Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSER_AMPEL: A multi-source dataset for SER of Italian older adults
In this paper, SER_AMPEL, a multi-source dataset for speech emotion recognition (SER) is presented. The peculiarity of the dataset is that it is collected with the aim of providing a reference for speech emotion recognition in case of Italian older adults. The dataset is collected following different protocols, in particular considering acted conversations, extracted from movies and TV series, and recording natural conversations where the emotions are elicited by proper questions. The evidence of the need for such a dataset emerges from the analysis of the state of the art. Preliminary considerations on the critical issues of SER are reported analyzing the classification results on a subset of the proposed dataset.
AISHELL-4: An Open Source Dataset for Speech Enhancement, Separation, Recognition and Speaker Diarization in Conference Scenario
In this paper, we present AISHELL-4, a sizable real-recorded Mandarin speech dataset collected by 8-channel circular microphone array for speech processing in conference scenario. The dataset consists of 211 recorded meeting sessions, each containing 4 to 8 speakers, with a total length of 120 hours. This dataset aims to bridge the advanced research on multi-speaker processing and the practical application scenario in three aspects. With real recorded meetings, AISHELL-4 provides realistic acoustics and rich natural speech characteristics in conversation such as short pause, speech overlap, quick speaker turn, noise, etc. Meanwhile, accurate transcription and speaker voice activity are provided for each meeting in AISHELL-4. This allows the researchers to explore different aspects in meeting processing, ranging from individual tasks such as speech front-end processing, speech recognition and speaker diarization, to multi-modality modeling and joint optimization of relevant tasks. Given most open source dataset for multi-speaker tasks are in English, AISHELL-4 is the only Mandarin dataset for conversation speech, providing additional value for data diversity in speech community. We also release a PyTorch-based training and evaluation framework as baseline system to promote reproducible research in this field.
Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation
This paper introduces a novel approach to leverage the generalizability capability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA). Our proposed DM-SFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images using features from the target images to guide the diffusion process. Specifically, the pre-trained diffusion model is fine-tuned to generate source samples that minimize entropy and maximize confidence for the pre-trained source model. We then apply established unsupervised domain adaptation techniques to align the generated source images with target domain data. We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA. The results highlight significant improvements in SFDA performance, showcasing the potential of diffusion models in generating contextually relevant, domain-specific images.
ICSD: An Open-source Dataset for Infant Cry and Snoring Detection
The detection and analysis of infant cry and snoring events are crucial tasks within the field of audio signal processing. While existing datasets for general sound event detection are plentiful, they often fall short in providing sufficient, strongly labeled data specific to infant cries and snoring. To provide a benchmark dataset and thus foster the research of infant cry and snoring detection, this paper introduces the Infant Cry and Snoring Detection (ICSD) dataset, a novel, publicly available dataset specially designed for ICSD tasks. The ICSD comprises three types of subsets: a real strongly labeled subset with event-based labels annotated manually, a weakly labeled subset with only clip-level event annotations, and a synthetic subset generated and labeled with strong annotations. This paper provides a detailed description of the ICSD creation process, including the challenges encountered and the solutions adopted. We offer a comprehensive characterization of the dataset, discussing its limitations and key factors for ICSD usage. Additionally, we conduct extensive experiments on the ICSD dataset to establish baseline systems and offer insights into the main factors when using this dataset for ICSD research. Our goal is to develop a dataset that will be widely adopted by the community as a new open benchmark for future ICSD research.
ProstaTD: A Large-scale Multi-source Dataset for Structured Surgical Triplet Detection
Surgical triplet detection has emerged as a pivotal task in surgical video analysis, with significant implications for performance assessment and the training of novice surgeons. However, existing datasets such as CholecT50 exhibit critical limitations: they lack precise spatial bounding box annotations, provide inconsistent and clinically ungrounded temporal labels, and rely on a single data source, which limits model generalizability.To address these shortcomings, we introduce ProstaTD, a large-scale, multi-institutional dataset for surgical triplet detection, developed from the technically demanding domain of robot-assisted prostatectomy. ProstaTD offers clinically defined temporal boundaries and high-precision bounding box annotations for each structured triplet action. The dataset comprises 60,529 video frames and 165,567 annotated triplet instances, collected from 21 surgeries performed across multiple institutions, reflecting a broad range of surgical practices and intraoperative conditions. The annotation process was conducted under rigorous medical supervision and involved more than 50 contributors, including practicing surgeons and medically trained annotators, through multiple iterative phases of labeling and verification. ProstaTD is the largest and most diverse surgical triplet dataset to date, providing a robust foundation for fair benchmarking, the development of reliable surgical AI systems, and scalable tools for procedural training.
PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages
Due to the cost of developing and training deep learning models from scratch, machine learning engineers have begun to reuse pre-trained models (PTMs) and fine-tune them for downstream tasks. PTM registries known as "model hubs" support engineers in distributing and reusing deep learning models. PTM packages include pre-trained weights, documentation, model architectures, datasets, and metadata. Mining the information in PTM packages will enable the discovery of engineering phenomena and tools to support software engineers. However, accessing this information is difficult - there are many PTM registries, and both the registries and the individual packages may have rate limiting for accessing the data. We present an open-source dataset, PTMTorrent, to facilitate the evaluation and understanding of PTM packages. This paper describes the creation, structure, usage, and limitations of the dataset. The dataset includes a snapshot of 5 model hubs and a total of 15,913 PTM packages. These packages are represented in a uniform data schema for cross-hub mining. We describe prior uses of this data and suggest research opportunities for mining using our dataset. The PTMTorrent dataset (v1) is available at: https://app.globus.org/file-manager?origin_id=55e17a6e-9d8f-11ed-a2a2-8383522b48d9&origin_path=%2F~%2F. Our dataset generation tools are available on GitHub: https://doi.org/10.5281/zenodo.7570357.
HelpSteer2: Open-source dataset for training top-performing reward models
High-quality preference datasets are essential for training reward models that can effectively guide large language models (LLMs) in generating high-quality responses aligned with human preferences. As LLMs become stronger and better aligned, permissively licensed preference datasets, such as Open Assistant, HH-RLHF, and HelpSteer need to be updated to remain effective for reward modeling. Methods that distil preference data from proprietary LLMs such as GPT-4 have restrictions on commercial usage imposed by model providers. To improve upon both generated responses and attribute labeling quality, we release HelpSteer2, a permissively licensed preference dataset (CC-BY-4.0). Using a powerful internal base model trained on HelpSteer2, we are able to achieve the SOTA score (92.0%) on Reward-Bench's primary dataset, outperforming currently listed open and proprietary models, as of June 12th, 2024. Notably, HelpSteer2 consists of only ten thousand response pairs, an order of magnitude fewer than existing preference datasets (e.g., HH-RLHF), which makes it highly efficient for training reward models. Our extensive experiments demonstrate that reward models trained with HelpSteer2 are effective in aligning LLMs. In particular, we propose SteerLM 2.0, a model alignment approach that can effectively make use of the rich multi-attribute score predicted by our reward models. HelpSteer2 is available at https://huggingface.co/datasets/nvidia/HelpSteer2 and code is available at https://github.com/NVIDIA/NeMo-Aligner
Universal Source Separation with Weakly Labelled Data
Universal source separation (USS) is a fundamental research task for computational auditory scene analysis, which aims to separate mono recordings into individual source tracks. There are three potential challenges awaiting the solution to the audio source separation task. First, previous audio source separation systems mainly focus on separating one or a limited number of specific sources. There is a lack of research on building a unified system that can separate arbitrary sources via a single model. Second, most previous systems require clean source data to train a separator, while clean source data are scarce. Third, there is a lack of USS system that can automatically detect and separate active sound classes in a hierarchical level. To use large-scale weakly labeled/unlabeled audio data for audio source separation, we propose a universal audio source separation framework containing: 1) an audio tagging model trained on weakly labeled data as a query net; and 2) a conditional source separation model that takes query net outputs as conditions to separate arbitrary sound sources. We investigate various query nets, source separation models, and training strategies and propose a hierarchical USS strategy to automatically detect and separate sound classes from the AudioSet ontology. By solely leveraging the weakly labelled AudioSet, our USS system is successful in separating a wide variety of sound classes, including sound event separation, music source separation, and speech enhancement. The USS system achieves an average signal-to-distortion ratio improvement (SDRi) of 5.57 dB over 527 sound classes of AudioSet; 10.57 dB on the DCASE 2018 Task 2 dataset; 8.12 dB on the MUSDB18 dataset; an SDRi of 7.28 dB on the Slakh2100 dataset; and an SSNR of 9.00 dB on the voicebank-demand dataset. We release the source code at https://github.com/bytedance/uss
Standardized Benchmark Dataset for Localized Exposure to a Realistic Source at 10$-$90 GHz
The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10-90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset.
ToolBridge: An Open-Source Dataset to Equip LLMs with External Tool Capabilities
Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.
UnitedHuman: Harnessing Multi-Source Data for High-Resolution Human Generation
Human generation has achieved significant progress. Nonetheless, existing methods still struggle to synthesize specific regions such as faces and hands. We argue that the main reason is rooted in the training data. A holistic human dataset inevitably has insufficient and low-resolution information on local parts. Therefore, we propose to use multi-source datasets with various resolution images to jointly learn a high-resolution human generative model. However, multi-source data inherently a) contains different parts that do not spatially align into a coherent human, and b) comes with different scales. To tackle these challenges, we propose an end-to-end framework, UnitedHuman, that empowers continuous GAN with the ability to effectively utilize multi-source data for high-resolution human generation. Specifically, 1) we design a Multi-Source Spatial Transformer that spatially aligns multi-source images to full-body space with a human parametric model. 2) Next, a continuous GAN is proposed with global-structural guidance and CutMix consistency. Patches from different datasets are then sampled and transformed to supervise the training of this scale-invariant generative model. Extensive experiments demonstrate that our model jointly learned from multi-source data achieves superior quality than those learned from a holistic dataset.
Method to Characterize Potential UAS Encounters Using Open Source Data
As unmanned aerial systems (UASs) increasingly integrate into the US national airspace system, there is an increasing need to characterize how commercial and recreational UASs may encounter each other. To inform the development and evaluation of safety critical technologies, we demonstrate a methodology to analytically calculate all potential relative geometries between different UAS operations performing inspection missions. This method is based on a previously demonstrated technique that leverages open source geospatial information to generate representative unmanned aircraft trajectories. Using open source data and parallel processing techniques, we performed trillions of calculations to estimate the relative horizontal distance between geospatial points across sixteen locations.
TSpec-LLM: An Open-source Dataset for LLM Understanding of 3GPP Specifications
Understanding telecom standards involves sorting through numerous technical documents, such as those produced by the 3rd Generation Partnership Project (3GPP), which is time-consuming and labor-intensive. While large language models (LLMs) can assist with the extensive 3GPP knowledge base, an inclusive dataset is crucial for their effective pre-training and fine-tuning. In this paper, we introduce TSpec-LLM, an open-source comprehensive dataset covering all 3GPP documents from Release 8 to Release 19 (1999--2023). To evaluate its efficacy, we first select a representative sample of 3GPP documents, create corresponding technical questions, and assess the baseline performance of various LLMs. We then incorporate a retrieval-augmented generation (RAG) framework to enhance LLM capabilities by retrieving relevant context from the TSpec-LLM dataset. Our evaluation shows that using a naive-RAG framework on TSpec-LLM improves the accuracy of GPT-3.5, Gemini 1.0 Pro, and GPT-4 from 44\%, 46\%, and 51\% to 71\%, 75\%, and 72\%, respectively.
COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics
The global ramifications of the COVID-19 pandemic remain significant, exerting persistent pressure on nations even three years after its initial outbreak. Deep learning models have shown promise in improving COVID-19 diagnostics but require diverse and larger-scale datasets to improve performance. In this paper, we introduce COVIDx CXR-4, an expanded multi-institutional open-source benchmark dataset for chest X-ray image-based computer-aided COVID-19 diagnostics. COVIDx CXR-4 expands significantly on the previous COVIDx CXR-3 dataset by increasing the total patient cohort size by greater than 2.66 times, resulting in 84,818 images from 45,342 patients across multiple institutions. We provide extensive analysis on the diversity of the patient demographic, imaging metadata, and disease distributions to highlight potential dataset biases. To the best of the authors' knowledge, COVIDx CXR-4 is the largest and most diverse open-source COVID-19 CXR dataset and is made publicly available as part of an open initiative to advance research to aid clinicians against the COVID-19 disease.
M3DLayout: A Multi-Source Dataset of 3D Indoor Layouts and Structured Descriptions for 3D Generation
In text-driven 3D scene generation, object layout serves as a crucial intermediate representation that bridges high-level language instructions with detailed geometric output. It not only provides a structural blueprint for ensuring physical plausibility but also supports semantic controllability and interactive editing. However, the learning capabilities of current 3D indoor layout generation models are constrained by the limited scale, diversity, and annotation quality of existing datasets. To address this, we introduce M3DLayout, a large-scale, multi-source dataset for 3D indoor layout generation. M3DLayout comprises 15,080 layouts and over 258k object instances, integrating three distinct sources: real-world scans, professional CAD designs, and procedurally generated scenes. Each layout is paired with detailed structured text describing global scene summaries, relational placements of large furniture, and fine-grained arrangements of smaller items. This diverse and richly annotated resource enables models to learn complex spatial and semantic patterns across a wide variety of indoor environments. To assess the potential of M3DLayout, we establish a benchmark using a text-conditioned diffusion model. Experimental results demonstrate that our dataset provides a solid foundation for training layout generation models. Its multi-source composition enhances diversity, notably through the Inf3DLayout subset which provides rich small-object information, enabling the generation of more complex and detailed scenes. We hope that M3DLayout can serve as a valuable resource for advancing research in text-driven 3D scene synthesis.
MeAJOR Corpus: A Multi-Source Dataset for Phishing Email Detection
Phishing emails continue to pose a significant threat to cybersecurity by exploiting human vulnerabilities through deceptive content and malicious payloads. While Machine Learning (ML) models are effective at detecting phishing threats, their performance largely relies on the quality and diversity of the training data. This paper presents MeAJOR (Merged email Assets from Joint Open-source Repositories) Corpus, a novel, multi-source phishing email dataset designed to overcome critical limitations in existing resources. It integrates 135894 samples representing a broad number of phishing tactics and legitimate emails, with a wide spectrum of engineered features. We evaluated the dataset's utility for phishing detection research through systematic experiments with four classification models (RF, XGB, MLP, and CNN) across multiple feature configurations. Results highlight the dataset's effectiveness, achieving 98.34% F1 with XGB. By integrating broad features from multiple categories, our dataset provides a reusable and consistent resource, while addressing common challenges like class imbalance, generalisability and reproducibility.
WanJuanSiLu: A High-Quality Open-Source Webtext Dataset for Low-Resource Languages
This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0
LibriMix: An Open-Source Dataset for Generalizable Speech Separation
In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two- or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third test set based on VCTK for speech and WHAM! for noise. Our experiments show that the generalization error is smaller for models trained with LibriMix than with WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more realistic, conversation-like scenarios, we also release a sparsely overlapping version of LibriMix's test set.
MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens
Multimodal interleaved datasets featuring free-form interleaved sequences of images and text are crucial for training frontier large multimodal models (LMMs). Despite the rapid progression of open-source LMMs, there remains a pronounced scarcity of large-scale, diverse open-source multimodal interleaved datasets. In response, we introduce MINT-1T, the most extensive and diverse open-source Multimodal INTerleaved dataset to date. MINT-1T comprises one trillion text tokens and three billion images, a 10x scale-up from existing open-source datasets. Additionally, we include previously untapped sources such as PDFs and ArXiv papers. As scaling multimodal interleaved datasets requires substantial engineering effort, sharing the data curation process and releasing the dataset greatly benefits the community. Our experiments show that LMMs trained on MINT-1T rival the performance of models trained on the previous leading dataset, OBELICS. Our data and code will be released at https://github.com/mlfoundations/MINT-1T.
Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data
The recent introduction of synthetic correlated diffusion (CDI^s) imaging has demonstrated significant potential in the realm of clinical decision support for prostate cancer (PCa). CDI^s is a new form of magnetic resonance imaging (MRI) designed to characterize tissue characteristics through the joint correlation of diffusion signal attenuation across different Brownian motion sensitivities. Despite the performance improvement, the CDI^s data for PCa has not been previously made publicly available. In our commitment to advance research efforts for PCa, we introduce Cancer-Net PCa-Data, an open-source benchmark dataset of volumetric CDI^s imaging data of PCa patients. Cancer-Net PCa-Data consists of CDI^s volumetric images from a patient cohort of 200 patient cases, along with full annotations (gland masks, tumor masks, and PCa diagnosis for each tumor). We also analyze the demographic and label region diversity of Cancer-Net PCa-Data for potential biases. Cancer-Net PCa-Data is the first-ever public dataset of CDI^s imaging data for PCa, and is a part of the global open-source initiative dedicated to advancement in machine learning and imaging research to aid clinicians in the global fight against cancer.
AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data
Open-source Large Language Models (LLMs) and their specialized variants, particularly Code LLMs, have recently delivered impressive performance. However, previous Code LLMs are typically fine-tuned on single-source data with limited quality and diversity, which may insufficiently elicit the potential of pre-trained Code LLMs. In this paper, we present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data. To achieve this, we pioneer to unveil inherent conflicts among the various styles and qualities in multi-source code corpora and introduce data-specific prompts with hindsight relabeling, termed AlchemistPrompts, to harmonize different data sources and instruction-response pairs. Additionally, we propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review. Extensive experiments demonstrate that AlchemistCoder holds a clear lead among all models of the same size (6.7B/7B) and rivals or even surpasses larger models (15B/33B/70B), showcasing the efficacy of our method in refining instruction-following capabilities and advancing the boundaries of code intelligence.
MAVE: A Product Dataset for Multi-source Attribute Value Extraction
Attribute value extraction refers to the task of identifying values of an attribute of interest from product information. Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product ranking, retrieval and recommendations. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we introduce MAVE, a new dataset to better facilitate research on product attribute value extraction. MAVE is composed of a curated set of 2.2 million products from Amazon pages, with 3 million attribute-value annotations across 1257 unique categories. MAVE has four main and unique advantages: First, MAVE is the largest product attribute value extraction dataset by the number of attribute-value examples. Second, MAVE includes multi-source representations from the product, which captures the full product information with high attribute coverage. Third, MAVE represents a more diverse set of attributes and values relative to what previous datasets cover. Lastly, MAVE provides a very challenging zero-shot test set, as we empirically illustrate in the experiments. We further propose a novel approach that effectively extracts the attribute value from the multi-source product information. We conduct extensive experiments with several baselines and show that MAVE is an effective dataset for attribute value extraction task. It is also a very challenging task on zero-shot attribute extraction. Data is available at {\it https://github.com/google-research-datasets/MAVE}.
Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training
Large Language Models (LLMs) have shown remarkable advancements in specialized fields such as finance, law, and medicine. However, in cybersecurity, we have noticed a lack of open-source datasets, with a particular lack of high-quality cybersecurity pretraining corpora, even though much research indicates that LLMs acquire their knowledge during pretraining. To address this, we present a comprehensive suite of datasets covering all major training stages, including pretraining, instruction fine-tuning, and reasoning distillation with cybersecurity-specific self-reflection data. Extensive ablation studies demonstrate their effectiveness on public cybersecurity benchmarks. In particular, continual pre-training on our dataset yields a 15.88% improvement in the aggregate score, while reasoning distillation leads to a 10% gain in security certification (CISSP). We will release all datasets and trained cybersecurity LLMs under the ODC-BY and MIT licenses to encourage further research in the community. For access to all datasets and model weights, please refer to https://huggingface.co/collections/trendmicro-ailab/primus-67b1fd27052b802b4af9d243.
ForgeHLS: A Large-Scale, Open-Source Dataset for High-Level Synthesis
High-Level Synthesis (HLS) plays a crucial role in modern hardware design by transforming high-level code into optimized hardware implementations. However, progress in applying machine learning (ML) to HLS optimization has been hindered by a shortage of sufficiently large and diverse datasets. To bridge this gap, we introduce ForgeHLS, a large-scale, open-source dataset explicitly designed for ML-driven HLS research. ForgeHLS comprises over 400k diverse designs generated from 846 kernels covering a broad range of application domains, consuming over 200k CPU hours during dataset construction. Each kernel includes systematically automated pragma insertions (loop unrolling, pipelining, array partitioning), combined with extensive design space exploration using Bayesian optimization. Compared to existing datasets, ForgeHLS significantly enhances scale, diversity, and design coverage. We further define and evaluate representative downstream tasks in Quality of Result (QoR) prediction and automated pragma exploration, clearly demonstrating ForgeHLS utility for developing and improving ML-based HLS optimization methodologies. The dataset and code are public at https://github.com/zedong-peng/ForgeHLS.
1.4 Million Open-Source Distilled Reasoning Dataset to Empower Large Language Model Training
The AM-DeepSeek-R1-Distilled is a large-scale dataset with thinking traces for general reasoning tasks, composed of high-quality and challenging reasoning problems. These problems are collected from a multitude of open-source datasets, subjected to semantic deduplication and meticulous cleaning to eliminate test set contamination. All responses within the dataset are distilled from reasoning models (predominantly DeepSeek-R1) and have undergone rigorous verification procedures. Mathematical problems are validated by checking against reference answers, code problems are verified using test cases, and other tasks are evaluated with the aid of a reward model. The AM-Distill-Qwen-32B model, which was trained through only simple Supervised Fine-Tuning (SFT) using this batch of data, outperformed the DeepSeek-R1-Distill-Qwen-32B model on four benchmarks: AIME2024, MATH-500, GPQA-Diamond, and LiveCodeBench. Additionally, the AM-Distill-Qwen-72B model surpassed the DeepSeek-R1-Distill-Llama-70B model on all benchmarks as well. We are releasing these 1.4 million problems and their corresponding responses to the research community with the objective of fostering the development of powerful reasoning-oriented Large Language Models (LLMs). The dataset was published in https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M}.
Releasing the CRaQAn (Coreference Resolution in Question-Answering): An open-source dataset and dataset creation methodology using instruction-following models
Instruction-following language models demand robust methodologies for information retrieval to augment instructions for question-answering applications. A primary challenge is the resolution of coreferences in the context of chunking strategies for long documents. The critical barrier to experimentation of handling coreferences is a lack of open source datasets, specifically in question-answering tasks that require coreference resolution. In this work we present our Coreference Resolution in Question-Answering (CRaQAn) dataset, an open-source dataset that caters to the nuanced information retrieval requirements of coreference resolution in question-answering tasks by providing over 250 question-answer pairs containing coreferences. To develop this dataset, we developed a novel approach for creating high-quality datasets using an instruction-following model (GPT-4) and a Recursive Criticism and Improvement Loop.
AISHELL-5: The First Open-Source In-Car Multi-Channel Multi-Speaker Speech Dataset for Automatic Speech Diarization and Recognition
This paper delineates AISHELL-5, the first open-source in-car multi-channel multi-speaker Mandarin automatic speech recognition (ASR) dataset. AISHLL-5 includes two parts: (1) over 100 hours of multi-channel speech data recorded in an electric vehicle across more than 60 real driving scenarios. This audio data consists of four far-field speech signals captured by microphones located on each car door, as well as near-field signals obtained from high-fidelity headset microphones worn by each speaker. (2) a collection of 40 hours of real-world environmental noise recordings, which supports the in-car speech data simulation. Moreover, we also provide an open-access, reproducible baseline system based on this dataset. This system features a speech frontend model that employs speech source separation to extract each speaker's clean speech from the far-field signals, along with a speech recognition module that accurately transcribes the content of each individual speaker. Experimental results demonstrate the challenges faced by various mainstream ASR models when evaluated on the AISHELL-5. We firmly believe the AISHELL-5 dataset will significantly advance the research on ASR systems under complex driving scenarios by establishing the first publicly available in-car ASR benchmark.
RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with Our Open-Source Dataset and Lightweight Solution
The automatic generation of RTL code (e.g., Verilog) using natural language instructions and large language models (LLMs) has attracted significant research interest recently. However, most existing approaches heavily rely on commercial LLMs such as ChatGPT, while open-source LLMs tailored for this specific design generation task exhibit notably inferior performance. The absence of high-quality open-source solutions restricts the flexibility and data privacy of this emerging technique. In this study, we present a new customized LLM solution with a modest parameter count of only 7B, achieving better performance than GPT-3.5 on two representative benchmarks for RTL code generation. This remarkable balance between accuracy and efficiency is made possible by leveraging our new RTL code dataset and a customized LLM algorithm, both of which will be made fully open-source. Furthermore, we have successfully quantized our LLM to 4-bit with a total size of 4GB, enabling it to function on a single laptop with only slight performance degradation. This efficiency allows the RTL generator to serve as a local assistant for engineers, ensuring all design privacy concerns are addressed.
M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve mAP by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.
F2LLM Technical Report: Matching SOTA Embedding Performance with 6 Million Open-Source Data
We introduce F2LLM - Foundation to Feature Large Language Models, a suite of state-of-the-art embedding models in three sizes: 0.6B, 1.7B, and 4B. Unlike previous top-ranking embedding models that require massive contrastive pretraining, sophisticated training pipelines, and costly synthetic training data, F2LLM is directly finetuned from foundation models on 6 million query-document-negative tuples curated from open-source, non-synthetic datasets, striking a strong balance between training cost, model size, and embedding performance. On the MTEB English leaderboard, F2LLM-4B ranks 2nd among models with approximately 4B parameters and 7th overall, while F2LLM-1.7B ranks 1st among models in the 1B-2B size range. To facilitate future research in the field, we release the models, training dataset, and code, positioning F2LLM as a strong, reproducible, and budget-friendly baseline for future works.
OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data
Mathematical reasoning continues to be a critical challenge in large language model (LLM) development with significant interest. However, most of the cutting-edge progress in mathematical reasoning with LLMs has become closed-source due to lack of access to training data. This lack of data access limits researchers from understanding the impact of different choices for synthesizing and utilizing the data. With the goal of creating a high-quality finetuning (SFT) dataset for math reasoning, we conduct careful ablation experiments on data synthesis using the recently released Llama3.1 family of models. Our experiments show that: (a) solution format matters, with excessively verbose solutions proving detrimental to SFT performance, (b) data generated by a strong teacher outperforms on-policy data generated by a weak student model, (c) SFT is robust to low-quality solutions, allowing for imprecise data filtering, and (d) question diversity is crucial for achieving data scaling gains. Based on these insights, we create the OpenMathInstruct-2 dataset, which consists of 14M question-solution pairs (approx 600K unique questions), making it nearly eight times larger than the previous largest open-source math reasoning dataset. Finetuning the Llama-3.1-8B-Base using OpenMathInstruct-2 outperforms Llama3.1-8B-Instruct on MATH by an absolute 15.9\% (51.9\% rightarrow 67.8\%). Finally, to accelerate the open-source efforts, we release the code, the finetuned models, and the OpenMathInstruct-2 dataset under a commercially permissive license.
FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B schuhmann2022laion, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain. This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation, and a minimum amount of annotation budget is available in the target domain. Without referencing the source data, new challenges emerge in identifying the most informative target samples for labeling, establishing cross-domain alignment during adaptation, and ensuring continuous performance improvements through the iterative query-and-adaptation process. In response, we present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead. We propose Contrastive Active Sampling to learn from the hypotheses of the preceding model, thereby querying target samples that are both informative to the current model and persistently challenging throughout active learning. During adaptation, we learn from features of actively selected anchors obtained from previous intermediate models, so that the Visual Persistence-guided Adaptation can facilitate feature distribution alignment and active sample exploitation. Extensive experiments on three widely-used benchmarks show that our LFTL achieves state-of-the-art performance, superior computational efficiency and continuous improvements as the annotation budget increases. Our code is available at https://github.com/lyumengyao/lftl.
SUMMIT: Source-Free Adaptation of Uni-Modal Models to Multi-Modal Targets
Scene understanding using multi-modal data is necessary in many applications, e.g., autonomous navigation. To achieve this in a variety of situations, existing models must be able to adapt to shifting data distributions without arduous data annotation. Current approaches assume that the source data is available during adaptation and that the source consists of paired multi-modal data. Both these assumptions may be problematic for many applications. Source data may not be available due to privacy, security, or economic concerns. Assuming the existence of paired multi-modal data for training also entails significant data collection costs and fails to take advantage of widely available freely distributed pre-trained uni-modal models. In this work, we relax both of these assumptions by addressing the problem of adapting a set of models trained independently on uni-modal data to a target domain consisting of unlabeled multi-modal data, without having access to the original source dataset. Our proposed approach solves this problem through a switching framework which automatically chooses between two complementary methods of cross-modal pseudo-label fusion -- agreement filtering and entropy weighting -- based on the estimated domain gap. We demonstrate our work on the semantic segmentation problem. Experiments across seven challenging adaptation scenarios verify the efficacy of our approach, achieving results comparable to, and in some cases outperforming, methods which assume access to source data. Our method achieves an improvement in mIoU of up to 12% over competing baselines. Our code is publicly available at https://github.com/csimo005/SUMMIT.
ImgEdit: A Unified Image Editing Dataset and Benchmark
Recent advancements in generative models have enabled high-fidelity text-to-image generation. However, open-source image-editing models still lag behind their proprietary counterparts, primarily due to limited high-quality data and insufficient benchmarks. To overcome these limitations, we introduce ImgEdit, a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs, which contain both novel and complex single-turn edits, as well as challenging multi-turn tasks. To ensure the data quality, we employ a multi-stage pipeline that integrates a cutting-edge vision-language model, a detection model, a segmentation model, alongside task-specific in-painting procedures and strict post-processing. ImgEdit surpasses existing datasets in both task novelty and data quality. Using ImgEdit, we train ImgEdit-E1, an editing model using Vision Language Model to process the reference image and editing prompt, which outperforms existing open-source models on multiple tasks, highlighting the value of ImgEdit and model design. For comprehensive evaluation, we introduce ImgEdit-Bench, a benchmark designed to evaluate image editing performance in terms of instruction adherence, editing quality, and detail preservation. It includes a basic testsuite, a challenging single-turn suite, and a dedicated multi-turn suite. We evaluate both open-source and proprietary models, as well as ImgEdit-E1, providing deep analysis and actionable insights into the current behavior of image-editing models. The source data are publicly available on https://github.com/PKU-YuanGroup/ImgEdit.
MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension
The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.
Solving Data Quality Problems with Desbordante: a Demo
Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios.
Source-free Video Domain Adaptation by Learning Temporal Consistency for Action Recognition
Video-based Unsupervised Domain Adaptation (VUDA) methods improve the robustness of video models, enabling them to be applied to action recognition tasks across different environments. However, these methods require constant access to source data during the adaptation process. Yet in many real-world applications, subjects and scenes in the source video domain should be irrelevant to those in the target video domain. With the increasing emphasis on data privacy, such methods that require source data access would raise serious privacy issues. Therefore, to cope with such concern, a more practical domain adaptation scenario is formulated as the Source-Free Video-based Domain Adaptation (SFVDA). Though there are a few methods for Source-Free Domain Adaptation (SFDA) on image data, these methods yield degenerating performance in SFVDA due to the multi-modality nature of videos, with the existence of additional temporal features. In this paper, we propose a novel Attentive Temporal Consistent Network (ATCoN) to address SFVDA by learning temporal consistency, guaranteed by two novel consistency objectives, namely feature consistency and source prediction consistency, performed across local temporal features. ATCoN further constructs effective overall temporal features by attending to local temporal features based on prediction confidence. Empirical results demonstrate the state-of-the-art performance of ATCoN across various cross-domain action recognition benchmarks.
A Pipeline and NIR-Enhanced Dataset for Parking Lot Segmentation
Discussions of minimum parking requirement policies often include maps of parking lots, which are time consuming to construct manually. Open source datasets for such parking lots are scarce, particularly for US cities. This paper introduces the idea of using Near-Infrared (NIR) channels as input and several post-processing techniques to improve the prediction of off-street surface parking lots using satellite imagery. We constructed two datasets with 12,617 image-mask pairs each: one with 3-channel (RGB) and another with 4-channel (RGB + NIR). The datasets were used to train five deep learning models (OneFormer, Mask2Former, SegFormer, DeepLabV3, and FCN) for semantic segmentation, classifying images to differentiate between parking and non-parking pixels. Our results demonstrate that the NIR channel improved accuracy because parking lots are often surrounded by grass, even though the NIR channel needed to be upsampled from a lower resolution. Post-processing including eliminating erroneous holes, simplifying edges, and removing road and building footprints further improved the accuracy. Best model, OneFormer trained on 4-channel input and paired with post-processing techniques achieves a mean Intersection over Union (mIoU) of 84.9 percent and a pixel-wise accuracy of 96.3 percent.
A Data-Based Perspective on Transfer Learning
It is commonly believed that in transfer learning including more pre-training data translates into better performance. However, recent evidence suggests that removing data from the source dataset can actually help too. In this work, we take a closer look at the role of the source dataset's composition in transfer learning and present a framework for probing its impact on downstream performance. Our framework gives rise to new capabilities such as pinpointing transfer learning brittleness as well as detecting pathologies such as data-leakage and the presence of misleading examples in the source dataset. In particular, we demonstrate that removing detrimental datapoints identified by our framework improves transfer learning performance from ImageNet on a variety of target tasks. Code is available at https://github.com/MadryLab/data-transfer
The Imaging Database for Epilepsy And Surgery (IDEAS)
Magnetic resonance imaging (MRI) is a crucial tool to identify brain abnormalities in a wide range of neurological disorders. In focal epilepsy MRI is used to identify structural cerebral abnormalities. For covert lesions, machine learning and artificial intelligence algorithms may improve lesion detection if abnormalities are not evident on visual inspection. The success of this approach depends on the volume and quality of training data. Herein, we release an open-source dataset of preprocessed MRI scans from 442 individuals with drug-refractory focal epilepsy who had neurosurgical resections, and detailed demographic information. The MRI scan data includes the preoperative 3D T1 and where available 3D FLAIR, as well as a manually inspected complete surface reconstruction and volumetric parcellations. Demographic information includes age, sex, age of onset of epilepsy, location of surgery, histopathology of resected specimen, occurrence and frequency of focal seizures with and without impairment of awareness, focal to bilateral tonic-clonic seizures, number of anti-seizure medications (ASMs) at time of surgery, and a total of 1764 patient years of post-surgical follow up. Crucially, we also include resection masks delineated from post-surgical imaging. To demonstrate the veracity of our data, we successfully replicated previous studies showing long-term outcomes of seizure freedom in the range of around 50%. Our imaging data replicates findings of group level atrophy in patients compared to controls. Resection locations in the cohort were predominantly in the temporal and frontal lobes. We envisage our dataset, shared openly with the community, will catalyse the development and application of computational methods in clinical neurology.
Scaling Generalist Data-Analytic Agents
Data-analytic agents are emerging as a key catalyst for automated scientific discovery and for the vision of Innovating AI. Current approaches, however, rely heavily on prompt engineering over proprietary models, while open-source models struggle to face diverse-format, large-scale data files and long-horizon, multi-step reasoning that real-world analytics demands. This paper introduces DataMind, a scalable data synthesis and agent training recipe designed to build generalist data-analytic agents. DataMind tackles three key challenges in building open-source data-analytic agents, including insufficient data resources, improper training strategy, and unstable code-based multi-turn rollout. Concretely, DataMind applies 1) a fine-grained task taxonomy and a recursive easy-to-hard task composition mechanism to increase the diversity and difficulty of synthesized queries; 2) a knowledge-augmented trajectory sampling strategy followed by model-based and rule-based filtering; 3) a dynamically adjustable training objective combining both SFT and RL losses; 4) a memory-frugal and stable code-based multi-turn rollout framework. Built on DataMind, we curate DataMind-12K, a high-quality trajectory set spanning diverse domains, task categories, and data file formats for data-analytic tasks. Trained on DataMind-12K, our DataMind-14B achieves state-of-the-art with an average score of 71.16% on multiple data analysis benchmarks, outperforming the strongest proprietary baselines DeepSeek-V3.1 and GPT-5. Our DataMind-7B also performs best among all open-source models with a score of 68.10%. We also incorporate some empirical insights gained from our exploratory trials into the analysis experiments, aiming to provide actionable insights about agentic training for the community. We will release DataMind-12K and DataMind-7B,14B for the community's future research.
CrossLoc3D: Aerial-Ground Cross-Source 3D Place Recognition
We present CrossLoc3D, a novel 3D place recognition method that solves a large-scale point matching problem in a cross-source setting. Cross-source point cloud data corresponds to point sets captured by depth sensors with different accuracies or from different distances and perspectives. We address the challenges in terms of developing 3D place recognition methods that account for the representation gap between points captured by different sources. Our method handles cross-source data by utilizing multi-grained features and selecting convolution kernel sizes that correspond to most prominent features. Inspired by the diffusion models, our method uses a novel iterative refinement process that gradually shifts the embedding spaces from different sources to a single canonical space for better metric learning. In addition, we present CS-Campus3D, the first 3D aerial-ground cross-source dataset consisting of point cloud data from both aerial and ground LiDAR scans. The point clouds in CS-Campus3D have representation gaps and other features like different views, point densities, and noise patterns. We show that our CrossLoc3D algorithm can achieve an improvement of 4.74% - 15.37% in terms of the top 1 average recall on our CS-Campus3D benchmark and achieves performance comparable to state-of-the-art 3D place recognition method on the Oxford RobotCar. We will release the code and CS-Campus3D benchmark.
X2Edit: Revisiting Arbitrary-Instruction Image Editing through Self-Constructed Data and Task-Aware Representation Learning
Existing open-source datasets for arbitrary-instruction image editing remain suboptimal, while a plug-and-play editing module compatible with community-prevalent generative models is notably absent. In this paper, we first introduce the X2Edit Dataset, a comprehensive dataset covering 14 diverse editing tasks, including subject-driven generation. We utilize the industry-leading unified image generation models and expert models to construct the data. Meanwhile, we design reasonable editing instructions with the VLM and implement various scoring mechanisms to filter the data. As a result, we construct 3.7 million high-quality data with balanced categories. Second, to better integrate seamlessly with community image generation models, we design task-aware MoE-LoRA training based on FLUX.1, with only 8\% of the parameters of the full model. To further improve the final performance, we utilize the internal representations of the diffusion model and define positive/negative samples based on image editing types to introduce contrastive learning. Extensive experiments demonstrate that the model's editing performance is competitive among many excellent models. Additionally, the constructed dataset exhibits substantial advantages over existing open-source datasets. The open-source code, checkpoints, and datasets for X2Edit can be found at the following link: https://github.com/OPPO-Mente-Lab/X2Edit.
LEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
HEAPO -- An Open Dataset for Heat Pump Optimization with Smart Electricity Meter Data and On-Site Inspection Protocols
Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy, impacting operational costs and grid demand. Many systems run inefficiently due to planning flaws, operational faults, or misconfigurations. While optimizing performance requires skilled professionals, labor shortages hinder large-scale interventions. However, digital tools and improved data availability create new service opportunities for energy efficiency, predictive maintenance, and demand-side management. To support research and practical solutions, we present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland, recorded at 15-minute and daily resolutions between 2018-11-03 and 2024-03-21. The dataset includes household metadata, weather data from 8 stations, and ground truth data from 410 field visit protocols collected by energy consultants during system optimizations. Additionally, the dataset includes a Python-based data loader to facilitate seamless data processing and exploration.
MathClean: A Benchmark for Synthetic Mathematical Data Cleaning
With the rapid development of large language models (LLMs), the quality of training data has become crucial. Among the various types of training data, mathematical data plays a key role in enabling LLMs to acquire strong reasoning abilities. While high-quality open-source data is important, it is often insufficient for pre-training, necessitating the addition of synthetic math problems. However, synthetic math questions and answers can introduce inaccuracies, which may degrade both the training data and web data. Therefore, an effective method for cleaning synthetic math data is essential. In this paper, we propose the MathClean benchmark to evaluate the effectiveness of math data cleaning models. The MathClean benchmark consists of 2,000 correct questions and 2,000 erroneous questions with additional 2,000 correct and erroneous answers sourced from augmented data based on GSM8K and MATH. Moreover, we also annotate error types for each question or answer, since it can assess whether models can correctly identify the error categories for future improvements. Finally, we present comprehensive evaluations using state-of-the-art (SOTA) models. Our results demonstrate that even strong models like GPT-o1 and DeepSeek-R1 perform poorly on this benchmark, highlighting the utility of MathClean. Our code and data is available at https://github.com/YuYingLi0/MathClean.
Target-agnostic Source-free Domain Adaptation for Regression Tasks
Unsupervised domain adaptation (UDA) seeks to bridge the domain gap between the target and source using unlabeled target data. Source-free UDA removes the requirement for labeled source data at the target to preserve data privacy and storage. However, work on source-free UDA assumes knowledge of domain gap distribution, and hence is limited to either target-aware or classification task. To overcome it, we propose TASFAR, a novel target-agnostic source-free domain adaptation approach for regression tasks. Using prediction confidence, TASFAR estimates a label density map as the target label distribution, which is then used to calibrate the source model on the target domain. We have conducted extensive experiments on four regression tasks with various domain gaps, namely, pedestrian dead reckoning for different users, image-based people counting in different scenes, housing-price prediction at different districts, and taxi-trip duration prediction from different departure points. TASFAR is shown to substantially outperform the state-of-the-art source-free UDA approaches by averagely reducing 22% errors for the four tasks and achieve notably comparable accuracy as source-based UDA without using source data.
Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning
Massive data is often considered essential for deep learning applications, but it also incurs significant computational and infrastructural costs. Therefore, dataset pruning (DP) has emerged as an effective way to improve data efficiency by identifying and removing redundant training samples without sacrificing performance. In this work, we aim to address the problem of DP for transfer learning, i.e., how to prune a source dataset for improved pretraining efficiency and lossless finetuning accuracy on downstream target tasks. To our best knowledge, the problem of DP for transfer learning remains open, as previous studies have primarily addressed DP and transfer learning as separate problems. By contrast, we establish a unified viewpoint to integrate DP with transfer learning and find that existing DP methods are not suitable for the transfer learning paradigm. We then propose two new DP methods, label mapping and feature mapping, for supervised and self-supervised pretraining settings respectively, by revisiting the DP problem through the lens of source-target domain mapping. Furthermore, we demonstrate the effectiveness of our approach on numerous transfer learning tasks. We show that source data classes can be pruned by up to 40% ~ 80% without sacrificing downstream performance, resulting in a significant 2 ~ 5 times speed-up during the pretraining stage. Besides, our proposal exhibits broad applicability and can improve other computationally intensive transfer learning techniques, such as adversarial pretraining. Codes are available at https://github.com/OPTML-Group/DP4TL.
Prior-guided Source-free Domain Adaptation for Human Pose Estimation
Domain adaptation methods for 2D human pose estimation typically require continuous access to the source data during adaptation, which can be challenging due to privacy, memory, or computational constraints. To address this limitation, we focus on the task of source-free domain adaptation for pose estimation, where a source model must adapt to a new target domain using only unlabeled target data. Although recent advances have introduced source-free methods for classification tasks, extending them to the regression task of pose estimation is non-trivial. In this paper, we present Prior-guided Self-training (POST), a pseudo-labeling approach that builds on the popular Mean Teacher framework to compensate for the distribution shift. POST leverages prediction-level and feature-level consistency between a student and teacher model against certain image transformations. In the absence of source data, POST utilizes a human pose prior that regularizes the adaptation process by directing the model to generate more accurate and anatomically plausible pose pseudo-labels. Despite being simple and intuitive, our framework can deliver significant performance gains compared to applying the source model directly to the target data, as demonstrated in our extensive experiments and ablation studies. In fact, our approach achieves comparable performance to recent state-of-the-art methods that use source data for adaptation.
Unsupervised Accuracy Estimation of Deep Visual Models using Domain-Adaptive Adversarial Perturbation without Source Samples
Deploying deep visual models can lead to performance drops due to the discrepancies between source and target distributions. Several approaches leverage labeled source data to estimate target domain accuracy, but accessing labeled source data is often prohibitively difficult due to data confidentiality or resource limitations on serving devices. Our work proposes a new framework to estimate model accuracy on unlabeled target data without access to source data. We investigate the feasibility of using pseudo-labels for accuracy estimation and evolve this idea into adopting recent advances in source-free domain adaptation algorithms. Our approach measures the disagreement rate between the source hypothesis and the target pseudo-labeling function, adapted from the source hypothesis. We mitigate the impact of erroneous pseudo-labels that may arise due to a high ideal joint hypothesis risk by employing adaptive adversarial perturbation on the input of the target model. Our proposed source-free framework effectively addresses the challenging distribution shift scenarios and outperforms existing methods requiring source data and labels for training.
Aria Everyday Activities Dataset
We present Aria Everyday Activities (AEA) Dataset, an egocentric multimodal open dataset recorded using Project Aria glasses. AEA contains 143 daily activity sequences recorded by multiple wearers in five geographically diverse indoor locations. Each of the recording contains multimodal sensor data recorded through the Project Aria glasses. In addition, AEA provides machine perception data including high frequency globally aligned 3D trajectories, scene point cloud, per-frame 3D eye gaze vector and time aligned speech transcription. In this paper, we demonstrate a few exemplar research applications enabled by this dataset, including neural scene reconstruction and prompted segmentation. AEA is an open source dataset that can be downloaded from projectaria.com. We are also providing open-source implementations and examples of how to use the dataset in Project Aria Tools.
Speech-to-LaTeX: New Models and Datasets for Converting Spoken Equations and Sentences
Conversion of spoken mathematical expressions is a challenging task that involves transcribing speech into a strictly structured symbolic representation while addressing the ambiguity inherent in the pronunciation of equations. Although significant progress has been achieved in automatic speech recognition (ASR) and language models (LM), the problem of converting spoken mathematics into LaTeX remains underexplored. This task directly applies to educational and research domains, such as lecture transcription or note creation. Based on ASR post-correction, prior work requires 2 transcriptions, focuses only on isolated equations, has a limited test set, and provides neither training data nor multilingual coverage. To address these issues, we present the first fully open-source large-scale dataset, comprising over 66,000 human-annotated audio samples of mathematical equations and sentences in both English and Russian, drawn from diverse scientific domains. In addition to the ASR post-correction models and few-shot prompting, we apply audio language models, demonstrating comparable character error rate (CER) results on the MathSpeech benchmark (28% vs. 30%) for the equations conversion. In contrast, on the proposed S2L-equations benchmark, our models outperform the MathSpeech model by a substantial margin of more than 40 percentage points, even after accounting for LaTeX formatting artifacts (27% vs. 64%). We establish the first benchmark for mathematical sentence recognition (S2L-sentences) and achieve an equation CER of 40%. This work lays the groundwork for future advances in multimodal AI, with a particular focus on mathematical content recognition.
OpenVE-3M: A Large-Scale High-Quality Dataset for Instruction-Guided Video Editing
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://github.com/lewandofskee/OpenVE.
SQuADDS: A validated design database and simulation workflow for superconducting qubit design
We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate ``best-guess'' designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs.
The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
We present The Vault, an open-source, large-scale code-text dataset designed to enhance the training of code-focused large language models (LLMs). Existing open-source datasets for training code-based LLMs often face challenges in terms of size, quality (due to noisy signals), and format (only containing code function and text explanation pairings). The Vault overcomes these limitations by providing 40 million code-text pairs across 10 popular programming languages, thorough cleaning for 10+ prevalent issues, and various levels of code-text pairings, including class, function, and line levels. Researchers and practitioners can utilize The Vault for training diverse code-focused LLMs or incorporate the provided data cleaning methods and scripts to improve their datasets. By employing The Vault as the training dataset for code-centric LLMs, we anticipate significant advancements in code understanding and generation tasks, fostering progress in both artificial intelligence research and software development practices.
RAGPulse: An Open-Source RAG Workload Trace to Optimize RAG Serving Systems
Retrieval-Augmented Generation (RAG) is a critical paradigm for building reliable, knowledge-intensive Large Language Model (LLM) applications. However, the multi-stage pipeline (retrieve, generate) and unique workload characteristics (e.g., knowledge dependency) of RAG systems pose significant challenges for serving performance optimization. Existing generic LLM inference traces fail to capture these RAG-specific dynamics, creating a significant performance gap between academic research and real-world deployment. To bridge this gap, this paper introduces RAGPulse, an open-source RAG workload trace dataset. This dataset was collected from an university-wide Q&A system serving that has served more than 40,000 students and faculties since April 2024. We detail RAGPulse's system architecture, its privacy-preserving hash-based data format, and provide an in-depth statistical analysis. Our analysis reveals that real-world RAG workloads exhibit significant temporal locality and a highly skewed hot document access pattern. RAGPulse provides a high-fidelity foundation for researchers to develop and validate novel optimization strategies for RAG systems, such as content-aware batching and retrieval caching, ultimately enhancing the efficiency and reliability of RAG services. The code is available at https://github.com/flashserve/RAGPulse.
Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach
Estimating the transferability of publicly available pretrained models to a target task has assumed an important place for transfer learning tasks in recent years. Existing efforts propose metrics that allow a user to choose one model from a pool of pre-trained models without having to fine-tune each model individually and identify one explicitly. With the growth in the number of available pre-trained models and the popularity of model ensembles, it also becomes essential to study the transferability of multiple-source models for a given target task. The few existing efforts study transferability in such multi-source ensemble settings using just the outputs of the classification layer and neglect possible domain or task mismatch. Moreover, they overlook the most important factor while selecting the source models, viz., the cohesiveness factor between them, which can impact the performance and confidence in the prediction of the ensemble. To address these gaps, we propose a novel Optimal tranSport-based suBmOdular tRaNsferability metric (OSBORN) to estimate the transferability of an ensemble of models to a downstream task. OSBORN collectively accounts for image domain difference, task difference, and cohesiveness of models in the ensemble to provide reliable estimates of transferability. We gauge the performance of OSBORN on both image classification and semantic segmentation tasks. Our setup includes 28 source datasets, 11 target datasets, 5 model architectures, and 2 pre-training methods. We benchmark our method against current state-of-the-art metrics MS-LEEP and E-LEEP, and outperform them consistently using the proposed approach.
A dataset and model for recognition of audiologically relevant environments for hearing aids: AHEAD-DS and YAMNet+
Scene recognition of audiologically relevant environments is important for hearing aids; however, it is challenging, in part because of the limitations of existing datasets. Datasets often lack public accessibility, completeness, or audiologically relevant labels, hindering systematic comparison of machine learning models. Deploying these models on resource-constrained edge devices presents another challenge. Our solution is two-fold: we leverage several open source datasets to create AHEAD-DS, a dataset designed for scene recognition of audiologically relevant environments, and introduce YAMNet+, a sound recognition model. AHEAD-DS aims to provide a standardised, publicly available dataset with consistent labels relevant to hearing aids, facilitating model comparison. YAMNet+ is designed for deployment on edge devices like smartphones connected to hearing devices, such as hearing aids and wireless earphones with hearing aid functionality; serving as a baseline model for sound-based scene recognition. YAMNet+ achieved a mean average precision of 0.83 and accuracy of 0.93 on the testing set of AHEAD-DS across fourteen categories of audiologically relevant environments. We found that applying transfer learning from the pretrained YAMNet model was essential. We demonstrated real-time sound-based scene recognition capabilities on edge devices by deploying YAMNet+ to an Android smartphone. Even with a Google Pixel 3 (a phone with modest specifications, released in 2018), the model processes audio with approximately 50ms of latency to load the model, and an approximate linear increase of 30ms per 1 second of audio. Our website and code https://github.com/Australian-Future-Hearing-Initiative .
SCALEFeedback: A Large-Scale Dataset of Synthetic Computer Science Assignments for LLM-generated Educational Feedback Research
Using LLMs to give educational feedback to students for their assignments has attracted much attention in the AI in Education field. Yet, there is currently no large-scale open-source dataset of student assignments that includes detailed assignment descriptions, rubrics, and student submissions across various courses. As a result, research on generalisable methodology for automatic generation of effective and responsible educational feedback remains limited. In the current study, we constructed a large-scale dataset of Synthetic Computer science Assignments for LLM-generated Educational Feedback research (SCALEFeedback). We proposed a Sophisticated Assignment Mimicry (SAM) framework to generate the synthetic dataset by one-to-one LLM-based imitation from real assignment descriptions, student submissions to produce their synthetic versions. Our open-source dataset contains 10,000 synthetic student submissions spanning 155 assignments across 59 university-level computer science courses. Our synthetic submissions achieved BERTScore F1 0.84, PCC of 0.62 for assignment marks and 0.85 for length, compared to the corresponding real-world assignment dataset, while ensuring perfect protection of student private information. All these results of our SAM framework outperformed results of a naive mimicry method baseline. The LLM-generated feedback for our synthetic assignments demonstrated the same level of effectiveness compared to that of real-world assignment dataset. Our research showed that one-to-one LLM imitation is a promising method for generating open-source synthetic educational datasets that preserve the original dataset's semantic meaning and student data distribution, while protecting student privacy and institutional copyright. SCALEFeedback enhances our ability to develop LLM-based generalisable methods for offering high-quality, automated educational feedback in a scalable way.
RealCam-Vid: High-resolution Video Dataset with Dynamic Scenes and Metric-scale Camera Movements
Recent advances in camera-controllable video generation have been constrained by the reliance on static-scene datasets with relative-scale camera annotations, such as RealEstate10K. While these datasets enable basic viewpoint control, they fail to capture dynamic scene interactions and lack metric-scale geometric consistency-critical for synthesizing realistic object motions and precise camera trajectories in complex environments. To bridge this gap, we introduce the first fully open-source, high-resolution dynamic-scene dataset with metric-scale camera annotations in https://github.com/ZGCTroy/RealCam-Vid.
EventDance: Unsupervised Source-free Cross-modal Adaptation for Event-based Object Recognition
In this paper, we make the first attempt at achieving the cross-modal (i.e., image-to-events) adaptation for event-based object recognition without accessing any labeled source image data owning to privacy and commercial issues. Tackling this novel problem is non-trivial due to the novelty of event cameras and the distinct modality gap between images and events. In particular, as only the source model is available, a hurdle is how to extract the knowledge from the source model by only using the unlabeled target event data while achieving knowledge transfer. To this end, we propose a novel framework, dubbed EventDance for this unsupervised source-free cross-modal adaptation problem. Importantly, inspired by event-to-video reconstruction methods, we propose a reconstruction-based modality bridging (RMB) module, which reconstructs intensity frames from events in a self-supervised manner. This makes it possible to build up the surrogate images to extract the knowledge (i.e., labels) from the source model. We then propose a multi-representation knowledge adaptation (MKA) module that transfers the knowledge to target models learning events with multiple representation types for fully exploring the spatiotemporal information of events. The two modules connecting the source and target models are mutually updated so as to achieve the best performance. Experiments on three benchmark datasets with two adaption settings show that EventDance is on par with prior methods utilizing the source data.
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
New methods for carbon dioxide removal are urgently needed to combat global climate change. Direct air capture (DAC) is an emerging technology to capture carbon dioxide directly from ambient air. Metal-organic frameworks (MOFs) have been widely studied as potentially customizable adsorbents for DAC. However, discovering promising MOF sorbents for DAC is challenging because of the vast chemical space to explore and the need to understand materials as functions of humidity and temperature. We explore a computational approach benefiting from recent innovations in machine learning (ML) and present a dataset named Open DAC 2023 (ODAC23) consisting of more than 38M density functional theory (DFT) calculations on more than 8,400 MOF materials containing adsorbed CO_2 and/or H_2O. ODAC23 is by far the largest dataset of MOF adsorption calculations at the DFT level of accuracy currently available. In addition to probing properties of adsorbed molecules, the dataset is a rich source of information on structural relaxation of MOFs, which will be useful in many contexts beyond specific applications for DAC. A large number of MOFs with promising properties for DAC are identified directly in ODAC23. We also trained state-of-the-art ML models on this dataset to approximate calculations at the DFT level. This open-source dataset and our initial ML models will provide an important baseline for future efforts to identify MOFs for a wide range of applications, including DAC.
HUI-Audio-Corpus-German: A high quality TTS dataset
The increasing availability of audio data on the internet lead to a multitude of datasets for development and training of text to speech applications, based on neural networks. Highly differing quality of voice, low sampling rates, lack of text normalization and disadvantageous alignment of audio samples to corresponding transcript sentences still limit the performance of deep neural networks trained on this task. Additionally, data resources in languages like German are still very limited. We introduce the "HUI-Audio-Corpus-German", a large, open-source dataset for TTS engines, created with a processing pipeline, which produces high quality audio to transcription alignments and decreases manual effort needed for creation.
Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation
Domain adaptive semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. However, existing methods primarily focus on directly learning qualified target features, making it challenging to guarantee their discrimination in the absence of target labels. This work provides a new perspective. We observe that the features learned with source data manage to keep categorically discriminative during training, thereby enabling us to implicitly learn adequate target representations by simply pulling target features close to source features for each category. To this end, we propose T2S-DA, which we interpret as a form of pulling Target to Source for Domain Adaptation, encouraging the model in learning similar cross-domain features. Also, considering the pixel categories are heavily imbalanced for segmentation datasets, we come up with a dynamic re-weighting strategy to help the model concentrate on those underperforming classes. Extensive experiments confirm that T2S-DA learns a more discriminative and generalizable representation, significantly surpassing the state-of-the-art. We further show that our method is quite qualified for the domain generalization task, verifying its domain-invariant property.
Source-free Depth for Object Pop-out
Depth cues are known to be useful for visual perception. However, direct measurement of depth is often impracticable. Fortunately, though, modern learning-based methods offer promising depth maps by inference in the wild. In this work, we adapt such depth inference models for object segmentation using the objects' "pop-out" prior in 3D. The "pop-out" is a simple composition prior that assumes objects reside on the background surface. Such compositional prior allows us to reason about objects in the 3D space. More specifically, we adapt the inferred depth maps such that objects can be localized using only 3D information. Such separation, however, requires knowledge about contact surface which we learn using the weak supervision of the segmentation mask. Our intermediate representation of contact surface, and thereby reasoning about objects purely in 3D, allows us to better transfer the depth knowledge into semantics. The proposed adaptation method uses only the depth model without needing the source data used for training, making the learning process efficient and practical. Our experiments on eight datasets of two challenging tasks, namely camouflaged object detection and salient object detection, consistently demonstrate the benefit of our method in terms of both performance and generalizability.
Heterogeneous LiDAR Dataset for Benchmarking Robust Localization in Diverse Degenerate Scenarios
The ability to estimate pose and generate maps using 3D LiDAR significantly enhances robotic system autonomy. However, existing open-source datasets lack representation of geometrically degenerate environments, limiting the development and benchmarking of robust LiDAR SLAM algorithms. To address this gap, we introduce GEODE, a comprehensive multi-LiDAR, multi-scenario dataset specifically designed to include real-world geometrically degenerate environments. GEODE comprises 64 trajectories spanning over 64 kilometers across seven diverse settings with varying degrees of degeneracy. The data was meticulously collected to promote the development of versatile algorithms by incorporating various LiDAR sensors, stereo cameras, IMUs, and diverse motion conditions. We evaluate state-of-the-art SLAM approaches using the GEODE dataset to highlight current limitations in LiDAR SLAM techniques. This extensive dataset will be publicly available at https://geode.github.io, supporting further advancements in LiDAR-based SLAM.
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled and unseen target domain, which is usually trained on data from both domains. Access to the source domain data at the adaptation stage, however, is often limited, due to data storage or privacy issues. To alleviate this, in this work, we target source free UDA for segmentation, and propose to adapt an ``off-the-shelf" segmentation model pre-trained in the source domain to the target domain, with an adaptive batch-wise normalization statistics adaptation framework. Specifically, the domain-specific low-order batch statistics, i.e., mean and variance, are gradually adapted with an exponential momentum decay scheme, while the consistency of domain shareable high-order batch statistics, i.e., scaling and shifting parameters, is explicitly enforced by our optimization objective. The transferability of each channel is adaptively measured first from which to balance the contribution of each channel. Moreover, the proposed source free UDA framework is orthogonal to unsupervised learning methods, e.g., self-entropy minimization, which can thus be simply added on top of our framework. Extensive experiments on the BraTS 2018 database show that our source free UDA framework outperformed existing source-relaxed UDA methods for the cross-subtype UDA segmentation task and yielded comparable results for the cross-modality UDA segmentation task, compared with a supervised UDA methods with the source data.
OpenThoughts: Data Recipes for Reasoning Models
Reasoning models have made rapid progress on many benchmarks involving math, code, and science. Yet, there are still many open questions about the best training recipes for reasoning since state-of-the-art models often rely on proprietary datasets with little to no public information available. To address this, the goal of the OpenThoughts project is to create open-source datasets for training reasoning models. After initial explorations, our OpenThoughts2-1M dataset led to OpenThinker2-32B, the first model trained on public reasoning data to match DeepSeek-R1-Distill-32B on standard reasoning benchmarks such as AIME and LiveCodeBench. We then improve our dataset further by systematically investigating each step of our data generation pipeline with 1,000+ controlled experiments, which led to OpenThoughts3. Scaling the pipeline to 1.2M examples and using QwQ-32B as teacher yields our OpenThinker3-7B model, which achieves state-of-the-art results: 53% on AIME 2025, 51% on LiveCodeBench 06/24-01/25, and 54% on GPQA Diamond. All of our datasets and models are available on https://openthoughts.ai.
SlimPajama-DC: Understanding Data Combinations for LLM Training
This paper aims to understand the impacts of various data combinations (e.g., web text, wikipedia, github, books) on the training of large language models using SlimPajama. SlimPajama is a rigorously deduplicated, multi-source dataset, which has been refined and further deduplicated to 627B tokens from the extensive 1.2T tokens RedPajama dataset contributed by Together. We've termed our research as SlimPajama-DC, an empirical analysis designed to uncover fundamental characteristics and best practices associated with employing SlimPajama in the training of large language models. During our research with SlimPajama, two pivotal observations emerged: (1) Global deduplication vs. local deduplication. We analyze and discuss how global (across different sources of datasets) and local (within the single source of dataset) deduplications affect the performance of trained models. (2) Proportions of high-quality/highly-deduplicated multi-source datasets in the combination. To study this, we construct six configurations of SlimPajama dataset and train individual ones using 1.3B Cerebras-GPT model with Alibi and SwiGLU. Our best configuration outperforms the 1.3B model trained on RedPajama using the same number of training tokens by a significant margin. All our 1.3B models are trained on Cerebras 16times CS-2 cluster with a total of 80 PFLOP/s in bf16 mixed precision. We further extend our discoveries (such as increasing data diversity is crucial after global deduplication) on a 7B model with large batch-size training. Our models and the separate SlimPajama-DC datasets are available at: https://huggingface.co/MBZUAI-LLM and https://huggingface.co/datasets/cerebras/SlimPajama-627B.
Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates
Expanding the linguistic diversity of instruct large language models (LLMs) is crucial for global accessibility but is often hindered by the reliance on costly specialized target language labeled data and catastrophic forgetting during adaptation. We tackle this challenge under a realistic, low-resource constraint: adapting instruct LLMs using only unlabeled target language data. We introduce Source-Shielded Updates (SSU), a selective parameter update strategy that proactively preserves source knowledge. Using a small set of source data and a parameter importance scoring method, SSU identifies parameters critical to maintaining source abilities. It then applies a column-wise freezing strategy to protect these parameters before adaptation. Experiments across five typologically diverse languages and 7B and 13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It reduces performance degradation on monolingual source tasks to just 3.4% (7B) and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full fine-tuning. SSU also achieves target-language performance highly competitive with full fine-tuning, outperforming it on all benchmarks for 7B models and the majority for 13B models.
StableSleep: Source-Free Test-Time Adaptation for Sleep Staging with Lightweight Safety Rails
Sleep staging models often degrade when deployed on patients with unseen physiology or recording conditions. We propose a streaming, source-free test-time adaptation (TTA) recipe that combines entropy minimization (Tent) with Batch-Norm statistic refresh and two safety rails: an entropy gate to pause adaptation on uncertain windows and an EMA-based reset to reel back drift. On Sleep-EDF Expanded, using single-lead EEG (Fpz-Cz, 100 Hz, 30s epochs; R&K to AASM mapping), we show consistent gains over a frozen baseline at seconds-level latency and minimal memory, reporting per-stage metrics and Cohen's k. The method is model-agnostic, requires no source data or patient calibration, and is practical for on-device or bedside use.
Info-Coevolution: An Efficient Framework for Data Model Coevolution
Machine learning relies heavily on data, yet the continuous growth of real-world data poses challenges for efficient dataset construction and training. A fundamental yet unsolved question is: given our current model and data, does a new data (sample/batch) need annotation/learning? Conventional approaches retain all available data, leading to non-optimal data and training efficiency. Active learning aims to reduce data redundancy by selecting a subset of samples to annotate, while it increases pipeline complexity and introduces bias. In this work, we propose Info-Coevolution, a novel framework that efficiently enables models and data to coevolve through online selective annotation with no bias. Leveraging task-specific models (and open-source models), it selectively annotates and integrates online and web data to improve datasets efficiently. For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32\% without performance loss. It is able to automatically give the saving ratio without tuning the ratio. It can further reduce the annotation ratio to 50\% with semi-supervised learning. We also explore retrieval-based dataset enhancement using unlabeled open-source data. Code is available at https://github.com/NUS-HPC-AI-Lab/Info-Coevolution/.
OpenLLM-RTL: Open Dataset and Benchmark for LLM-Aided Design RTL Generation
The automated generation of design RTL based on large language model (LLM) and natural language instructions has demonstrated great potential in agile circuit design. However, the lack of datasets and benchmarks in the public domain prevents the development and fair evaluation of LLM solutions. This paper highlights our latest advances in open datasets and benchmarks from three perspectives: (1) RTLLM 2.0, an updated benchmark assessing LLM's capability in design RTL generation. The benchmark is augmented to 50 hand-crafted designs. Each design provides the design description, test cases, and a correct RTL code. (2) AssertEval, an open-source benchmark assessing the LLM's assertion generation capabilities for RTL verification. The benchmark includes 18 designs, each providing specification, signal definition, and correct RTL code. (3) RTLCoder-Data, an extended open-source dataset with 80K instruction-code data samples. Moreover, we propose a new verification-based method to verify the functionality correctness of training data samples. Based on this technique, we further release a dataset with 7K verified high-quality samples. These three studies are integrated into one framework, providing off-the-shelf support for the development and evaluation of LLMs for RTL code generation and verification. Finally, extensive experiments indicate that LLM performance can be boosted by enlarging the training dataset, improving data quality, and improving the training scheme.
FRACTAL: An Ultra-Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse Landscapes
Mapping agencies are increasingly adopting Aerial Lidar Scanning (ALS) as a new tool to monitor territory and support public policies. Processing ALS data at scale requires efficient point classification methods that perform well over highly diverse territories. To evaluate them, researchers need large annotated Lidar datasets, however, current Lidar benchmark datasets have restricted scope and often cover a single urban area. To bridge this data gap, we present the FRench ALS Clouds from TArgeted Landscapes (FRACTAL) dataset: an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high-quality labels for 7 semantic classes and spanning 250 km^2. FRACTAL is built upon France's nationwide open Lidar data. It achieves spatial and semantic diversity via a sampling scheme that explicitly concentrates rare classes and challenging landscapes from five French regions. It should support the development of 3D deep learning approaches for large-scale land monitoring. We describe the nature of the source data, the sampling workflow, the content of the resulting dataset, and provide an initial evaluation of segmentation performance using a performant 3D neural architecture.
Transcending Domains through Text-to-Image Diffusion: A Source-Free Approach to Domain Adaptation
Domain Adaptation (DA) is a method for enhancing a model's performance on a target domain with inadequate annotated data by applying the information the model has acquired from a related source domain with sufficient labeled data. The escalating enforcement of data-privacy regulations like HIPAA, COPPA, FERPA, etc. have sparked a heightened interest in adapting models to novel domains while circumventing the need for direct access to the source data, a problem known as Source-Free Domain Adaptation (SFDA). In this paper, we propose a novel framework for SFDA that generates source data using a text-to-image diffusion model trained on the target domain samples. Our method starts by training a text-to-image diffusion model on the labeled target domain samples, which is then fine-tuned using the pre-trained source model to generate samples close to the source data. Finally, we use Domain Adaptation techniques to align the artificially generated source data with the target domain data, resulting in significant performance improvements of the model on the target domain. Through extensive comparison against several baselines on the standard Office-31, Office-Home, and VisDA benchmarks, we demonstrate the effectiveness of our approach for the SFDA task.
Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation
Contemporary domain adaptation offers a practical solution for achieving cross-domain transfer of semantic segmentation between labeled source data and unlabeled target data. These solutions have gained significant popularity; however, they require the model to be retrained when the test environment changes. This can result in unbearable costs in certain applications due to the time-consuming training process and concerns regarding data privacy. One-shot domain adaptation methods attempt to overcome these challenges by transferring the pre-trained source model to the target domain using only one target data. Despite this, the referring style transfer module still faces issues with computation cost and over-fitting problems. To address this problem, we propose a novel framework called Informative Data Mining (IDM) that enables efficient one-shot domain adaptation for semantic segmentation. Specifically, IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training. We then perform a model adaptation method using these selected samples, which includes patch-wise mixing and prototype-based information maximization to update the model. This approach effectively enhances adaptation and mitigates the overfitting problem. In general, we provide empirical evidence of the effectiveness and efficiency of IDM. Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7\%/55.4\% on the GTA5/SYNTHIA to Cityscapes adaptation tasks, respectively. The code will be released at https://github.com/yxiwang/IDM.
Rethinking Data Distillation: Do Not Overlook Calibration
Neural networks trained on distilled data often produce over-confident output and require correction by calibration methods. Existing calibration methods such as temperature scaling and mixup work well for networks trained on original large-scale data. However, we find that these methods fail to calibrate networks trained on data distilled from large source datasets. In this paper, we show that distilled data lead to networks that are not calibratable due to (i) a more concentrated distribution of the maximum logits and (ii) the loss of information that is semantically meaningful but unrelated to classification tasks. To address this problem, we propose Masked Temperature Scaling (MTS) and Masked Distillation Training (MDT) which mitigate the limitations of distilled data and achieve better calibration results while maintaining the efficiency of dataset distillation.
Source-Free Domain Adaptation for Image Segmentation
Domain adaptation (DA) has drawn high interest for its capacity to adapt a model trained on labeled source data to perform well on unlabeled or weakly labeled target data from a different domain. Most common DA techniques require concurrent access to the input images of both the source and target domains. However, in practice, privacy concerns often impede the availability of source images in the adaptation phase. This is a very frequent DA scenario in medical imaging, where, for instance, the source and target images could come from different clinical sites. We introduce a source-free domain adaptation for image segmentation. Our formulation is based on minimizing a label-free entropy loss defined over target-domain data, which we further guide with a domain-invariant prior on the segmentation regions. Many priors can be derived from anatomical information. Here, a class ratio prior is estimated from anatomical knowledge and integrated in the form of a Kullback Leibler (KL) divergence in our overall loss function. Furthermore, we motivate our overall loss with an interesting link to maximizing the mutual information between the target images and their label predictions. We show the effectiveness of our prior aware entropy minimization in a variety of domain-adaptation scenarios, with different modalities and applications, including spine, prostate, and cardiac segmentation. Our method yields comparable results to several state of the art adaptation techniques, despite having access to much less information, as the source images are entirely absent in our adaptation phase. Our straightforward adaptation strategy uses only one network, contrary to popular adversarial techniques, which are not applicable to a source-free DA setting. Our framework can be readily used in a breadth of segmentation problems, and our code is publicly available: https://github.com/mathilde-b/SFDA
TeleAntiFraud-28k: A Audio-Text Slow-Thinking Dataset for Telecom Fraud Detection
The detection of telecom fraud faces significant challenges due to the lack of high-quality multimodal training data that integrates audio signals with reasoning-oriented textual analysis. To address this gap, we present TeleAntiFraud-28k, the first open-source audio-text slow-thinking dataset specifically designed for automated telecom fraud analysis. Our dataset is constructed through three strategies: (1) Privacy-preserved text-truth sample generation using automatically speech recognition (ASR)-transcribed call recordings (with anonymized original audio), ensuring real-world consistency through text-to-speech (TTS) model regeneration; (2) Semantic enhancement via large language model (LLM)-based self-instruction sampling on authentic ASR outputs to expand scenario coverage; (3) Multi-agent adversarial synthesis that simulates emerging fraud tactics through predefined communication scenarios and fraud typologies. The generated dataset contains 28,511 rigorously processed speech-text pairs, complete with detailed annotations for fraud reasoning. The dataset is divided into three tasks: scenario classification, fraud detection, fraud type classification. Furthermore, we construct TeleAntiFraud-Bench, a standardized evaluation benchmark comprising proportionally sampled instances from the dataset, to facilitate systematic testing of model performance on telecom fraud detection tasks. We also contribute a production-optimized supervised fine-tuning (SFT) model trained on hybrid real/synthetic data, while open-sourcing the data processing framework to enable community-driven dataset expansion. This work establishes a foundational framework for multimodal anti-fraud research while addressing critical challenges in data privacy and scenario diversity. The project will be released at https://github.com/JimmyMa99/TeleAntiFraud.
Zyda: A 1.3T Dataset for Open Language Modeling
The size of large language models (LLMs) has scaled dramatically in recent years and their computational and data requirements have surged correspondingly. State-of-the-art language models, even at relatively smaller sizes, typically require training on at least a trillion tokens. This rapid advancement has eclipsed the growth of open-source datasets available for large-scale LLM pretraining. In this paper, we introduce Zyda (Zyphra Dataset), a dataset under a permissive license comprising 1.3 trillion tokens, assembled by integrating several major respected open-source datasets into a single, high-quality corpus. We apply rigorous filtering and deduplication processes, both within and across datasets, to maintain and enhance the quality derived from the original datasets. Our evaluations show that Zyda not only competes favorably with other open datasets like Dolma, FineWeb, and RefinedWeb, but also substantially improves the performance of comparable models from the Pythia suite. Our rigorous data processing methods significantly enhance Zyda's effectiveness, outperforming even the best of its constituent datasets when used independently.
HLStrans: Dataset for LLM-Driven C-to-HLS Hardware Code Synthesis
High-level synthesis (HLS) enables software developers to describe and implement hardware at a higher level of abstraction by using C/C++ instead of traditional hardware description languages to automatically generate FPGA-ready designs. However, generating HLS code significantly differs from standard C/C++: it disallows certain coding idioms, relies on specialized libraries, and critically requires fine-grained transformations and the insertion of optimization directives (pragmas) to achieve high performance. Large language models (LLMs) have shown promise in automating such transformations, yet existing open-source datasets lack sufficient complexity and optimization diversity. To address this gap, we introduce the HLStrans dataset, a comprehensive collection of 137 distinct real word programs, each annotated with a variety of C-to-HLS transformations that yield over 23K labeled design variants. These include a broad spectrum of pragmas and code-level optimizations. We benchmark state-of-the-art LLMs on this dataset to evaluate their ability to generate synthesizable, high-performance HLS code. As part of an ongoing effort, we plan to expand the HLStrans dataset in both scale and program variety, further empowering research at the intersection of AI and hardware synthesis.
InternSpatial: A Comprehensive Dataset for Spatial Reasoning in Vision-Language Models
Recent benchmarks and datasets have been proposed to improve spatial reasoning in vision-language models (VLMs), yet existing open resources remain limited in scale, visual diversity, and instruction expressiveness. In this work, we introduce InternSpatial, the largest open-source dataset for spatial reasoning in VLMs, along with InternSpatial-Bench, a corresponding evaluation benchmark designed to assess spatial understanding under diverse instruction formats. InternSpatial comprises 12 million QA pairs spanning both single-view and multi-view settings, drawn from diverse visual environments and supporting 19 instruction formats that reflect varied query styles. For evaluation, we propose InternSpatial-Bench for single-view tasks and expand multi-view reasoning by introducing a novel rotation angle prediction task that has not been explored in prior work. Experimental results show that models trained on InternSpatial achieve 12.1% improvement on InternSpatial-Bench and 10.7% on VSI-Bench, while maintaining strong performance on general-purpose benchmarks. We hope these resources will support the development of spatially capable VLMs in practical applications such as robotics and embodied AI.
ViLAaD: Enhancing "Attracting and Dispersing'' Source-Free Domain Adaptation with Vision-and-Language Model
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to a target dataset from a different domain without access to the source data. Conventional SFDA methods are limited by the information encoded in the pre-trained source model and the unlabeled target data. Recently, approaches leveraging auxiliary resources have emerged, yet remain in their early stages, offering ample opportunities for research. In this work, we propose a novel method that incorporates auxiliary information by extending an existing SFDA framework using Vision-and-Language (ViL) models. Specifically, we build upon Attracting and Dispersing (AaD), a widely adopted SFDA technique, and generalize its core principle to naturally integrate ViL models as a powerful initialization for target adaptation. Our approach, called ViL-enhanced AaD (ViLAaD), preserves the simplicity and flexibility of the AaD framework, while leveraging ViL models to significantly boost adaptation performance. We validate our method through experiments using various ViL models, demonstrating that ViLAaD consistently outperforms both AaD and zero-shot classification by ViL models, especially when both the source model and ViL model provide strong initializations. Moreover, the flexibility of ViLAaD allows it to be seamlessly incorporated into an alternating optimization framework with ViL prompt tuning and extended with additional objectives for target model adaptation. Extensive experiments on four SFDA benchmarks show that this enhanced version, ViLAaD++, achieves state-of-the-art performance across multiple SFDA scenarios, including Closed-set SFDA, Partial-set SFDA, and Open-set SFDA.
AhmedML: High-Fidelity Computational Fluid Dynamics Dataset for Incompressible, Low-Speed Bluff Body Aerodynamics
The development of Machine Learning (ML) methods for Computational Fluid Dynamics (CFD) is currently limited by the lack of openly available training data. This paper presents a new open-source dataset comprising of high fidelity, scale-resolving CFD simulations of 500 geometric variations of the Ahmed Car Body - a simplified car-like shape that exhibits many of the flow topologies that are present on bluff bodies such as road vehicles. The dataset contains simulation results that exhibit a broad set of fundamental flow physics such as geometry and pressure-induced flow separation as well as 3D vortical structures. Each variation of the Ahmed car body were run using a high-fidelity, time-accurate, hybrid Reynolds-Averaged Navier-Stokes (RANS) - Large-Eddy Simulation (LES) turbulence modelling approach using the open-source CFD code OpenFOAM. The dataset contains boundary, volume, geometry, and time-averaged forces/moments in widely used open-source formats. In addition, the OpenFOAM case setup is provided so that others can reproduce or extend the dataset. This represents to the authors knowledge, the first open-source large-scale dataset using high-fidelity CFD methods for the widely used Ahmed car body that is available to freely download with a permissive license (CC-BY-SA).
VCD: A Video Conferencing Dataset for Video Compression
Commonly used datasets for evaluating video codecs are all very high quality and not representative of video typically used in video conferencing scenarios. We present the Video Conferencing Dataset (VCD) for evaluating video codecs for real-time communication, the first such dataset focused on video conferencing. VCD includes a wide variety of camera qualities and spatial and temporal information. It includes both desktop and mobile scenarios and two types of video background processing. We report the compression efficiency of H.264, H.265, H.266, and AV1 in low-delay settings on VCD and compare it with the non-video conferencing datasets UVC, MLC-JVC, and HEVC. The results show the source quality and the scenarios have a significant effect on the compression efficiency of all the codecs. VCD enables the evaluation and tuning of codecs for this important scenario. The VCD is publicly available as an open-source dataset at https://github.com/microsoft/VCD.
DiaTrend: A dataset from advanced diabetes technology to enable development of novel analytic solutions
Objective digital data is scarce yet needed in many domains to enable research that can transform the standard of healthcare. While data from consumer-grade wearables and smartphones is more accessible, there is critical need for similar data from clinical-grade devices used by patients with a diagnosed condition. The prevalence of wearable medical devices in the diabetes domain sets the stage for unique research and development within this field and beyond. However, the scarcity of open-source datasets presents a major barrier to progress. To facilitate broader research on diabetes-relevant problems and accelerate development of robust computational solutions, we provide the DiaTrend dataset. The DiaTrend dataset is composed of intensive longitudinal data from wearable medical devices, including a total of 27,561 days of continuous glucose monitor data and 8,220 days of insulin pump data from 54 patients with diabetes. This dataset is useful for developing novel analytic solutions that can reduce the disease burden for people living with diabetes and increase knowledge on chronic condition management in outpatient settings.
AVASpeech-SMAD: A Strongly Labelled Speech and Music Activity Detection Dataset with Label Co-Occurrence
We propose a dataset, AVASpeech-SMAD, to assist speech and music activity detection research. With frame-level music labels, the proposed dataset extends the existing AVASpeech dataset, which originally consists of 45 hours of audio and speech activity labels. To the best of our knowledge, the proposed AVASpeech-SMAD is the first open-source dataset that features strong polyphonic labels for both music and speech. The dataset was manually annotated and verified via an iterative cross-checking process. A simple automatic examination was also implemented to further improve the quality of the labels. Evaluation results from two state-of-the-art SMAD systems are also provided as a benchmark for future reference.
ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech
Automatic speaker verification (ASV) is one of the most natural and convenient means of biometric person recognition. Unfortunately, just like all other biometric systems, ASV is vulnerable to spoofing, also referred to as "presentation attacks." These vulnerabilities are generally unacceptable and call for spoofing countermeasures or "presentation attack detection" systems. In addition to impersonation, ASV systems are vulnerable to replay, speech synthesis, and voice conversion attacks. The ASVspoof 2019 edition is the first to consider all three spoofing attack types within a single challenge. While they originate from the same source database and same underlying protocol, they are explored in two specific use case scenarios. Spoofing attacks within a logical access (LA) scenario are generated with the latest speech synthesis and voice conversion technologies, including state-of-the-art neural acoustic and waveform model techniques. Replay spoofing attacks within a physical access (PA) scenario are generated through carefully controlled simulations that support much more revealing analysis than possible previously. Also new to the 2019 edition is the use of the tandem detection cost function metric, which reflects the impact of spoofing and countermeasures on the reliability of a fixed ASV system. This paper describes the database design, protocol, spoofing attack implementations, and baseline ASV and countermeasure results. It also describes a human assessment on spoofed data in logical access. It was demonstrated that the spoofing data in the ASVspoof 2019 database have varied degrees of perceived quality and similarity to the target speakers, including spoofed data that cannot be differentiated from bona-fide utterances even by human subjects.
Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing
High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the left-side templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We perform a comprehensive analysis of the extracted data and select 300K high-quality instances. To compare Magpie data with other public instruction datasets, we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that in some tasks, models fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through supervised fine-tuning (SFT) and subsequent feedback learning. We also show that using Magpie solely for SFT can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.
SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond
Recent advances such as OpenAI-o1 and DeepSeek R1 have demonstrated the potential of Reinforcement Learning (RL) to enhance reasoning abilities in Large Language Models (LLMs). While open-source replication efforts have primarily focused on mathematical and coding domains, methods and resources for developing general reasoning capabilities remain underexplored. This gap is partly due to the challenge of collecting diverse and verifiable reasoning data suitable for RL. We hypothesize that logical reasoning is critical for developing general reasoning capabilities, as logic forms a fundamental building block of reasoning. In this work, we present SynLogic, a data synthesis framework and dataset that generates diverse logical reasoning data at scale, encompassing 35 diverse logical reasoning tasks. The SynLogic approach enables controlled synthesis of data with adjustable difficulty and quantity. Importantly, all examples can be verified by simple rules, making them ideally suited for RL with verifiable rewards. In our experiments, we validate the effectiveness of RL training on the SynLogic dataset based on 7B and 32B models. SynLogic leads to state-of-the-art logical reasoning performance among open-source datasets, surpassing DeepSeek-R1-Distill-Qwen-32B by 6 points on BBEH. Furthermore, mixing SynLogic data with mathematical and coding tasks improves the training efficiency of these domains and significantly enhances reasoning generalization. Notably, our mixed training model outperforms DeepSeek-R1-Zero-Qwen-32B across multiple benchmarks. These findings position SynLogic as a valuable resource for advancing the broader reasoning capabilities of LLMs. We open-source both the data synthesis pipeline and the SynLogic dataset at https://github.com/MiniMax-AI/SynLogic.
Training Data for Large Language Model
In 2022, with the release of ChatGPT, large-scale language models gained widespread attention. ChatGPT not only surpassed previous models in terms of parameters and the scale of its pretraining corpus but also achieved revolutionary performance improvements through fine-tuning on a vast amount of high-quality, human-annotated data. This progress has led enterprises and research institutions to recognize that building smarter and more powerful models relies on rich and high-quality datasets. Consequently, the construction and optimization of datasets have become a critical focus in the field of artificial intelligence. This paper summarizes the current state of pretraining and fine-tuning data for training large-scale language models, covering aspects such as data scale, collection methods, data types and characteristics, processing workflows, and provides an overview of available open-source datasets.
Enhancing Assamese NLP Capabilities: Introducing a Centralized Dataset Repository
This paper introduces a centralized, open-source dataset repository designed to advance NLP and NMT for Assamese, a low-resource language. The repository, available at GitHub, supports various tasks like sentiment analysis, named entity recognition, and machine translation by providing both pre-training and fine-tuning corpora. We review existing datasets, highlighting the need for standardized resources in Assamese NLP, and discuss potential applications in AI-driven research, such as LLMs, OCR, and chatbots. While promising, challenges like data scarcity and linguistic diversity remain. The repository aims to foster collaboration and innovation, promoting Assamese language research in the digital age.
Data-Prep-Kit: getting your data ready for LLM application development
Data preparation is the first and a very important step towards any Large Language Model (LLM) development. This paper introduces an easy-to-use, extensible, and scale-flexible open-source data preparation toolkit called Data Prep Kit (DPK). DPK is architected and designed to enable users to scale their data preparation to their needs. With DPK they can prepare data on a local machine or effortlessly scale to run on a cluster with thousands of CPU Cores. DPK comes with a highly scalable, yet extensible set of modules that transform natural language and code data. If the user needs additional transforms, they can be easily developed using extensive DPK support for transform creation. These modules can be used independently or pipelined to perform a series of operations. In this paper, we describe DPK architecture and show its performance from a small scale to a very large number of CPUs. The modules from DPK have been used for the preparation of Granite Models [1] [2]. We believe DPK is a valuable contribution to the AI community to easily prepare data to enhance the performance of their LLM models or to fine-tune models with Retrieval-Augmented Generation (RAG).
Enhancing Source-Free Domain Adaptive Object Detection with Low-confidence Pseudo Label Distillation
Source-Free domain adaptive Object Detection (SFOD) is a promising strategy for deploying trained detectors to new, unlabeled domains without accessing source data, addressing significant concerns around data privacy and efficiency. Most SFOD methods leverage a Mean-Teacher (MT) self-training paradigm relying heavily on High-confidence Pseudo Labels (HPL). However, these HPL often overlook small instances that undergo significant appearance changes with domain shifts. Additionally, HPL ignore instances with low confidence due to the scarcity of training samples, resulting in biased adaptation toward familiar instances from the source domain. To address this limitation, we introduce the Low-confidence Pseudo Label Distillation (LPLD) loss within the Mean-Teacher based SFOD framework. This novel approach is designed to leverage the proposals from Region Proposal Network (RPN), which potentially encompasses hard-to-detect objects in unfamiliar domains. Initially, we extract HPL using a standard pseudo-labeling technique and mine a set of Low-confidence Pseudo Labels (LPL) from proposals generated by RPN, leaving those that do not overlap significantly with HPL. These LPL are further refined by leveraging class-relation information and reducing the effect of inherent noise for the LPLD loss calculation. Furthermore, we use feature distance to adaptively weight the LPLD loss to focus on LPL containing a larger foreground area. Our method outperforms previous SFOD methods on four cross-domain object detection benchmarks. Extensive experiments demonstrate that our LPLD loss leads to effective adaptation by reducing false negatives and facilitating the use of domain-invariant knowledge from the source model. Code is available at https://github.com/junia3/LPLD.
Source-free Domain Adaptive Human Pose Estimation
Human Pose Estimation (HPE) is widely used in various fields, including motion analysis, healthcare, and virtual reality. However, the great expenses of labeled real-world datasets present a significant challenge for HPE. To overcome this, one approach is to train HPE models on synthetic datasets and then perform domain adaptation (DA) on real-world data. Unfortunately, existing DA methods for HPE neglect data privacy and security by using both source and target data in the adaptation process. To this end, we propose a new task, named source-free domain adaptive HPE, which aims to address the challenges of cross-domain learning of HPE without access to source data during the adaptation process. We further propose a novel framework that consists of three models: source model, intermediate model, and target model, which explores the task from both source-protect and target-relevant perspectives. The source-protect module preserves source information more effectively while resisting noise, and the target-relevant module reduces the sparsity of spatial representations by building a novel spatial probability space, and pose-specific contrastive learning and information maximization are proposed on the basis of this space. Comprehensive experiments on several domain adaptive HPE benchmarks show that the proposed method outperforms existing approaches by a considerable margin. The codes are available at https://github.com/davidpengucf/SFDAHPE.
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions that may cause performance drops. In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data. We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples for which model confidence exceeds that threshold. ATC outperforms previous methods across several model architectures, types of distribution shifts (e.g., due to synthetic corruptions, dataset reproduction, or novel subpopulations), and datasets (Wilds, ImageNet, Breeds, CIFAR, and MNIST). In our experiments, ATC estimates target performance 2-4times more accurately than prior methods. We also explore the theoretical foundations of the problem, proving that, in general, identifying the accuracy is just as hard as identifying the optimal predictor and thus, the efficacy of any method rests upon (perhaps unstated) assumptions on the nature of the shift. Finally, analyzing our method on some toy distributions, we provide insights concerning when it works. Code is available at https://github.com/saurabhgarg1996/ATC_code/.
Source-free Domain Adaptation via Avatar Prototype Generation and Adaptation
We study a practical domain adaptation task, called source-free unsupervised domain adaptation (UDA) problem, in which we cannot access source domain data due to data privacy issues but only a pre-trained source model and unlabeled target data are available. This task, however, is very difficult due to one key challenge: the lack of source data and target domain labels makes model adaptation very challenging. To address this, we propose to mine the hidden knowledge in the source model and exploit it to generate source avatar prototypes (i.e., representative features for each source class) as well as target pseudo labels for domain alignment. To this end, we propose a Contrastive Prototype Generation and Adaptation (CPGA) method. Specifically, CPGA consists of two stages: (1) prototype generation: by exploring the classification boundary information of the source model, we train a prototype generator to generate avatar prototypes via contrastive learning. (2) prototype adaptation: based on the generated source prototypes and target pseudo labels, we develop a new robust contrastive prototype adaptation strategy to align each pseudo-labeled target data to the corresponding source prototypes. Extensive experiments on three UDA benchmark datasets demonstrate the effectiveness and superiority of the proposed method.
PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents
Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.
PDMX: A Large-Scale Public Domain MusicXML Dataset for Symbolic Music Processing
The recent explosion of generative AI-Music systems has raised numerous concerns over data copyright, licensing music from musicians, and the conflict between open-source AI and large prestige companies. Such issues highlight the need for publicly available, copyright-free musical data, in which there is a large shortage, particularly for symbolic music data. To alleviate this issue, we present PDMX: a large-scale open-source dataset of over 250K public domain MusicXML scores collected from the score-sharing forum MuseScore, making it the largest available copyright-free symbolic music dataset to our knowledge. PDMX additionally includes a wealth of both tag and user interaction metadata, allowing us to efficiently analyze the dataset and filter for high quality user-generated scores. Given the additional metadata afforded by our data collection process, we conduct multitrack music generation experiments evaluating how different representative subsets of PDMX lead to different behaviors in downstream models, and how user-rating statistics can be used as an effective measure of data quality. Examples can be found at https://pnlong.github.io/PDMX.demo/.
PyraNet: A Multi-Layered Hierarchical Dataset for Verilog
Recently, there has been a growing interest in leveraging Large Language Models for Verilog code generation. However, the current quality of the generated Verilog code remains suboptimal. This is largely due to the absence of well-defined, well-organized datasets with high-quality samples, as well as a lack of innovative fine-tuning methods and models specifically trained on Verilog. In this paper, we introduce a novel open-source dataset and a corresponding fine-tuning technique, which utilizes a multi-layered structure that we refer to as PyraNet. Our experiments demonstrate that employing the proposed dataset and fine-tuning approach leads to a more accurate fine-tuned model, producing syntactically and functionally correct Verilog code. The evaluation results show improvements by up-to 32.6% in comparison to the CodeLlama-7B baseline model and up-to 16.7% in comparison to the state-of-the-art models using VerilogEval evaluation platform.
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased.
DrivAerML: High-Fidelity Computational Fluid Dynamics Dataset for Road-Car External Aerodynamics
Machine Learning (ML) has the potential to revolutionise the field of automotive aerodynamics, enabling split-second flow predictions early in the design process. However, the lack of open-source training data for realistic road cars, using high-fidelity CFD methods, represents a barrier to their development. To address this, a high-fidelity open-source (CC-BY-SA) public dataset for automotive aerodynamics has been generated, based on 500 parametrically morphed variants of the widely-used DrivAer notchback generic vehicle. Mesh generation and scale-resolving CFD was executed using consistent and validated automatic workflows representative of the industrial state-of-the-art. Geometries and rich aerodynamic data are published in open-source formats. To our knowledge, this is the first large, public-domain dataset for complex automotive configurations generated using high-fidelity CFD.
The Unreasonable Effectiveness of Large Language-Vision Models for Source-free Video Domain Adaptation
Source-Free Video Unsupervised Domain Adaptation (SFVUDA) methods consists in the task of adapting an action recognition model, trained on a labelled source dataset, to an unlabelled target dataset, without accessing the actual source data. Previous approaches have attempted to address SFVUDA by leveraging self-supervision (e.g., enforcing temporal consistency) derived from the target data itself. In this work we take an orthogonal approach by exploiting "web-supervision" from Large Language-Vision Models (LLVMs), driven by the rationale that LLVMs contain rich world prior, which is surprisingly robust to domain-shift. We showcase the unreasonable effectiveness of integrating LLVMs for SFVUDA by devising an intuitive and parameter efficient method, which we name as Domain Adaptation with Large Language-Vision models (DALL-V), that distills the world prior and complementary source model information into a student network tailored for the target. Despite the simplicity, DALL-V achieves significant improvement over state-of-the-art SFVUDA methods.
Confidence Score for Source-Free Unsupervised Domain Adaptation
Source-free unsupervised domain adaptation (SFUDA) aims to obtain high performance in the unlabeled target domain using the pre-trained source model, not the source data. Existing SFUDA methods assign the same importance to all target samples, which is vulnerable to incorrect pseudo-labels. To differentiate between sample importance, in this study, we propose a novel sample-wise confidence score, the Joint Model-Data Structure (JMDS) score for SFUDA. Unlike existing confidence scores that use only one of the source or target domain knowledge, the JMDS score uses both knowledge. We then propose a Confidence score Weighting Adaptation using the JMDS (CoWA-JMDS) framework for SFUDA. CoWA-JMDS consists of the JMDS scores as sample weights and weight Mixup that is our proposed variant of Mixup. Weight Mixup promotes the model make more use of the target domain knowledge. The experimental results show that the JMDS score outperforms the existing confidence scores. Moreover, CoWA-JMDS achieves state-of-the-art performance on various SFUDA scenarios: closed, open, and partial-set scenarios.
MI-Fuse: Label Fusion for Unsupervised Domain Adaptation with Closed-Source Large-Audio Language Model
Large audio-language models (LALMs) show strong zero-shot ability on speech tasks, suggesting promise for speech emotion recognition (SER). However, SER in real-world deployments often fails under domain mismatch, where source data are unavailable and powerful LALMs are accessible only through an API. We ask: given only unlabeled target-domain audio and an API-only LALM, can a student model be adapted to outperform the LALM in the target domain? To this end, we propose MI-Fuse, a denoised label fusion framework that supplements the LALM with a source-domain trained SER classifier as an auxiliary teacher. The framework draws multiple stochastic predictions from both teachers, weights their mean distributions by mutual-information-based uncertainty, and stabilizes training with an exponential moving average teacher. Experiments across three public emotion datasets and six cross-domain transfers show consistent gains, with the student surpassing the LALM and outperforming the strongest baseline by 3.9%. This approach strengthens emotion-aware speech systems without sharing source data, enabling realistic adaptation.
Cross-Domain Evaluation of Transformer-Based Vulnerability Detection on Open & Industry Data
Deep learning solutions for vulnerability detection proposed in academic research are not always accessible to developers, and their applicability in industrial settings is rarely addressed. Transferring such technologies from academia to industry presents challenges related to trustworthiness, legacy systems, limited digital literacy, and the gap between academic and industrial expertise. For deep learning in particular, performance and integration into existing workflows are additional concerns. In this work, we first evaluate the performance of CodeBERT for detecting vulnerable functions in industrial and open-source software. We analyse its cross-domain generalisation when fine-tuned on open-source data and tested on industrial data, and vice versa, also exploring strategies for handling class imbalance. Based on these results, we develop AI-DO(Automating vulnerability detection Integration for Developers' Operations), a Continuous Integration-Continuous Deployment (CI/CD)-integrated recommender system that uses fine-tuned CodeBERT to detect and localise vulnerabilities during code review without disrupting workflows. Finally, we assess the tool's perceived usefulness through a survey with the company's IT professionals. Our results show that models trained on industrial data detect vulnerabilities accurately within the same domain but lose performance on open-source code, while a deep learner fine-tuned on open data, with appropriate undersampling techniques, improves the detection of vulnerabilities.
Context Aware Grounded Teacher for Source Free Object Detection
We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.
WanJuan: A Comprehensive Multimodal Dataset for Advancing English and Chinese Large Models
The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale. All data can be accessed at https://opendatalab.org.cn/WanJuan1.0.
Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
Industrial Non-Intrusive Load Monitoring (NILM) is limited by the scarcity of high-quality datasets and the complex variability of industrial energy consumption patterns. To address data scarcity and privacy issues, we introduce the Synthetic Industrial Dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations. SIDED includes three types of industrial facilities across three different geographic locations, capturing diverse appliance behaviors, weather conditions, and load profiles. We also propose the Appliance-Modulated Data Augmentation (AMDA) method, a computationally efficient technique that enhances NILM model generalization by intelligently scaling appliance power contributions based on their relative impact. We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems. Specifically, in our out-of-sample scenarios, models trained with AMDA achieved a Normalized Disaggregation Error of 0.093, outperforming models trained without data augmentation (0.451) and those trained with random data augmentation (0.290). Data distribution analyses confirm that AMDA effectively aligns training and test data distributions, enhancing model generalization.
IterSelectTune: An Iterative Training Framework for Efficient Instruction-Tuning Data Selection
As large language models (LLMs) continue to advance, instruction tuning has become critical for improving their ability to generate accurate and contextually appropriate responses. Although numerous instruction-tuning datasets have been developed to enhance LLM performance, selecting high-quality instruction data from large source datasets typically demands significant human effort. In this work, we introduce IterSelectTune, an efficient, cost-effective iterative training policy for selecting high-quality instruction data with no human involvement and limited reliance on GPT-4. By fine-tuning on approximately 20\% of the source data, our method consistently outperforms models fine-tuned on the full dataset across multiple benchmarks and public test datasets. These results highlight the effectiveness of our approach in enhancing LLM performance while reducing the computational resources required for instruction tuning.
Emotion-Aware Contrastive Adaptation Network for Source-Free Cross-Corpus Speech Emotion Recognition
Cross-corpus speech emotion recognition (SER) aims to transfer emotional knowledge from a labeled source corpus to an unlabeled corpus. However, prior methods require access to source data during adaptation, which is unattainable in real-life scenarios due to data privacy protection concerns. This paper tackles a more practical task, namely source-free cross-corpus SER, where a pre-trained source model is adapted to the target domain without access to source data. To address the problem, we propose a novel method called emotion-aware contrastive adaptation network (ECAN). The core idea is to capture local neighborhood information between samples while considering the global class-level adaptation. Specifically, we propose a nearest neighbor contrastive learning to promote local emotion consistency among features of highly similar samples. Furthermore, relying solely on nearest neighborhoods may lead to ambiguous boundaries between clusters. Thus, we incorporate supervised contrastive learning to encourage greater separation between clusters representing different emotions, thereby facilitating improved class-level adaptation. Extensive experiments indicate that our proposed ECAN significantly outperforms state-of-the-art methods under the source-free cross-corpus SER setting on several speech emotion corpora.
SFHarmony: Source Free Domain Adaptation for Distributed Neuroimaging Analysis
To represent the biological variability of clinical neuroimaging populations, it is vital to be able to combine data across scanners and studies. However, different MRI scanners produce images with different characteristics, resulting in a domain shift known as the `harmonisation problem'. Additionally, neuroimaging data is inherently personal in nature, leading to data privacy concerns when sharing the data. To overcome these barriers, we propose an Unsupervised Source-Free Domain Adaptation (SFDA) method, SFHarmony. Through modelling the imaging features as a Gaussian Mixture Model and minimising an adapted Bhattacharyya distance between the source and target features, we can create a model that performs well for the target data whilst having a shared feature representation across the data domains, without needing access to the source data for adaptation or target labels. We demonstrate the performance of our method on simulated and real domain shifts, showing that the approach is applicable to classification, segmentation and regression tasks, requiring no changes to the algorithm. Our method outperforms existing SFDA approaches across a range of realistic data scenarios, demonstrating the potential utility of our approach for MRI harmonisation and general SFDA problems. Our code is available at https://github.com/nkdinsdale/SFHarmony.
Customs Import Declaration Datasets
Given the huge volume of cross-border flows, effective and efficient control of trade becomes more crucial in protecting people and society from illicit trade. However, limited accessibility of the transaction-level trade datasets hinders the progress of open research, and lots of customs administrations have not benefited from the recent progress in data-based risk management. In this paper, we introduce an import declaration dataset to facilitate the collaboration between domain experts in customs administrations and researchers from diverse domains, such as data science and machine learning. The dataset contains 54,000 artificially generated trades with 22 key attributes, and it is synthesized with conditional tabular GAN while maintaining correlated features. Synthetic data has several advantages. First, releasing the dataset is free from restrictions that do not allow disclosing the original import data. The fabrication step minimizes the possible identity risk which may exist in trade statistics. Second, the published data follow a similar distribution to the source data so that it can be used in various downstream tasks. Hence, our dataset can be used as a benchmark for testing the performance of any classification algorithm. With the provision of data and its generation process, we open baseline codes for fraud detection tasks, as we empirically show that more advanced algorithms can better detect fraud.
Back to the Source: Diffusion-Driven Test-Time Adaptation
Test-time adaptation harnesses test inputs to improve the accuracy of a model trained on source data when tested on shifted target data. Existing methods update the source model by (re-)training on each target domain. While effective, re-training is sensitive to the amount and order of the data and the hyperparameters for optimization. We instead update the target data, by projecting all test inputs toward the source domain with a generative diffusion model. Our diffusion-driven adaptation method, DDA, shares its models for classification and generation across all domains. Both models are trained on the source domain, then fixed during testing. We augment diffusion with image guidance and self-ensembling to automatically decide how much to adapt. Input adaptation by DDA is more robust than prior model adaptation approaches across a variety of corruptions, architectures, and data regimes on the ImageNet-C benchmark. With its input-wise updates, DDA succeeds where model adaptation degrades on too little data in small batches, dependent data in non-uniform order, or mixed data with multiple corruptions.
FIRE: A Dataset for Feedback Integration and Refinement Evaluation of Multimodal Models
Vision language models (VLMs) have achieved impressive progress in diverse applications, becoming a prevalent research direction. In this paper, we build FIRE, a feedback-refinement dataset, consisting of 1.1M multi-turn conversations that are derived from 27 source datasets, empowering VLMs to spontaneously refine their responses based on user feedback across diverse tasks. To scale up the data collection, FIRE is collected in two components: FIRE-100K and FIRE-1M, where FIRE-100K is generated by GPT-4V, and FIRE-1M is freely generated via models trained on FIRE-100K. Then, we build FIRE-Bench, a benchmark to comprehensively evaluate the feedback-refining capability of VLMs, which contains 11K feedback-refinement conversations as the test data, two evaluation settings, and a model to provide feedback for VLMs. We develop the FIRE-LLaVA model by fine-tuning LLaVA on FIRE-100K and FIRE-1M, which shows remarkable feedback-refining capability on FIRE-Bench and outperforms untrained VLMs by 50%, making more efficient user-agent interactions and underscoring the significance of the FIRE dataset.
A New Dataset and Methodology for Malicious URL Classification
Malicious URL (Uniform Resource Locator) classification is a pivotal aspect of Cybersecurity, offering defense against web-based threats. Despite deep learning's promise in this area, its advancement is hindered by two main challenges: the scarcity of comprehensive, open-source datasets and the limitations of existing models, which either lack real-time capabilities or exhibit suboptimal performance. In order to address these gaps, we introduce a novel, multi-class dataset for malicious URL classification, distinguishing between benign, phishing and malicious URLs, named DeepURLBench. The data has been rigorously cleansed and structured, providing a superior alternative to existing datasets. Notably, the multi-class approach enhances the performance of deep learning models, as compared to a standard binary classification approach. Additionally, we propose improvements to string-based URL classifiers, applying these enhancements to URLNet. Key among these is the integration of DNS-derived features, which enrich the model's capabilities and lead to notable performance gains while preserving real-time runtime efficiency-achieving an effective balance for cybersecurity applications.
SUG: Single-dataset Unified Generalization for 3D Point Cloud Classification
Although Domain Generalization (DG) problem has been fast-growing in the 2D image tasks, its exploration on 3D point cloud data is still insufficient and challenged by more complex and uncertain cross-domain variances with uneven inter-class modality distribution. In this paper, different from previous 2D DG works, we focus on the 3D DG problem and propose a Single-dataset Unified Generalization (SUG) framework that only leverages a single source dataset to alleviate the unforeseen domain differences faced by a well-trained source model. Specifically, we first design a Multi-grained Sub-domain Alignment (MSA) method, which can constrain the learned representations to be domain-agnostic and discriminative, by performing a multi-grained feature alignment process between the splitted sub-domains from the single source dataset. Then, a Sample-level Domain-aware Attention (SDA) strategy is presented, which can selectively enhance easy-to-adapt samples from different sub-domains according to the sample-level inter-domain distance to avoid the negative transfer. Experiments demonstrate that our SUG can boost the generalization ability for unseen target domains, even outperforming the existing unsupervised domain adaptation methods that have to access extensive target domain data. Our code is available at https://github.com/SiyuanHuang95/SUG.
SC2EGSet: StarCraft II Esport Replay and Game-state Dataset
As a relatively new form of sport, esports offers unparalleled data availability. Despite the vast amounts of data that are generated by game engines, it can be challenging to extract them and verify their integrity for the purposes of practical and scientific use. Our work aims to open esports to a broader scientific community by supplying raw and pre-processed files from StarCraft II esports tournaments. These files can be used in statistical and machine learning modeling tasks and related to various laboratory-based measurements (e.g., behavioral tests, brain imaging). We have gathered publicly available game-engine generated "replays" of tournament matches and performed data extraction and cleanup using a low-level application programming interface (API) parser library. Additionally, we open-sourced and published all the custom tools that were developed in the process of creating our dataset. These tools include PyTorch and PyTorch Lightning API abstractions to load and model the data. Our dataset contains replays from major and premiere StarCraft II tournaments since 2016. To prepare the dataset, we processed 55 tournament "replaypacks" that contained 17930 files with game-state information. Based on initial investigation of available StarCraft II datasets, we observed that our dataset is the largest publicly available source of StarCraft II esports data upon its publication. Analysis of the extracted data holds promise for further Artificial Intelligence (AI), Machine Learning (ML), psychological, Human-Computer Interaction (HCI), and sports-related studies in a variety of supervised and self-supervised tasks.
