover correct solutions. While this inefficiency affects LLMs broadly, dLLMs offer a distinctive opportunity--their inpainting ability can guide exploration. We introduce IGPO (Inpainting Guided Policy Optimization), an RL framework that strategically inserts partial ground-truth reasoning traces during online sampling. Unlike providing full solutions, inpainting steers exploration toward promising trajectory spaces while preserving self-generated reasoning, bridging supervised fine-tuning and reinforcement learning. We apply IGPO to group-based optimization methods such as GRPO, where exploration failures cause zero advantages and gradients. IGPO restores meaningful gradients while improving sample efficiency. We also propose supervised fine-tuning on synthetically rewritten concise traces that better align with dLLM generation patterns. With additional techniques including entropy-based filtering, our training recipe yields substantial gains across three mathematical benchmarks--GSM8K, Math500, and AMC--achieving new state-of-the-art results for full-attention masked dLLMs.

  • 11 authors
·
Sep 12 2

Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR

Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. RLVR leverages verifiable outcome rewards to guide policy optimization, enabling LLMs to progressively improve output quality in a grounded and reliable manner. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, particularly in RL-based approaches. To address the challenges, we propose PACS, a novel RLVR framework that achieves imPlicit Actor Critic coupling via a Supervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while implicitly coupling actor and critic roles, yielding more stable and efficient training. Benchmarking on challenging mathematical reasoning tasks, PACS outperforms strong RLVR baselines, such as PPO and GRPO, achieving superior reasoning performance. For instance, PACS achieves 59.78\% at pass@256 on AIME 2025, representing improvements of 13.32 and 14.36 points over PPO and GRPO. This simple yet powerful framework offers a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.

  • 8 authors
·
Sep 2 6

DLER: Doing Length pEnalty Right - Incentivizing More Intelligence per Token via Reinforcement Learning

Reasoning language models such as OpenAI-o1, DeepSeek-R1, and Qwen achieve strong performance via extended chains of thought but often generate unnecessarily long outputs. Maximizing intelligence per token--accuracy relative to response length--remains an open problem. We revisit reinforcement learning (RL) with the simplest length penalty--truncation--and show that accuracy degradation arises not from the lack of sophisticated penalties but from inadequate RL optimization. We identify three key challenges: (i) large bias in advantage estimation, (ii) entropy collapse, and (iii) sparse reward signal. We address them with Doing Length pEnalty Right (DLER), a training recipe combining batch-wise reward normalization, higher clipping, dynamic sampling, and a simple truncation length penalty. DLER achieves state-of-the-art accuracy--efficiency trade-offs, cutting output length by over 70 percent while surpassing all previous baseline accuracy. It also improves test-time scaling: compared to DeepSeek-R1-7B, DLER-7B generates multiple concise responses in parallel with 28 percent higher accuracy and lower latency. We further introduce Difficulty-Aware DLER, which adaptively tightens truncation on easier questions for additional efficiency gains. We also propose an update-selective merging method that preserves baseline accuracy while retaining the concise reasoning ability of the DLER model, which is useful for scenarios where RL training data is scarce.

nvidia NVIDIA
·
Oct 16 3

GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning

Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.

  • 10 authors
·
Jul 14

VSC-RL: Advancing Autonomous Vision-Language Agents with Variational Subgoal-Conditioned Reinforcement Learning

State-of-the-art (SOTA) reinforcement learning (RL) methods enable the vision-language agents to learn from interactions with the environment without human supervision. However, they struggle with learning inefficiencies in tackling real-world complex sequential decision-making tasks, especially with sparse reward signals and long-horizon dependencies. To effectively address the issue, we introduce Variational Subgoal-Conditioned RL (VSC-RL), which reformulates the vision-language sequential decision-making task as a variational goal-conditioned RL problem, allowing us to leverage advanced optimization methods to enhance learning efficiency. Specifically, VSC-RL optimizes the SubGoal Evidence Lower BOund (SGC-ELBO), which consists of (a) maximizing the subgoal-conditioned return via RL and (b) minimizing the subgoal-conditioned difference with the reference policy. We theoretically demonstrate that SGC-ELBO is equivalent to the original optimization objective, ensuring improved learning efficiency without sacrificing performance guarantees. Additionally, for real-world complex decision-making tasks, VSC-RL leverages the vision-language model to autonomously decompose the goal into feasible subgoals, enabling efficient learning. Across various benchmarks, including challenging real-world mobile device control tasks, VSC-RL significantly outperforms the SOTA vision-language agents, achieving superior performance and remarkable improvement in learning efficiency.

  • 5 authors
·
Feb 11

From <Answer> to <Think>: Multidimensional Supervision of Reasoning Process for LLM Optimization

Improving the multi-step reasoning ability of Large Language Models (LLMs) is a critical yet challenging task. The dominant paradigm, outcome-supervised reinforcement learning (RLVR), rewards only correct final answers, often propagating flawed reasoning and suffering from sparse reward signals. While process-level reward models (PRMs) provide denser, step-by-step feedback, they lack generalizability and interpretability, requiring task-specific segmentation of the reasoning process. To this end, we propose the Dimension-level Reward Model (DRM), a new supervision framework that bridges the gap between these two approaches. DRM evaluates the quality of a reasoning process along three fundamental, complementary, and interpretable dimensions: Confidence for uncertainty calibration, Relevance for semantic alignment, and Coherence for logical consistency. Together, these dimensions capture aspects beyond final answer correctness and enable interpretable assessment without requiring ground truth answers. Experimental results show that DRM provides effective supervision signals, guides the optimization of LLMs and enhances their reasoning ability. In particular, DRM-supervised training achieves consistent gains on both in-distribution and out-of-distribution open-domain tasks, including mathematics, question answering, code execution, and puzzles. Our findings demonstrate that multidimensional supervision of the reasoning process can improve the generalized reasoning ability of LLMs beyond the training distribution.

  • 8 authors
·
Oct 13

Residual Off-Policy RL for Finetuning Behavior Cloning Policies

Recent advances in behavior cloning (BC) have enabled impressive visuomotor control policies. However, these approaches are limited by the quality of human demonstrations, the manual effort required for data collection, and the diminishing returns from increasing offline data. In comparison, reinforcement learning (RL) trains an agent through autonomous interaction with the environment and has shown remarkable success in various domains. Still, training RL policies directly on real-world robots remains challenging due to sample inefficiency, safety concerns, and the difficulty of learning from sparse rewards for long-horizon tasks, especially for high-degree-of-freedom (DoF) systems. We present a recipe that combines the benefits of BC and RL through a residual learning framework. Our approach leverages BC policies as black-box bases and learns lightweight per-step residual corrections via sample-efficient off-policy RL. We demonstrate that our method requires only sparse binary reward signals and can effectively improve manipulation policies on high-degree-of-freedom (DoF) systems in both simulation and the real world. In particular, we demonstrate, to the best of our knowledge, the first successful real-world RL training on a humanoid robot with dexterous hands. Our results demonstrate state-of-the-art performance in various vision-based tasks, pointing towards a practical pathway for deploying RL in the real world. Project website: https://residual-offpolicy-rl.github.io

  • 6 authors
·
Sep 23 2

MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

Robotic systems that aspire to operate in uninstrumented real-world environments must perceive the world directly via onboard sensing. Vision-based learning systems aim to eliminate the need for environment instrumentation by building an implicit understanding of the world based on raw pixels, but navigating the contact-rich high-dimensional search space from solely sparse visual reward signals significantly exacerbates the challenge of exploration. The applicability of such systems is thus typically restricted to simulated or heavily engineered environments since agent exploration in the real-world without the guidance of explicit state estimation and dense rewards can lead to unsafe behavior and safety faults that are catastrophic. In this study, we isolate the root causes behind these limitations to develop a system, called MoDem-V2, capable of learning contact-rich manipulation directly in the uninstrumented real world. Building on the latest algorithmic advancements in model-based reinforcement learning (MBRL), demo-bootstrapping, and effective exploration, MoDem-V2 can acquire contact-rich dexterous manipulation skills directly in the real world. We identify key ingredients for leveraging demonstrations in model learning while respecting real-world safety considerations -- exploration centering, agency handover, and actor-critic ensembles. We empirically demonstrate the contribution of these ingredients in four complex visuo-motor manipulation problems in both simulation and the real world. To the best of our knowledge, our work presents the first successful system for demonstration-augmented visual MBRL trained directly in the real world. Visit https://sites.google.com/view/modem-v2 for videos and more details.

  • 4 authors
·
Sep 25, 2023

$\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models

The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO (G^2RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our G^2RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.

VERIRL: Boosting the LLM-based Verilog Code Generation via Reinforcement Learning

Recent advancements in code generation have shown remarkable success across software domains, yet hardware description languages (HDLs) such as Verilog remain underexplored due to their concurrency semantics, syntactic rigidity, and simulation complexity. In this work, we address these challenges by introducing a reinforcement learning (RL) framework tailored for Verilog code generation. We first construct Veribench-53K, a high-quality dataset curated from over 700K Verilog problems, enriched with structured prompts, complexity labels, and diverse testbenches. To tackle the problem of sparse and noisy reward signals, we propose a Trace-back based Rescore mechanism that leverages reasoning paths and iterative refinement to enhance feedback reliability and support reward model training. Furthermore, to mitigate catastrophic forgetting and overfitting during RL fine-tuning, we introduce a sample-balanced weighting strategy that adaptively balances learning dynamics based on reward-probability distributions. These innovations are integrated into an iterative RL pipeline that co-evolves the policy and reward models. In contrast to recent work such as CraftRTL, which relies on large-scale closed-source model distillation, and DeepSeek-style approaches that struggle with sparse feedback, our method demonstrates superior performance using a smaller but high-quality dataset combined with RL optimization. Experiments on Verilog generation tasks demonstrate state-of-the-art performance, with substantial gains in test pass rate, functional correctness, and compilation robustness. Our findings highlight the potential of RL-driven approaches for structured code generation in hardware-centric domains. VERIRL is publicly available at https://github.com/omniAI-Lab/VeriRL.

  • 9 authors
·
Aug 25

RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning

Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.

InstructVideo: Instructing Video Diffusion Models with Human Feedback

Diffusion models have emerged as the de facto paradigm for video generation. However, their reliance on web-scale data of varied quality often yields results that are visually unappealing and misaligned with the textual prompts. To tackle this problem, we propose InstructVideo to instruct text-to-video diffusion models with human feedback by reward fine-tuning. InstructVideo has two key ingredients: 1) To ameliorate the cost of reward fine-tuning induced by generating through the full DDIM sampling chain, we recast reward fine-tuning as editing. By leveraging the diffusion process to corrupt a sampled video, InstructVideo requires only partial inference of the DDIM sampling chain, reducing fine-tuning cost while improving fine-tuning efficiency. 2) To mitigate the absence of a dedicated video reward model for human preferences, we repurpose established image reward models, e.g., HPSv2. To this end, we propose Segmental Video Reward, a mechanism to provide reward signals based on segmental sparse sampling, and Temporally Attenuated Reward, a method that mitigates temporal modeling degradation during fine-tuning. Extensive experiments, both qualitative and quantitative, validate the practicality and efficacy of using image reward models in InstructVideo, significantly enhancing the visual quality of generated videos without compromising generalization capabilities. Code and models will be made publicly available.

  • 10 authors
·
Dec 19, 2023 1

UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning

Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.

  • 11 authors
·
Sep 14 3

Hybrid Reward Normalization for Process-supervised Non-verifiable Agentic Tasks

Large Language Models (LLMs) increasingly rely on external tools such as search engines to solve complex agentic tasks that require reasoning and external knowledge retrieval. Recently, reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in advancing capabilities of LLMs by rewarding the final answers via outcome rewards. While straightforward to supervise, outcome rewards only provide sparse signals and delayed feedback, which limits their effectiveness on long trajectories. Process rewards address this by evaluating intermediate steps, providing fine-grained supervision and encouraging grounded problem solving. However, it is notoriously hard to annotate step-wise labels, especially in non-verifiable process without "golden" answers. Furthermore, step-wise judgment requires the balance between local quality with contribution to the final outcome, as optimizing towards higher process reward may not always align with better final outcomes. To address the above challenges, we introduce Principle Process Reward (PPR), an RL approach that unifies principled step-level assessment and outcome verification. We train a principle-based reward model to improve the transparency and reliability of process evaluation, and further introduce a Reward Normalization (ReNorm) strategy to calibrate outcome and process rewards. Experiment results show that PPR achieves state-of-the-art performance across a wide range of benchmarks, demonstrating its impressive robustness and generalization. Our code and model collection is available in this link.

  • 6 authors
·
Sep 29

GUI-G$^2$: Gaussian Reward Modeling for GUI Grounding

Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G^2), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G^2 incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G^2, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.

  • 12 authors
·
Jul 21 7

On Designing Effective RL Reward at Training Time for LLM Reasoning

Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.

  • 9 authors
·
Oct 19, 2024

BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models

Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment: sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPDv2.1 image alignment, BranchGRPO improves alignment scores by up to 16\% over DanceGRPO, while reducing per-iteration training time by nearly 55\%. A hybrid variant, BranchGRPO-Mix, further accelerates training to 4.7x faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher Video-Align scores with sharper and temporally consistent frames compared to DanceGRPO. Codes are available at https://fredreic1849.github.io/BranchGRPO-Webpage/{BranchGRPO}.

  • 7 authors
·
Sep 7

Generative Reasoning Recommendation via LLMs

Despite their remarkable reasoning capabilities across diverse domains, large language models (LLMs) face fundamental challenges in natively functioning as generative reasoning recommendation models (GRRMs), where the intrinsic modeling gap between textual semantics and collaborative filtering signals, combined with the sparsity and stochasticity of user feedback, presents significant obstacles. This work explores how to build GRRMs by adapting pre-trained LLMs, which achieves a unified understanding-reasoning-prediction manner for recommendation tasks. We propose GREAM, an end-to-end framework that integrates three components: (i) Collaborative-Semantic Alignment, which fuses heterogeneous textual evidence to construct semantically consistent, discrete item indices and auxiliary alignment tasks that ground linguistic representations in interaction semantics; (ii) Reasoning Curriculum Activation, which builds a synthetic dataset with explicit Chain-of-Thought supervision and a curriculum that progresses through behavioral evidence extraction, latent preference modeling, intent inference, recommendation formulation, and denoised sequence rewriting; and (iii) Sparse-Regularized Group Policy Optimization (SRPO), which stabilizes post-training via Residual-Sensitive Verifiable Reward and Bonus-Calibrated Group Advantage Estimation, enabling end-to-end optimization under verifiable signals despite sparse successes. GREAM natively supports two complementary inference modes: Direct Sequence Recommendation for high-throughput, low-latency deployment, and Sequential Reasoning Recommendation that first emits an interpretable reasoning chain for causal transparency. Experiments on three datasets demonstrate consistent gains over strong baselines, providing a practical path toward verifiable-RL-driven LLM recommenders.

  • 8 authors
·
Oct 23 1

INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL

Model-based reinforcement learning (RL) algorithms designed for handling complex visual observations typically learn some sort of latent state representation, either explicitly or implicitly. Standard methods of this sort do not distinguish between functionally relevant aspects of the state and irrelevant distractors, instead aiming to represent all available information equally. We propose a modified objective for model-based RL that, in combination with mutual information maximization, allows us to learn representations and dynamics for visual model-based RL without reconstruction in a way that explicitly prioritizes functionally relevant factors. The key principle behind our design is to integrate a term inspired by variational empowerment into a state-space model based on mutual information. This term prioritizes information that is correlated with action, thus ensuring that functionally relevant factors are captured first. Furthermore, the same empowerment term also promotes faster exploration during the RL process, especially for sparse-reward tasks where the reward signal is insufficient to drive exploration in the early stages of learning. We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds, and show that the proposed prioritized information objective outperforms state-of-the-art model based RL approaches with higher sample efficiency and episodic returns. https://sites.google.com/view/information-empowerment

  • 4 authors
·
Apr 18, 2022

Assessing the Zero-Shot Capabilities of LLMs for Action Evaluation in RL

The temporal credit assignment problem is a central challenge in Reinforcement Learning (RL), concerned with attributing the appropriate influence to each actions in a trajectory for their ability to achieve a goal. However, when feedback is delayed and sparse, the learning signal is poor, and action evaluation becomes harder. Canonical solutions, such as reward shaping and options, require extensive domain knowledge and manual intervention, limiting their scalability and applicability. In this work, we lay the foundations for Credit Assignment with Language Models (CALM), a novel approach that leverages Large Language Models (LLMs) to automate credit assignment via reward shaping and options discovery. CALM uses LLMs to decompose a task into elementary subgoals and assess the achievement of these subgoals in state-action transitions. Every time an option terminates, a subgoal is achieved, and CALM provides an auxiliary reward. This additional reward signal can enhance the learning process when the task reward is sparse and delayed without the need for human-designed rewards. We provide a preliminary evaluation of CALM using a dataset of human-annotated demonstrations from MiniHack, suggesting that LLMs can be effective in assigning credit in zero-shot settings, without examples or LLM fine-tuning. Our preliminary results indicate that the knowledge of LLMs is a promising prior for credit assignment in RL, facilitating the transfer of human knowledge into value functions.

  • 7 authors
·
Sep 19, 2024

Learning in Sparse Rewards settings through Quality-Diversity algorithms

In the Reinforcement Learning (RL) framework, the learning is guided through a reward signal. This means that in situations of sparse rewards the agent has to focus on exploration, in order to discover which action, or set of actions leads to the reward. RL agents usually struggle with this. Exploration is the focus of Quality-Diversity (QD) methods. In this thesis, we approach the problem of sparse rewards with these algorithms, and in particular with Novelty Search (NS). This is a method that only focuses on the diversity of the possible policies behaviors. The first part of the thesis focuses on learning a representation of the space in which the diversity of the policies is evaluated. In this regard, we propose the TAXONS algorithm, a method that learns a low-dimensional representation of the search space through an AutoEncoder. While effective, TAXONS still requires information on when to capture the observation used to learn said space. For this, we study multiple ways, and in particular the signature transform, to encode information about the whole trajectory of observations. The thesis continues with the introduction of the SERENE algorithm, a method that can efficiently focus on the interesting parts of the search space. This method separates the exploration of the search space from the exploitation of the reward through a two-alternating-steps approach. The exploration is performed through NS. Any discovered reward is then locally exploited through emitters. The third and final contribution combines TAXONS and SERENE into a single approach: STAX. Throughout this thesis, we introduce methods that lower the amount of prior information needed in sparse rewards settings. These contributions are a promising step towards the development of methods that can autonomously explore and find high-performance policies in a variety of sparse rewards settings.

  • 1 authors
·
Mar 2, 2022

TGPO: Temporal Grounded Policy Optimization for Signal Temporal Logic Tasks

Learning control policies for complex, long-horizon tasks is a central challenge in robotics and autonomous systems. Signal Temporal Logic (STL) offers a powerful and expressive language for specifying such tasks, but its non-Markovian nature and inherent sparse reward make it difficult to be solved via standard Reinforcement Learning (RL) algorithms. Prior RL approaches focus only on limited STL fragments or use STL robustness scores as sparse terminal rewards. In this paper, we propose TGPO, Temporal Grounded Policy Optimization, to solve general STL tasks. TGPO decomposes STL into timed subgoals and invariant constraints and provides a hierarchical framework to tackle the problem. The high-level component of TGPO proposes concrete time allocations for these subgoals, and the low-level time-conditioned policy learns to achieve the sequenced subgoals using a dense, stage-wise reward signal. During inference, we sample various time allocations and select the most promising assignment for the policy network to rollout the solution trajectory. To foster efficient policy learning for complex STL with multiple subgoals, we leverage the learned critic to guide the high-level temporal search via Metropolis-Hastings sampling, focusing exploration on temporally feasible solutions. We conduct experiments on five environments, ranging from low-dimensional navigation to manipulation, drone, and quadrupedal locomotion. Under a wide range of STL tasks, TGPO significantly outperforms state-of-the-art baselines (especially for high-dimensional and long-horizon cases), with an average of 31.6% improvement in task success rate compared to the best baseline. The code will be available at https://github.com/mengyuest/TGPO

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Learning optimal policies in sparse rewards settings is difficult as the learning agent has little to no feedback on the quality of its actions. In these situations, a good strategy is to focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A learning algorithm capable of dealing with this kind of settings has to be able to (1) explore possible agent behaviors and (2) exploit any possible discovered reward. Efficient exploration algorithms have been proposed that require to define a behavior space, that associates to an agent its resulting behavior in a space that is known to be worth exploring. The need to define this space is a limitation of these algorithms. In this work, we introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it while efficiently optimizing any reward discovered. It does so by separating the exploration and learning of the behavior space from the exploitation of the reward through an alternating two-steps process. In the first step, STAX builds a repertoire of diverse policies while learning a low-dimensional representation of the high-dimensional observations generated during the policies evaluation. In the exploitation step, emitters are used to optimize the performance of the discovered rewarding solutions. Experiments conducted on three different sparse reward environments show that STAX performs comparably to existing baselines while requiring much less prior information about the task as it autonomously builds the behavior space.

  • 4 authors
·
Nov 2, 2021

SparsePO: Controlling Preference Alignment of LLMs via Sparse Token Masks

Preference Optimization (PO) has proven an effective step for aligning language models to human-desired behaviors. Current variants, following the offline Direct Preference Optimization objective, have focused on a strict setting where all tokens are contributing signals of KL divergence and rewards to the loss function. However, human preference is not affected by each word in a sequence equally but is often dependent on specific words or phrases, e.g. existence of toxic terms leads to non-preferred responses. Based on this observation, we argue that not all tokens should be weighted equally during PO and propose a flexible objective termed SparsePO, that aims to automatically learn to weight the KL divergence and reward corresponding to each token during PO training. We propose two different variants of weight-masks that can either be derived from the reference model itself or learned on the fly. Notably, our method induces sparsity in the learned masks, allowing the model to learn how to best weight reward and KL divergence contributions at the token level, learning an optimal level of mask sparsity. Extensive experiments on multiple domains, including sentiment control, dialogue, text summarization and text-to-code generation, illustrate that our approach assigns meaningful weights to tokens according to the target task, generates more responses with the desired preference and improves reasoning tasks by up to 2 percentage points compared to other token- and response-level PO methods.

  • 5 authors
·
Oct 7, 2024