Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeQuantum Thermalization via Travelling Waves
Isolated quantum many-body systems which thermalize under their own dynamics are expected to act as their own thermal baths, thereby bringing their local subsystems to thermal equilibrium. Here we show that the infinite-dimensional limit of a quantum lattice model, as described by Dynamical Mean-Field theory (DMFT), provides a natural framework to understand this self-consistent thermalization process. Using the Fermi-Hubbard model as working example, we demonstrate that the emergence of a self-consistent bath thermalising the system is characterized by a sharp thermalization front, moving balistically and separating the initial condition from the long-time thermal fixed point. We characterize the full DMFT dynamics through an effective temperature for which we derive a travelling-wave equation of the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) type. This equation allows to predict the asymptotic shape of the front and its velocity, which match perfectly the full DMFT numerics. Our results provide a new angle to understand the onset of quantum thermalisation in closed isolated systems.
Excitonic phases in a spatially separated electron-hole ladder model
We obtain the numerical ground state of a one-dimensional ladder model with the upper and lower chains occupied by spatially-separated electrons and holes, respectively. Under charge neutrality, we find that the excitonic bound states are always formed, i.e., no finite regime of decoupled electron and hole plasma exists at zero temperature. The system either behaves like a bosonic liquid or a bosonic crystal depending on the inter-chain attractive and intra-chain repulsive interaction strengths. We also provide the detailed excitonic phase diagrams in the intra- and inter-chain interaction parameters, with and without disorder. We also comment on the corresponding two-dimensional electron-hole bilayer exciton condensation.
Non-equilibrium correlation dynamics in the one-dimensional Fermi-Hubbard model: A testbed for the two-particle reduced density matrix theory
We explore the non-equilibrium dynamics of a one-dimensional Fermi-Hubbard system as a sensitive testbed for the capabilities of the time-dependent two-particle reduced density matrix (TD2RDM) theory to accurately describe time-dependent correlated systems. We follow the time evolution of the out-of-equilibrium finite-size Fermi-Hubbard model initialized by a quench over extended periods of time. By comparison with exact calculations for small systems and with matrix product state (MPS) calculations for larger systems but limited to short times, we demonstrate that the TD2RDM theory can accurately account for the non-equilibrium dynamics in the regime from weak to moderately strong inter-particle correlations. We find that the quality of the approximate reconstruction of the three-particle cumulant (or correlation) required for the closure of the equations of motion for the reduced density matrix is key to the accuracy of the numerical TD2RDM results. We identify the size of the dynamically induced three-particle correlations and the amplitude of cross correlations between the two- and three-particle cumulants as critical parameters that control the accuracy of the TD2RDM theory when current state-of-the art reconstruction functionals are employed.
Electronic properties, correlated topology and Green's function zeros
There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations.
Simulating the two-dimensional t-J model at finite doping with neural quantum states
Simulating large, strongly interacting fermionic systems remains a major challenge for existing numerical methods. In this work, we present, for the first time, the application of neural quantum states - specifically, hidden fermion determinant states (HFDS) - to simulate the strongly interacting limit of the Fermi-Hubbard model, namely the t-J model, across the entire doping regime. We demonstrate that HFDS achieve energies competitive with matrix product states (MPS) on lattices as large as 8 times 8 sites while using several orders of magnitude fewer parameters, suggesting the potential for efficient application to even larger system sizes. This remarkable efficiency enables us to probe low-energy physics across the full doping range, providing new insights into the competition between kinetic and magnetic interactions and the nature of emergent quasiparticles. Starting from the low-doping regime, where magnetic polarons dominate the low energy physics, we track their evolution with increasing doping through analyses of spin and polaron correlation functions. Our findings demonstrate the potential of determinant-based neural quantum states with inherent fermionic sign structure, opening the way for simulating large-scale fermionic systems at any particle filling.
A simple model for strange metallic behavior
A refined semi-holographic non-Fermi liquid model, in which carrier electrons hybridize with operators of a holographic critical sector, has been proposed recently for strange metallic behavior. The model, consistently with effective theory approach, has two couplings whose ratio is related to the doping. We explain the origin of the linear-in-T resistivity and strange metallic behavior as a consequence of the emergence of a universal form of the spectral function which is independent of the model parameters when the ratio of the two couplings take optimal values determined only by the critical exponent. This universal form fits well with photoemission data of copper oxide samples for under/optimal/over-doping with a fixed exponent over a wide range of temperatures. We further obtain a refined Planckian dissipation scenario in which the scattering time τ= f cdot hbar /(k_B T), with f being O(1) at strong coupling, but O(10) at weak coupling.
Out of equilibrium Phase Diagram of the Quantum Random Energy Model
In this paper we study the out-of-equilibrium phase diagram of the quantum version of Derrida's Random Energy Model, which is the simplest model of mean-field spin glasses. We interpret its corresponding quantum dynamics in Fock space as a one-particle problem in very high dimension to which we apply different theoretical methods tailored for high-dimensional lattices: the Forward-Scattering Approximation, a mapping to the Rosenzweig-Porter model, and the cavity method. Our results indicate the existence of two transition lines and three distinct dynamical phases: a completely many-body localized phase at low energy, a fully ergodic phase at high energy, and a multifractal "bad metal" phase at intermediate energy. In the latter, eigenfunctions occupy a diverging volume, yet an exponentially vanishing fraction of the total Hilbert space. We discuss the limitations of our approximations and the relationship with previous studies.
Enhancing T_{c} in a composite superconductor/metal bilayer system: a dynamical cluster approximation study
It has been proposed that the superconducting transition temperature T_{c} of an unconventional superconductor with a large pairing scale but strong phase fluctuations can be enhanced by coupling it to a metal. However, the general efficacy of this approach across different parameter regimes remains an open question. Using the dynamical cluster approximation, we study this question in a system composed of an attractive Hubbard layer in the intermediate coupling regime, where the magnitude of the attractive Coulomb interaction |U| is slightly larger than the bandwidth W, hybridized with a noninteracting metallic layer. We find that while the superconducting transition becomes more mean-field-like with increasing interlayer hopping, the superconducting transition temperature T_{c} exhibits a nonmonotonic dependence on the strength of the hybridization t_{perp}. This behavior arises from a reduction of the effective pairing interaction in the correlated layer that out-competes the growth in the intrinsic pair-field susceptibility induced by the coupling to the metallic layer. We find that the largest T_{c} inferred here for the composite system is below the maximum value currently estimated for the isolated negative-U Hubbard model.
Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions
We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the U(1) degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous U(1) system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.
Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach
The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.
Strongly-Interacting Bosons in a Two-Dimensional Quasicrystal Lattice
Quasicrystals exhibit exotic properties inherited from the self-similarity of their long-range ordered, yet aperiodic, structure. The recent realization of optical quasicrystal lattices paves the way to the study of correlated Bose fluids in such structures, but the regime of strong interactions remains largely unexplored, both theoretically and experimentally. Here, we determine the quantum phase diagram of two-dimensional correlated bosons in an eightfold quasicrystal potential. Using large-scale quantum Monte Carlo calculations, we demonstrate a superfluid-to-Bose glass transition and determine the critical line. Moreover, we show that strong interactions stabilize Mott insulator phases, some of which have spontaneously broken eightfold symmetry. Our results are directly relevant to current generation experiments and, in particular, drive prospects to the observation of the still elusive Bose glass phase in two dimensions and exotic Mott phases.
Replica symmetry breaking in dense neural networks
Understanding the glassy nature of neural networks is pivotal both for theoretical and computational advances in Machine Learning and Theoretical Artificial Intelligence. Keeping the focus on dense associative Hebbian neural networks, the purpose of this paper is two-fold: at first we develop rigorous mathematical approaches to address properly a statistical mechanical picture of the phenomenon of {\em replica symmetry breaking} (RSB) in these networks, then -- deepening results stemmed via these routes -- we aim to inspect the {\em glassiness} that they hide. In particular, regarding the methodology, we provide two techniques: the former is an adaptation of the transport PDE to the case, while the latter is an extension of Guerra's interpolation breakthrough. Beyond coherence among the results, either in replica symmetric and in the one-step replica symmetry breaking level of description, we prove the Gardner's picture and we identify the maximal storage capacity by a ground-state analysis in the Baldi-Venkatesh high-storage regime. In the second part of the paper we investigate the glassy structure of these networks: in contrast with the replica symmetric scenario (RS), RSB actually stabilizes the spin-glass phase. We report huge differences w.r.t. the standard pairwise Hopfield limit: in particular, it is known that it is possible to express the free energy of the Hopfield neural network as a linear combination of the free energies of an hard spin glass (i.e. the Sherrington-Kirkpatrick model) and a soft spin glass (the Gaussian or "spherical" model). This is no longer true when interactions are more than pairwise (whatever the level of description, RS or RSB): for dense networks solely the free energy of the hard spin glass survives, proving a huge diversity in the underlying glassiness of associative neural networks.
From black holes to strange metals
Since the mid-eighties there has been an accumulation of metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory. Examples of these so-called non-Fermi liquids include the strange metal phase of high transition temperature cuprates, and heavy fermion systems near a quantum phase transition. We report on a class of non-Fermi liquids discovered using gauge/gravity duality. The low energy behavior of these non-Fermi liquids is shown to be governed by a nontrivial infrared (IR) fixed point which exhibits nonanalytic scaling behavior only in the temporal direction. Within this class we find examples whose single-particle spectral function and transport behavior resemble those of strange metals. In particular, the contribution from the Fermi surface to the conductivity is inversely proportional to the temperature. In our treatment these properties can be understood as being controlled by the scaling dimension of the fermion operator in the emergent IR fixed point.
From non-ergodic eigenvectors to local resolvent statistics and back: a random matrix perspective
We study the statistics of the local resolvent and non-ergodic properties of eigenvectors for a generalised Rosenzweig-Porter Ntimes N random matrix model, undergoing two transitions separated by a delocalised non-ergodic phase. Interpreting the model as the combination of on-site random energies {a_i} and a structurally disordered hopping, we found that each eigenstate is delocalised over N^{2-gamma} sites close in energy |a_j-a_i|leq N^{1-gamma} in agreement with Kravtsov et al, arXiv:1508.01714. Our other main result, obtained combining a recurrence relation for the resolvent matrix with insights from Dyson's Brownian motion, is to show that the properties of the non-ergodic delocalised phase can be probed studying the statistics of the local resolvent in a non-standard scaling limit.
Effective-medium theory for elastic systems with correlated disorder
Correlated structures are intimately connected to intriguing phenomena exhibited by a variety of disordered systems such as soft colloidal gels, bio-polymer networks and colloidal suspensions near a shear jamming transition. The universal critical behavior of these systems near the onset of rigidity is often described by traditional approaches as the coherent potential approximation - a versatile version of effective-medium theory that nevertheless have hitherto lacked key ingredients to describe disorder spatial correlations. Here we propose a multi-purpose generalization of the coherent potential approximation to describe the mechanical behavior of elastic networks with spatially-correlated disorder. We apply our theory to a simple rigidity-percolation model for colloidal gels and study the effects of correlations in both the critical point and the overall scaling behavior. We find that although the presence of spatial correlations (mimicking attractive interactions of gels) shifts the critical packing fraction to lower values, suggesting sub-isostatic behavior, the critical coordination number of the associated network remains isostatic. More importantly, we discuss how our theory can be employed to describe a large variety of systems with spatially-correlated disorder.
SO(N) singlet-projection model on the pyrochlore lattice
We present an extensive quantum Monte Carlo study of a nearest-neighbor, singlet-projection model on the pyrochlore lattice that exhibits SO(N) symmetry and is sign-problem-free. We find that in contrast to the previously studied two-dimensional variations of this model that harbor critical points between their ground state phases, the non-bipartite pyrochlore lattice in three spatial dimensions appears to exhibit a first-order transition between a magnetically-ordered phase and some, as yet uncharacterized, paramagnetic phase. We also observe that the magnetically-ordered phase survives to a relatively large value of N=8, and that it is gone for N=9.
Towards strange metallic holography
We initiate a holographic model building approach to `strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarised branes, and from a gravitating charged Fermi gas. We also identify general features of renormalisation group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z geq 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.
Repelling Random Walks
We present a novel quasi-Monte Carlo mechanism to improve graph-based sampling, coined repelling random walks. By inducing correlations between the trajectories of an interacting ensemble such that their marginal transition probabilities are unmodified, we are able to explore the graph more efficiently, improving the concentration of statistical estimators whilst leaving them unbiased. The mechanism has a trivial drop-in implementation. We showcase the effectiveness of repelling random walks in a range of settings including estimation of graph kernels, the PageRank vector and graphlet concentrations. We provide detailed experimental evaluation and robust theoretical guarantees. To our knowledge, repelling random walks constitute the first rigorously studied quasi-Monte Carlo scheme correlating the directions of walkers on a graph, inviting new research in this exciting nascent domain.
Ferromagnetic ordering in mazelike stripe liquid of a dipolar six-state clock model
We present a comprehensive numerical study of a six-state clock model with a long-range dipolar type interaction. This model is motivated by the ferroelectric orders in the multiferroic hexagonal manganites. At low temperatures, trimerization of local atomic structures leads to six distinct but energetically degenerate structural distortion, which can be modeled by a six-state clock model. Moreover, the atomic displacements in the trimerized state further produce a local electric polarization whose sign depends on whether the clock variable is even or odd. These induced electric dipoles, which can be modeled by emergent Ising degrees of freedom, interact with each other via long-range dipolar interactions. Extensive Monte Carlo simulations are carried out to investigate low temperature phases resulting from the competing interactions. Upon lowering temperature, the system undergoes two Berezinskii-Kosterlitz-Thouless (BKT) transitions, characteristic of the standard six-state clock model in two dimensions. The dipolar interaction between emergent Ising spins induces a first-order transition into a ground state characterized by a three-fold degenerate stripe order. The intermediate phase between the discontinuous and the second BKT transition corresponds to a maze-like hexagonal liquid with short-range stripe ordering. Moreover, this intermediate phase also exhibits an unusual ferromagnetic order with two adjacent clock variables occupying the two types of stripes of the labyrinthine pattern.
AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments
Transitions among quantum Hall plateaux share a suite of remarkable experimental features, such as semi-circle laws and duality relations, whose accuracy and robustness are difficult to explain directly in terms of the detailed dynamics of the microscopic electrons. They would naturally follow if the low-energy transport properties were governed by an emergent discrete duality group relating the different plateaux, but no explicit examples of interacting systems having such a group are known. Recent progress using the AdS/CFT correspondence has identified examples with similar duality groups, but without the DC ohmic conductivity characteristic of quantum Hall experiments. We use this to propose a simple holographic model for low-energy quantum Hall systems, with a nonzero DC conductivity that automatically exhibits all of the observed consequences of duality, including the existence of the plateaux and the semi-circle transitions between them. The model can be regarded as a strongly coupled analog of the old `composite boson' picture of quantum Hall systems. Non-universal features of the model can be used to test whether it describes actual materials, and we comment on some of these in our proposed model.
Classical Glasses, Black Holes, and Strange Quantum Liquids
From the dynamics of a broad class of classical mean-field glass models one may obtain a quantum model with finite zero-temperature entropy, a quantum transition at zero temperature, and a time-reparametrization (quasi-)invariance in the dynamical equations for correlations. The low eigenvalue spectrum of the resulting quantum model is directly related to the structure and exploration of metastable states in the landscape of the original classical glass model. This mapping reveals deep connections between classical glasses and the properties of SYK-like models.
Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays
Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently.
Scaling of free cumulants in closed system-bath setups
The Eigenstate Thermalization Hypothesis (ETH) has been established as a cornerstone for understanding thermalization in quantum many-body systems. Recently, there has been growing interest in the full ETH, which extends the framework of the conventional ETH and postulates a smooth function to describe the multi-point correlations among matrix elements. Within this framework, free cumulants play a central role, and most previous studies have primarily focused on closed systems. In this paper, we extend the analysis to a system-bath setup, considering both an idealized case with a random-matrix bath and a more realistic scenario where the bath is modeled as a defect Ising chain. In both cases, we uncover a universal scaling of microcanonical free cumulants of system observables with respect to the interaction strength. Furthermore we establish a connection between this scaling behavior and the thermalization dynamics of the thermal free cumulants of corresponding observables.
Variational Formulation of Local Molecular Field Theory
In this note, we show that the Local Molecular Field theory of Weeks et. al. can be re-derived as an extremum problem for an approximate Helmholtz free energy. Using the resulting free energy as a classical, fluid density functional yields an implicit solvent method identical in form to the Molecular Density Functional theory of Borgis et. al., but with an explicit formula for the 'ideal' free energy term. This new expression for the ideal free energy term can be computed from all-atom molecular dynamics of a solvent with only short-range interactions. The key hypothesis required to make the theory valid is that all smooth (and hence long-range) energy functions obey Gaussian statistics. This is essentially a random phase approximation for perturbations from a short-range only, 'reference,' fluid. This single hypothesis is enough to prove that the self-consistent LMF procedure minimizes a novel density functional whose 'ideal' free energy is the molecular system under a specific, reference Hamiltonian, as opposed to the non-interacting gas of conventional density functionals. Implementation of this new functional into existing software should be straightforward and robust.
Condensed matter and AdS/CFT
I review two classes of strong coupling problems in condensed matter physics, and describe insights gained by application of the AdS/CFT correspondence. The first class concerns non-zero temperature dynamics and transport in the vicinity of quantum critical points described by relativistic field theories. I describe how relativistic structures arise in models of physical interest, present results for their quantum critical crossover functions and magneto-thermoelectric hydrodynamics. The second class concerns symmetry breaking transitions of two-dimensional systems in the presence of gapless electronic excitations at isolated points or along lines (i.e. Fermi surfaces) in the Brillouin zone. I describe the scaling structure of a recent theory of the Ising-nematic transition in metals, and discuss its possible connection to theories of Fermi surfaces obtained from simple AdS duals.
Repulsive Score Distillation for Diverse Sampling of Diffusion Models
Score distillation sampling has been pivotal for integrating diffusion models into generation of complex visuals. Despite impressive results it suffers from mode collapse and lack of diversity. To cope with this challenge, we leverage the gradient flow interpretation of score distillation to propose Repulsive Score Distillation (RSD). In particular, we propose a variational framework based on repulsion of an ensemble of particles that promotes diversity. Using a variational approximation that incorporates a coupling among particles, the repulsion appears as a simple regularization that allows interaction of particles based on their relative pairwise similarity, measured e.g., via radial basis kernels. We design RSD for both unconstrained and constrained sampling scenarios. For constrained sampling we focus on inverse problems in the latent space that leads to an augmented variational formulation, that strikes a good balance between compute, quality and diversity. Our extensive experiments for text-to-image generation, and inverse problems demonstrate that RSD achieves a superior trade-off between diversity and quality compared with state-of-the-art alternatives.
Zero Sound in Strange Metallic Holography
One way to model the strange metal phase of certain materials is via a holographic description in terms of probe D-branes in a Lifshitz spacetime, characterised by a dynamical exponent z. The background geometry is dual to a strongly-interacting quantum critical theory while the probe D-branes are dual to a finite density of charge carriers that can exhibit the characteristic properties of strange metals. We compute holographically the low-frequency and low-momentum form of the charge density and current retarded Green's functions in these systems for massless charge carriers. The results reveal a quasi-particle excitation when z<2, which in analogy with Landau Fermi liquids we call zero sound. The real part of the dispersion relation depends on momentum k linearly, while the imaginary part goes as k^2/z. When z is greater than or equal to 2 the zero sound is not a well-defined quasi-particle. We also compute the frequency-dependent conductivity in arbitrary spacetime dimensions. Using that as a measure of the charge current spectral function, we find that the zero sound appears only when the spectral function consists of a single delta function at zero frequency.
Enhancing Diffusion-Based Sampling with Molecular Collective Variables
Diffusion-based samplers learn to sample complex, high-dimensional distributions using energies or log densities alone, without training data. Yet, they remain impractical for molecular sampling because they are often slower than molecular dynamics and miss thermodynamically relevant modes. Inspired by enhanced sampling, we encourage exploration by introducing a sequential bias along bespoke, information-rich, low-dimensional projections of atomic coordinates known as collective variables (CVs). We introduce a repulsive potential centered on the CVs from recent samples, which pushes future samples towards novel CV regions and effectively increases the temperature in the projected space. Our resulting method improves efficiency, mode discovery, enables the estimation of free energy differences, and retains independent sampling from the approximate Boltzmann distribution via reweighting by the bias. On standard peptide conformational sampling benchmarks, the method recovers diverse conformational states and accurate free energy profiles. We are the first to demonstrate reactive sampling using a diffusion-based sampler, capturing bond breaking and formation with universal interatomic potentials at near-first-principles accuracy. The approach resolves reactive energy landscapes at a fraction of the wall-clock time of standard sampling methods, advancing diffusion-based sampling towards practical use in molecular sciences.
Gravity Duals of Lifshitz-like Fixed Points
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t to lambda^z t, x to lambda x; we focus on the case with z=2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.
Strong pairing and symmetric pseudogap metal in double Kondo lattice model: from nickelate superconductor to tetralayer optical lattice
In this work, we propose and study a double Kondo lattice model which hosts robust superconductivity. The system consists of two identical Kondo lattice model, each with Kondo coupling J_K within each layer, while the localized spin moments are coupled together via an inter-layer on-site antiferromagnetic spin coupling J_perp. We consider the strong J_perp limit, wherein the local moments tend to form rung singlets and are thus gapped. However, the Kondo coupling J_K transmits the inter-layer entanglement between the local moments to the itinerant electrons. Consequently, the itinerant electrons experience a strong inter-layer antiferromangetic spin coupling and form strong inter-layer pairing, which is confirmed through numerical simulation in one dimensional system. Experimentally, the J_K rightarrow -infty limits of the model describes the recently found bilayer nickelate La_3Ni_2O_7, while the J_K>0 side can be realized in tetralayer optical lattice of cold atoms. Two extreme limits, J_K rightarrow -infty and J_K rightarrow +infty limit are shown to be simplified to a bilayer type II t-J model and a bilayer one-orbital t-J model, respectively. Thus, our double Kondo lattice model offers a unified framework for nickelate superconductor and tetralayer optical lattice quantum simulator upon changing the sign of J_K. We highlight both the qualitative similarity and the quantitative difference in the two sides of J_K. Finally, we discuss the possibility of a symmetric Kondo breakdown transition in the model with a symmetric pseudogap metal corresponding to the usual heavy Fermi liquid.
Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets
Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance computing resources. Finding exact numerical solutions to these interacting fermion problems has exponential cost, while Monte Carlo methods are plagued by the fermionic sign problem. These limitations of classical computational methods have made even few-atom molecular structures problems of practical interest for medium-sized quantum computers. Yet, thus far experimental implementations have been restricted to molecules involving only Period I elements. Here, we demonstrate the experimental optimization of up to six-qubit Hamiltonian problems with over a hundred Pauli terms, determining the ground state energy for molecules of increasing size, up to BeH2. This is enabled by a hardware-efficient variational quantum eigensolver with trial states specifically tailored to the available interactions in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We further demonstrate the flexibility of our approach by applying the technique to a problem of quantum magnetism. Across all studied problems, we find agreement between experiment and numerical simulations with a noisy model of the device. These results help elucidate the requirements for scaling the method to larger systems, and aim at bridging the gap between problems at the forefront of high-performance computing and their implementation on quantum hardware.
Holographic quantum criticality from multi-trace deformations
We explore the consequences of multi-trace deformations in applications of gauge-gravity duality to condensed matter physics. We find that they introduce a powerful new "knob" that can implement spontaneous symmetry breaking, and can be used to construct a new type of holographic superconductor. This knob can be tuned to drive the critical temperature to zero, leading to a new quantum critical point. We calculate nontrivial critical exponents, and show that fluctuations of the order parameter are `locally' quantum critical in the disordered phase. Most notably the dynamical critical exponent is determined by the dimension of an operator at the critical point. We argue that the results are robust against quantum corrections and discuss various generalizations.
Fast and Accurate Prediction of Material Properties with Three-Body Tight-Binding Model for the Periodic Table
Parameterized tight-binding models fit to first principles calculations can provide an efficient and accurate quantum mechanical method for predicting properties of molecules and solids. However, well-tested parameter sets are generally only available for a limited number of atom combinations, making routine use of this method difficult. Furthermore, most previous models consider only simple two-body interactions, which limits accuracy. To tackle these challenges, we develop a density functional theory database of nearly one million materials, which we use to fit a universal set of tight-binding parameters for 65 elements and their binary combinations. We include both two-body and three-body effective interaction terms in our model, plus self-consistent charge transfer, enabling our model to work for metallic, covalent, and ionic bonds with the same parameter set. To ensure predictive power, we adopt a learning framework where we repeatedly test the model on new low energy crystal structures and then add them to the fitting dataset, iterating until predictions improve. We distribute the materials database and tools developed in this work publicly.
Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models
Symmetries such as gauge invariance and anyonic symmetry play a crucial role in quantum many-body physics. We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states, including a wide range of architectures such as Transformer and recurrent neural network (RNN), for quantum lattice models. These networks can be efficiently sampled and explicitly obey gauge symmetries or anyonic constraint. We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes, and the X-cube fracton model. We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models. We simulate the dynamics and the ground states of the quantum link model of U(1) lattice gauge theory, obtain the phase diagram for the 2D Z_2 gauge theory, determine the phase transition and the central charge of the SU(2)_3 anyonic chain, and also compute the ground state energy of the SU(2) invariant Heisenberg spin chain. Our approach provides powerful tools for exploring condensed matter physics, high energy physics and quantum information science.
Quantum Spin Glass in the Two-Dimensional Disordered Heisenberg Model via Foundation Neural-Network Quantum States
We investigate the two-dimensional frustrated quantum Heisenberg model with bond disorder on nearest-neighbor couplings using the recently introduced Foundation Neural-Network Quantum States framework, which enables accurate and efficient computation of disorder-averaged observables with a single variational optimization. Simulations on large lattices reveal an extended region of the phase diagram where long-range magnetic order vanishes in the thermodynamic limit, while the overlap order parameter, which characterizes quantum spin glass states, remains finite. These findings, supported by a semiclassical analysis based on a large-spin expansion, provide compelling evidence that the spin glass phase is stable against quantum fluctuations, unlike the classical case where it disappears at any finite temperature.
Photoemission "experiments" on holographic superconductors
We study the effects of a superconducting condensate on holographic Fermi surfaces. With a suitable coupling between the fermion and the condensate, there are stable quasiparticles with a gap. We find some similarities with the phenomenology of the cuprates: in systems whose normal state is a non-Fermi liquid with no stable quasiparticles, a stable quasiparticle peak appears in the condensed phase.
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity
The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}.
Single replica spin-glass phase detection using field variation and machine learning
The Sherrington-Kirkpatrick spin-glass model used the replica symmetry method to find the phase transition of the system. In 1979-1980, Parisi proposed a solution based on replica symmetry breaking (RSB), which allowed him to identify the underlying phases of complex systems such as spin-glasses. Regardless of the method used for detection, the intrinsic phase of a system exists whether or not replicas are considered. We introduce a single replica method of spin-glass phase detection using the field's variation experienced by each spin in a system configuration. This method focuses on a single replica with quenched random couplings. Each spin inevitably observes a different field from the others. Our results show that the mean and variance of fields named "Spontaneous Configurational Field" experienced by spins are suitable indicators to explore different ferromagnetic, paramagnetic, and mixed phases. To classify different phases of the system with defined indicators we have developed an algorithm based on machine learning to analyze the desired samples.
Metallic AdS/CFT
We use the AdS/CFT correspondence to compute the conductivity of massive N=2 hypermultiplet fields at finite baryon number density in an N=4 SU(N_c) super-Yang-Mills theory plasma in the large N_c, large 't Hooft coupling limit. The finite baryon density provides charge carriers analogous to electrons in a metal. An external electric field then induces a finite current which we determine directly. Our result for the conductivity is good for all values of the mass, external field and density, modulo statements about the yet-incomplete phase diagram. In the appropriate limits it agrees with known results obtained from analyzing small fluctuations around equilibrium. For large mass, where we expect a good quasi-particle description, we compute the drag force on the charge carriers and find that the answer is unchanged from the zero density case. Our method easily generalizes to a wide class of systems of probe branes in various backgrounds.
Towards A Universally Transferable Acceleration Method for Density Functional Theory
Recently, sophisticated deep learning-based approaches have been developed for generating efficient initial guesses to accelerate the convergence of density functional theory (DFT) calculations. While the actual initial guesses are often density matrices (DM), quantities that can convert into density matrices also qualify as alternative forms of initial guesses. Hence, existing works mostly rely on the prediction of the Hamiltonian matrix for obtaining high-quality initial guesses. However, the Hamiltonian matrix is both numerically difficult to predict and intrinsically non-transferable, hindering the application of such models in real scenarios. In light of this, we propose a method that constructs DFT initial guesses by predicting the electron density in a compact auxiliary basis representation using E(3)-equivariant neural networks. Trained on small molecules with up to 20 atoms, our model is able to achieve an average 33.3% self-consistent field (SCF) step reduction on systems up to 60 atoms, substantially outperforming Hamiltonian-centric and DM-centric models. Critically, this acceleration remains nearly constant with increasing system sizes and exhibits strong transferring behaviors across orbital basis sets and exchange-correlation (XC) functionals. To the best of our knowledge, this work represents the first and robust candidate for a universally transferable DFT acceleration method. We are also releasing the SCFbench dataset and its accompanying code to facilitate future research in this promising direction.
Metrological detection of multipartite entanglement through dynamical symmetries
Multipartite entanglement, characterized by the quantum Fisher information (QFI), plays a central role in quantum-enhanced metrology and understanding quantum many-body physics. With a dynamical generalization of the Mazur-Suzuki relations, we provide a rigorous lower bound on the QFI for the thermal Gibbs states in terms of dynamical symmetries, i.e., operators with periodic time dependence. We demonstrate that this bound can be saturated when considering a complete set of dynamical symmetries. Moreover, this lower bound with dynamical symmetries can be generalized to the QFI matrix and to the QFI for the thermal pure states, predicted by the eigenstate thermalization hypothesis. Our results reveal a new perspective to detect multipartite entanglement and other generalized variances in an equilibrium system, from its nonstationary dynamical properties, and is promising for studying emergent nonequilibrium many-body physics.
Ewald-based Long-Range Message Passing for Molecular Graphs
Neural architectures that learn potential energy surfaces from molecular data have undergone fast improvement in recent years. A key driver of this success is the Message Passing Neural Network (MPNN) paradigm. Its favorable scaling with system size partly relies upon a spatial distance limit on messages. While this focus on locality is a useful inductive bias, it also impedes the learning of long-range interactions such as electrostatics and van der Waals forces. To address this drawback, we propose Ewald message passing: a nonlocal Fourier space scheme which limits interactions via a cutoff on frequency instead of distance, and is theoretically well-founded in the Ewald summation method. It can serve as an augmentation on top of existing MPNN architectures as it is computationally inexpensive and agnostic to architectural details. We test the approach with four baseline models and two datasets containing diverse periodic (OC20) and aperiodic structures (OE62). We observe robust improvements in energy mean absolute errors across all models and datasets, averaging 10% on OC20 and 16% on OE62. Our analysis shows an outsize impact of these improvements on structures with high long-range contributions to the ground truth energy.
Universal Behavior of Entanglement Entropies in Interface CFTs from General Holographic Spacetimes
In previous work universal behavior was conjectured for the behavior of the logarithmic terms in the entanglement entropy of intervals in 1+1 dimensional interface conformal field theories (ICFTs). These putative universal terms were exhibited both in free field theories as well as a large class of holographic models. In this work we demonstrate that this same behavior in fact is realized in any holographic ICFT, significantly strengthening the case for the conjecture.
A Foundational Potential Energy Surface Dataset for Materials
Accurate potential energy surface (PES) descriptions are essential for atomistic simulations of materials. Universal machine learning interatomic potentials (UMLIPs)^{1-3} offer a computationally efficient alternative to density functional theory (DFT)^4 for PES modeling across the periodic table. However, their accuracy today is fundamentally constrained due to a reliance on DFT relaxation data.^{5,6} Here, we introduce MatPES, a foundational PES dataset comprising sim 400,000 structures carefully sampled from 281 million molecular dynamics snapshots that span 16 billion atomic environments. We demonstrate that UMLIPs trained on the modestly sized MatPES dataset can rival, or even outperform, prior models trained on much larger datasets across a broad range of equilibrium, near-equilibrium, and molecular dynamics property benchmarks. We also introduce the first high-fidelity PES dataset based on the revised regularized strongly constrained and appropriately normed (r^2SCAN) functional^7 with greatly improved descriptions of interatomic bonding. The open source MatPES initiative emphasizes the importance of data quality over quantity in materials science and enables broad community-driven advancements toward more reliable, generalizable, and efficient UMLIPs for large-scale materials discovery and design.
Nonequilibrium Phenomena in Driven and Active Coulomb Field Theories
The classical Coulomb gas model has served as one of the most versatile frameworks in statistical physics, connecting a vast range of phenomena across many different areas. Nonequilibrium generalisations of this model have so far been studied much more scarcely. With the abundance of contemporary research into active and driven systems, one would naturally expect that such generalisations of systems with long-ranged Coulomb-like interactions will form a fertile playground for interesting developments. Here, we present two examples of novel macroscopic behaviour that arise from nonequilibrium fluctuations in long-range interacting systems, namely (1) unscreened long-ranged correlations in strong electrolytes driven by an external electric field and the associated fluctuation-induced forces in the confined Casimir geometry, and (2) out-of-equilibrium critical behaviour in self-chemotactic models that incorporate the particle polarity in the chemotactic response of the cells. Both of these systems have nonlocal Coulomb-like interactions among their constituent particles, namely, the electrostatic interactions in the case of the driven electrolyte, and the chemotactic forces mediated by fast-diffusing signals in the case of self-chemotactic systems. The results presented here hint to the rich phenomenology of nonequilibrium effects that can arise from strong fluctuations in Coulomb interacting systems, and a rich variety of potential future directions, which are discussed.
Predication of novel effects in rotational nuclei at high speed
The study of high-speed rotating matter is a crucial research topic in physics due to the emergence of novel phenomena. In this paper, we combined cranking covariant density functional theory (CDFT) with a similar renormalization group approach to decompose the Hamiltonian from the cranking CDFT into different Hermit components, including the non-relativistic term, the dynamical term, the spin-orbit coupling, and the Darwin term. Especially, we obtained the rotational term, the term relating to Zeeman effect-like, and the spin-rotation coupling due to consideration of rotation and spatial component of vector potential. By exploring these operators, we aim to identify novel phenomena that may occur in rotating nuclei. Signature splitting, Zeeman effect-like, spin-rotation coupling, and spin current are among the potential novelties that may arise in rotating nuclei. Additionally, we investigated the observability of these phenomena and their dependence on various factors such as nuclear deformation, rotational angular velocity, and strength of magnetic field.
Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.
The enigma of the pseudogap phase of the cuprate superconductors
The last few years have seen significant experimental progress in characterizing the copper-based hole-doped high temperature superconductors in the regime of low hole density, p. Quantum oscillations, NMR, X-ray, and STM experiments have shed much light on the nature of the ordering at low temperatures. We review evidence that the order parameter in the non-Lanthanum-based cuprates is a d-form factor density-wave. This novel order acts as an unexpected window into the electronic structure of the pseudogap phase at higher temperatures in zero field: we argue in favor of a `fractionalized Fermi liquid' (FL*) with 4 pockets of spin S=1/2, charge +e fermions enclosing an area specified by p.
FreeBird.jl: An Extensible Toolbox for Simulating Interfacial Phase Equilibria
We present FreeBird, an extensible Julia-based platform for computational studies of phase equilibria at generic interfaces. The package supports a range of system configurations, from atomistic solid surfaces to coarse-grained lattice-gas models, with energies evaluated using classical interatomic potentials or lattice Hamiltonians. Both atomistic and lattice systems accommodate single- or multi-component mixtures with flexibly definable surface and lattice geometries. Implemented sampling algorithms include nested sampling, Wang-Landau sampling, Metropolis Monte Carlo, and, for tractable lattice systems, exact enumeration. Leveraging Julia's type hierarchies and multiple dispatch, FreeBird provides a modular interface that allows seamless integration of system definitions, energy evaluators, and sampling schemes. Designed for flexibility, extensibility, and performance, FreeBird offers a versatile framework for exploring the thermodynamics of interfacial phenomena.
Emergence of a new band and the Lifshitz transition in kagome metal ScV_6Sn_6 with charge density wave
Topological kagome systems have been a topic of great interest in condensed matter physics due totheir unique electronic properties. The vanadium-based kagome materials are particularly intrigu-ing since they exhibit exotic phenomena such as charge density wave (CDW) and unconventionalsuperconductivity. The origin of these electronic instabilities is not fully understood, and the re-cent discovery of a charge density wave in ScV6Sn6provides a new avenue for investigation. In thiswork, we investigate the electronic structure of the novel kagome metal ScV6Sn6using angle resolvedphotoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and first-principlesdensity functional theory calculations. Our analysis reveals for the first time the temperature-dependent band changes of ScV6Sn6and identifies a new band that exhibits a strong signatureof a structure with CDW below the critical temperature. Further analysis revealed that this newband is due to the surface kagome layer of the CDW structure. In addition, a Lifshitz transition isidentified in the ARPES spectra that is related to the saddle point moving across the Fermi levelat the critical temperature for the CDW formation. This result shows the CDW behavior may alsobe related to nesting of the saddle point, similar to related materials. However, no energy gap is observed at the Fermi level and thus the CDW is not a typical Fermi surface nesting scenario. These results provide new insights into the underlying physics of the CDW in the kagome materials and could have implications for the development of materials with new functionality.
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via a statistical-mechanics approach, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as the quality and quantity of the training dataset and the network storage, valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate neural networks in general.
Accelerating the Search for Superconductors Using Machine Learning
Prediction of critical temperature (T_c) of a superconductor remains a significant challenge in condensed matter physics. While the BCS theory explains superconductivity in conventional superconductors, there is no framework to predict T_c of unconventional, higher T_{c} superconductors. Quantum Structure Diagrams (QSD) were successful in establishing structure-property relationship for superconductors, quasicrystals, and ferroelectric materials starting from chemical composition. Building on the QSD ideas, we demonstrate that the principal component analysis of superconductivity data uncovers the clustering of various classes of superconductors. We use machine learning analysis and cleaned databases of superconductors to develop predictive models of T_c of a superconductor using its chemical composition. Earlier studies relied on datasets with inconsistencies, leading to suboptimal predictions. To address this, we introduce a data-cleaning workflow to enhance the statistical quality of superconducting databases by eliminating redundancies and resolving inconsistencies. With this improvised database, we apply a supervised machine learning framework and develop a Random Forest model to predict superconductivity and T_c as a function of descriptors motivated from Quantum Structure Diagrams. We demonstrate that this model generalizes effectively in reasonably accurate prediction of T_{c} of compounds outside the database. We further employ our model to systematically screen materials across materials databases as well as various chemically plausible combinations of elements and predict Tl_{5}Ba_{6}Ca_{6}Cu_{9}O_{29} to exhibit superconductivity with a T_{c} sim 105 K. Being based on the descriptors used in QSD's, our model bypasses structural information and predicts T_{c} merely from the chemical composition.
Self-limiting stacks of curvature-frustrated colloidal plates: Roles of intra-particle versus inter-particle deformations
In geometrically frustrated assemblies local inter-subunit misfits propagate to intra-assembly strain gradients, giving rise to anomalous self-limiting assembly thermodynamics. Here, we use theory and coarse-grained simulation to study a recently developed class of ``curvamer'' particles, flexible shell-like particles that exhibit self-limiting assembly due to the build up of curvature deformation in cohesive stacks. To address a generic, yet poorly understood aspect of frustrated assembly, we introduce a model of curvamer assembly that incorporates both {\it intra-particle} shape deformation as well as compliance of {\it inter-particle} cohesive gaps, an effect we can attribute to a {\it finite range of attraction} between particles. We show that the ratio of intra-particle (bending elasticity) to inter-particle stiffness not only controls the regimes of self-limitation but also the nature of frustration propagation through curvamer stacks. We find a transition from uniformly-bound, curvature-focusing stacks at small size to gap-opened, uniformly curved stacks at large size is controlled by a dimensionless measure of inter- versus intra-curvamer stiffness. The finite range of inter-particle attraction determines range of cohesion in stacks are self-limiting, a prediction which is in strong agreement with numerical studies of our coarse-grained colloidal model. These predictions provide critical guidance for experimental realizations of frustrated particle systems designed to exhibit self-limitation at especially large multi-particle scales.
Generalizing Neural Wave Functions
Recent neural network-based wave functions have achieved state-of-the-art accuracies in modeling ab-initio ground-state potential energy surface. However, these networks can only solve different spatial arrangements of the same set of atoms. To overcome this limitation, we present Graph-learned orbital embeddings (Globe), a neural network-based reparametrization method that can adapt neural wave functions to different molecules. Globe learns representations of local electronic structures that generalize across molecules via spatial message passing by connecting molecular orbitals to covalent bonds. Further, we propose a size-consistent wave function Ansatz, the Molecular orbital network (Moon), tailored to jointly solve Schr\"odinger equations of different molecules. In our experiments, we find Moon converging in 4.5 times fewer steps to similar accuracy as previous methods or to lower energies given the same time. Further, our analysis shows that Moon's energy estimate scales additively with increased system sizes, unlike previous work where we observe divergence. In both computational chemistry and machine learning, we are the first to demonstrate that a single wave function can solve the Schr\"odinger equation of molecules with different atoms jointly.
Exact Solution of the Frustrated Potts Model with Next-Nearest-Neighbor Interactions in One Dimension: An AI-Aided Discovery
The one-dimensional J_1-J_2 q-state Potts model is solved exactly for arbitrary q, based on using OpenAI's latest reasoning model o3-mini-high to exactly solve the q=3 case. The exact results provide insights to outstanding physical problems such as the stacking of atomic or electronic orders in layered materials and the formation of a T_c-dome-shaped phase often seen in unconventional superconductors. The work is anticipated to fuel both the research in one-dimensional frustrated magnets for recently discovered finite-temperature application potentials and the fast moving topic area of AI for sciences.
Algorithms for the Markov Entropy Decomposition
The Markov entropy decomposition (MED) is a recently-proposed, cluster-based simulation method for finite temperature quantum systems with arbitrary geometry. In this paper, we detail numerical algorithms for performing the required steps of the MED, principally solving a minimization problem with a preconditioned Newton's algorithm, as well as how to extract global susceptibilities and thermal responses. We demonstrate the power of the method with the spin-1/2 XXZ model on the 2D square lattice, including the extraction of critical points and details of each phase. Although the method shares some qualitative similarities with exact-diagonalization, we show the MED is both more accurate and significantly more flexible.
Magnetic properties of the quasi-one-dimensional S = 1 spin chain antiferromagnet BaNiTe2O7
We report a quasi-one-dimensional S = 1 spin chain compound BaNiTe2O7. This magnetic system has been investigated by magnetic susceptibility, specific heat, and neutron powder diffraction. These results indicate that BaNiTe2O7 develops a short-range magnetic correlation around T ~ 22 K. With further cooling, an antiferromagnetic phase transition is observed at TN ~ 5.4 K. Neutron powder diffraction revealed antiferromagnetic noncollinear order with a commensurate propagation vector k = (1/2, 1, 0). The refined magnetic moment size of Ni2+ at 1.5 K is 1.84{\mu}B, and its noncollinear spin texture is confirmed by first-principles calculations. Inelastic neutron-scattering results and density functional theory calculations confirmed the quasi-one-dimensional nature of the spin systems.
Cross-functional transferability in universal machine learning interatomic potentials
The rapid development of universal machine learning interatomic potentials (uMLIPs) has demonstrated the possibility for generalizable learning of the universal potential energy surface. In principle, the accuracy of uMLIPs can be further improved by bridging the model from lower-fidelity datasets to high-fidelity ones. In this work, we analyze the challenge of this transfer learning problem within the CHGNet framework. We show that significant energy scale shifts and poor correlations between GGA and r^2SCAN pose challenges to cross-functional data transferability in uMLIPs. By benchmarking different transfer learning approaches on the MP-r^2SCAN dataset of 0.24 million structures, we demonstrate the importance of elemental energy referencing in the transfer learning of uMLIPs. By comparing the scaling law with and without the pre-training on a low-fidelity dataset, we show that significant data efficiency can still be achieved through transfer learning, even with a target dataset of sub-million structures. We highlight the importance of proper transfer learning and multi-fidelity learning in creating next-generation uMLIPs on high-fidelity data.
Kibble-Zurek Mechanism and Beyond: Lessons from a Holographic Superfluid Disk
The superfluid phase transition dynamics and associated spontaneous vortex formation with the crossing of the critical temperature in a disk geometry is studied in the framework of the AdS/CFT correspondence by solving the Einstein-Abelian-Higgs model in an AdS_4 black hole. For a slow quench, the vortex density admits a universal scaling law with the cooling rate as predicted by the Kibble-Zurek mechanism (KZM), while for fast quenches, the density shows a universal scaling behavior as a function of the final temperature, that lies beyond the KZM prediction. The vortex number distribution in both the power-law and saturation regimes can be approximated by a normal distribution. However, the study of the universal scaling of the cumulants reveals non-normal features and indicates that vortex statistics in the newborn superfluid is best described by the Poisson binomial distribution, previously predicted in the KZM regime [Phys. Rev. Lett. 124, 240602 (2020)]. This is confirmed by studying the cumulant scalings as a function of the quench time and the quench depth. Our work supports the existence of a universal defect number distribution that accommodates the KZM scaling, its breakdown at fast quenches, and the additional universal scaling laws as a function of the final value of the control parameter.
Path-Integral Approach to Quantum Acoustics
A path-integral approach to quantum acoustics is developed here. In contrast to the commonly utilized particle perspective, this emerging field brings forth a long neglected but essential wave paradigm for lattice vibrations. Within the coherent state picture, we formulate a non-Markovian, stochastic master equation that captures the exact dynamics of any system with coupling linear in the bath coordinates and nonlinear in the system coordinates. We further demonstrate the capability of the presented master equation by applying the corresponding procedure to the eminent Fr\"ohlich model. In general, we establish a solid foundation for quantum acoustics as a kindred framework to quantum optics, while paving the way for deeper first-principle explorations of non-perturbative system dynamics driven by lattice vibrations.
Generalized thermalization for integrable system under quantum quench
We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the Generalized Gibbs Ensemble description for this infinite dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve towards the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a Generalized Gibbs Ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states which would potentially not be described by the Gibbs Generalized Ensemble description.
Superconductivity from buckled-honeycomb-vacancy ordering
Vacancies are prevalent and versatile in solid-state physics and materials science. The role of vacancies in strongly correlated materials, however, remains uncultivated until now. Here, we report the discovery of an unprecedented vacancy state forming an extended buckled-honeycomb-vacancy (BHV) ordering in Ir_{16}Sb_{18}. Superconductivity emerges by suppressing the BHV ordering through squeezing of extra Ir atoms into the vacancies or isovalent Rh substitution. The phase diagram on vacancy ordering reveals the superconductivity competes with the BHV ordering. Further theoretical calculations suggest that this ordering originates from a synergistic effect of the vacancy formation energy and Fermi surface nesting with a wave vector of (1/3, 1/3, 0). The buckled structure breaks the crystal inversion symmetry and can mostly suppress the density of states near the Fermi level. The peculiarities of BHV ordering highlight the importance of "correlated vacancies" and may serve as a paradigm for exploring other non-trivial excitations and quantum criticality.
Disentangling lattice and electronic contributions to the metal-insulator transition from bulk vs. layer confined RNiO_3
In complex oxide materials, changes in electronic properties are often associated with changes in crystal structure, raising the question of the relative roles of the electronic and lattice effects in driving the metal-insulator transition. This paper presents a combined theoretical and experimental analysis of the dependence of the metal-insulator transition of NdNiO_3 on crystal structure, specifically comparing properties of bulk materials to one and two layer samples of NdNiO_3 grown between multiple electronically inert NdAlO_3 counterlayers in a superlattice. The comparison amplifies and validates a theoretical approach developed in previous papers and disentangles the electronic and lattice contributions, through an independent variation of each. In bulk NdNiO_3 the correlations are not strong enough to drive a metal-insulator transition by themselves: a lattice distortion is required. Ultra-thin films exhibit two additional electronic effects and one lattice-related effect. The electronic effects are quantum confinement, leading to dimensional reduction of the electronic Hamiltonian, and an increase in electronic bandwidth due to counterlayer induced bond angle changes. We find that the confinement effect is much more important. The lattice effect is an increase in stiffness due to the cost of propagation of the lattice disproportionation into the confining material.
Scaling Properties of Avalanche Activity in the Two-Dimensional Abelian Sandpile Model
We study the scaling properties of avalanche activity in the two-dimensional Abelian sandpile model. Instead of the conventional avalanche size distribution, we analyze the site activity distribution, which measures how often a site participates in avalanches when grains are added across the lattice. Using numerical simulations for system sizes up to \(L = 160\), averaged over \(10^4\) configurations, we determine the probability distribution \(P(A, L)\) of site activities. The results show that \(P(A, L)\) follows a finite-size scaling form \[ P(A, L) \sim L^{-2} F\Big(A{L^2}\Big). \] For small values \(A \ll L^2\) the scaling function behaves as \[ F(u) \sim u^{-1/2}, \quad corresponding to \quad P(A) \sim 1{L}, \] while for large activities \(A \sim O(L^2)\) the distribution decays as \[ F(u) \sim \exp\big(-c_3 u - c_4 u^2\big). \] The crossover between these two regimes occurs at \[ A^* \sim 0.1 \, L^2, \] marking the threshold between typical and highly excitable sites. This characterization of local avalanche activity provides complementary information to the usual avalanche size statistics, highlighting how local regions serve as frequent conduits for critical dynamics. These results may help connect sandpile models to real-world self-organized critical systems where only partial local activity can be observed.
Zero Sound from Holography
Quantum liquids are characterized by the distinctive properties such as the low temperature behavior of heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature, Fermi liquids exhibit the zero sound, predicted by L. D. Landau in 1957 and subsequently observed in liquid He-3. In this paper, we ask a question whether such a characteristic behavior is present in theories with holographically dual description. We consider a class of gauge theories with fundamental matter fields whose holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in AdS_{p+1} space. An example of such a system is the N=4 SU(N_c) supersymmetric Yang-Mills theory with N_f massless N=2 hypermultiplets at strong coupling, finite baryon number density, and low temperature. We find that these systems exhibit a zero sound mode despite having a non-Fermi liquid type behavior of the specific heat. These properties suggest that holography identifies a new type of quantum liquids.
Are queries and keys always relevant? A case study on Transformer wave functions
The dot product attention mechanism, originally designed for natural language processing tasks, is a cornerstone of modern Transformers. It adeptly captures semantic relationships between word pairs in sentences by computing a similarity overlap between queries and keys. In this work, we explore the suitability of Transformers, focusing on their attention mechanisms, in the specific domain of the parametrization of variational wave functions to approximate ground states of quantum many-body spin Hamiltonians. Specifically, we perform numerical simulations on the two-dimensional J_1-J_2 Heisenberg model, a common benchmark in the field of quantum many-body systems on lattice. By comparing the performance of standard attention mechanisms with a simplified version that excludes queries and keys, relying solely on positions, we achieve competitive results while reducing computational cost and parameter usage. Furthermore, through the analysis of the attention maps generated by standard attention mechanisms, we show that the attention weights become effectively input-independent at the end of the optimization. We support the numerical results with analytical calculations, providing physical insights of why queries and keys should be, in principle, omitted from the attention mechanism when studying large systems.
A New Circle Theorem for Two Dimensional Ising Spin Glasses
The Lee-Yang circle theorem revolutionized our understanding of phase transitions in ferromagnetic systems by showing that the complex zeros of partition functions lie on the unit circle, with criticality arising as these zeros approach the real axis in the thermodynamic limit. However, in frustrated systems such as antiferromagnets and spin glasses, the zeros deviate from this structure, making it challenging to extend the Lee-Yang theory to disordered systems. In this work, we establish a new circle theorem for two-dimensional Ising spin glasses, proving that the square of the partition function exhibits zeros densely packed along the unit circle. Numerical simulations on the square lattice confirm our theoretical predictions, demonstrating the validity of the circle law for quenched disorder. Furthermore, our results uncover a finite-temperature crossover in pm J spin glasses, characterized by the emergence of a spectral gap in the angular distribution of zeros. This result extends the Lee-Yang framework to disordered systems, offering new insights into spin-glass criticality.
High-order finite element method for atomic structure calculations
We introduce featom, an open source code that implements a high-order finite element solver for the radial Schr\"odinger, Dirac, and Kohn-Sham equations. The formulation accommodates various mesh types, such as uniform or exponential, and the convergence can be systematically controlled by increasing the number and/or polynomial order of the finite element basis functions. The Dirac equation is solved using a squared Hamiltonian approach to eliminate spurious states. To address the slow convergence of the kappa=pm1 states due to divergent derivatives at the origin, we incorporate known asymptotic forms into the solutions. We achieve a high level of accuracy (10^{-8} Hartree) for total energies and eigenvalues of heavy atoms such as uranium in both Schr\"odinger and Dirac Kohn-Sham solutions. We provide detailed convergence studies and computational parameters required to attain commonly required accuracies. Finally, we compare our results with known analytic results as well as the results of other methods. In particular, we calculate benchmark results for atomic numbers (Z) from 1 to 92, verifying current benchmarks. We demonstrate significant speedup compared to the state-of-the-art shooting solver dftatom. An efficient, modular Fortran 2008 implementation, is provided under an open source, permissive license, including examples and tests, wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines.
From two dimensions to wire networks in a dice-lattice Josephson array
We investigate Josephson arrays consisting of a dice-lattice network of superconducting weak links surrounding rhombic plaquettes of proximitized semiconductor. Josephson coupling of the weak links and electron density in the plaquettes are independently controlled by separate electrostatic gates. Applied magnetic flux results in an intricate pattern of switching currents associated with frustration, f. For depleted plaquettes, the switching current is nearly periodic in f, expected for a phase-only description, while occupied plaquettes yield a decreasing envelope of switching currents with increasing f. A model of flux dependence based on ballistic small-area junctions and diffusive large-area plaquettes yields excellent agreement with experiment.
Grad DFT: a software library for machine learning enhanced density functional theory
Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.
A Simple Introduction to the SiMPL Method for Density-Based Topology Optimization
We introduce a novel method for solving density-based topology optimization problems: Sigmoidal Mirror descent with a Projected Latent variable (SiMPL). The SiMPL method (pronounced as ``the simple method'') optimizes a design using only first-order derivative information of the objective function. The bound constraints on the density field are enforced with the help of the (negative) Fermi--Dirac entropy, which is also used to define a non-symmetric distance function called a Bregman divergence on the set of admissible designs. This Bregman divergence leads to a simple update rule that is further simplified with the help of a so-called latent variable. Because the SiMPL method involves discretizing the latent variable, it produces a sequence of pointwise-feasible iterates, even when high-order finite elements are used in the discretization. Numerical experiments demonstrate that the method outperforms other popular first-order optimization algorithms. To outline the general applicability of the technique, we include examples with (self-load) compliance minimization and compliant mechanism optimization problems.
Unbalanced Stückelberg Holographic Superconductors with Backreaction
We numerically investigate some properties of unbalanced St\"{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St\"{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St\"{u}ckelberg's model parameters C_{alpha} and alpha not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of alpha on the amplitude of conductivity fluctuations depends on the magnitude of the both C_{alpha} and deltamu/mu in the electric and thermal conductivity cases. This results in that increasing alpha can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones.
Normalizing flows as an enhanced sampling method for atomistic supercooled liquids
Normalizing flows can transform a simple prior probability distribution into a more complex target distribution. Here, we evaluate the ability and efficiency of generative machine learning methods to sample the Boltzmann distribution of an atomistic model for glass-forming liquids. This is a notoriously difficult task, as it amounts to ergodically exploring the complex free energy landscape of a disordered and frustrated many-body system. We optimize a normalizing flow model to successfully transform high-temperature configurations of a dense liquid into low-temperature ones, near the glass transition. We perform a detailed comparative analysis with established enhanced sampling techniques developed in the physics literature to assess and rank the performance of normalizing flows against state-of-the-art algorithms. We demonstrate that machine learning methods are very promising, showing a large speedup over conventional molecular dynamics. Normalizing flows show performances comparable to parallel tempering and population annealing, while still falling far behind the swap Monte Carlo algorithm. Our study highlights the potential of generative machine learning models in scientific computing for complex systems, but also points to some of its current limitations and the need for further improvement.
Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation
The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups.
Pseudo-magnetic fields in square lattices
We have investigated the effects of strain on two-dimensional square lattices and examined the methods for inducing pseudo-magnetic fields. In both the columnar and staggered pi-flux square lattices, we have found that strain only modulates Fermi velocities rather than inducing pseudo-magnetic fields. However, spatially non-uniform on-site potentials (anisotropic hoppings) can create pseudo-magnetic fields in columnar (staggered) pi-flux square lattices. On the other hand, we demonstrate that strain does induce pseudo-magnetic fields in staggered zero-flux square lattices. By breaking a quarter of the bonds, we clarify that a staggered zero-flux square lattice is topologically equivalent to a honeycomb lattice and displays pseudo-vector potentials and pseudo-Landau levels at the Dirac points.
Flow Matching for Discrete Systems: Efficient Free Energy Sampling Across Lattice Sizes and Temperatures
Generative models have advanced significantly in sampling material systems with continuous variables, such as atomistic structures. However, their application to discrete variables, like atom types or spin states, remains underexplored. In this work, we introduce a Boltzmann generator built on discrete flow matching, specifically tailored for systems with discrete phase-space coordinates (e.g., the Ising model or crystalline compounds). This approach enables a single model to sample free energy surfaces over a wide temperature range with minimal training overhead. In addition, the model generation is scalable to larger lattice sizes than those in the training set. We demonstrate the effectiveness of our approach on the 2D Ising model, showing efficient and reliable free energy sampling. This framework provides a scalable and computationally efficient solution for discrete coordinate systems and can be extended to sample the alchemical degrees of freedom in crystalline compounds.
First principles simulations of dense hydrogen
Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g. planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data. rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange-correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principle PIMC and DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions.
Interacting Streams of Cognitive Active Agents in a Three-Way Intersection
The emergent collective motion of active agents - in particular pedestrians - at a three-way intersection is studied by Langevin simulations of cognitive intelligent active Brownian particles (iABPs) with directed visual perception and self-steering avoidance. Depending on the maneuverability Omega, the goal fixation K, and the vision angle psi, different types of pedestrian motion emerge. At intermediate relative maneuverability Delta = Omega/K and large psi, pedestrians have noisy trajectories due to multiple scattering events as they encounter other pedestrians in their field of view. For psi = pi and large relative maneuverability Delta, an effectively jammed state is found, which belongs to the percolation universality class. For small psi, agents exhibit localised clustering and flocking, while for intermediate psi self-organized rotational flows can emerge. The analysis of mean squared displacement and velocity auto-correlation of the agents reveals that the motion is well described by fractional Brownian Motion with positively correlated noise. Finally, despite the rich variety of collective behaviour, the fundamental flow diagram for the three-way-crossing setup shows a universal curve for the different vision angles. Our research provides valuable insights into the importance of vision angle and self-steering avoidance on pedestrian dynamics in semi-dense crowds.
Bubbles in a box: Eliminating edge nucleation in cold-atom simulators of vacuum decay
The decay of metastable 'false vacuum' states via bubble nucleation plays a crucial role in many cosmological scenarios. Cold-atom analog experiments will soon provide the first empirical probes of this process, with potentially far-reaching implications for early-Universe cosmology and high-energy physics. However, an inevitable difference between these analog systems and the early Universe is that the former have a boundary. We show, using a combination of Euclidean calculations and real-time lattice simulations, that these boundaries generically cause rapid bubble nucleation on the edge of the experiment, obscuring the bulk nucleation that is relevant for cosmology. We demonstrate that implementing a high-density 'trench' region at the boundary completely eliminates this problem, and recovers the desired cosmological behavior. Our findings are relevant for ongoing efforts to probe vacuum decay in the laboratory, providing a practical solution to a key experimental obstacle.
A Deep-learning Model for Fast Prediction of Vacancy Formation in Diverse Materials
The presence of point defects such as vacancies plays an important role in material design. Here, we demonstrate that a graph neural network (GNN) model trained only on perfect materials can also be used to predict vacancy formation energies (E_{vac}) of defect structures without the need for additional training data. Such GNN-based predictions are considerably faster than density functional theory (DFT) calculations with reasonable accuracy and show the potential that GNNs are able to capture a functional form for energy predictions. To test this strategy, we developed a DFT dataset of 508 E_{vac} consisting of 3D elemental solids, alloys, oxides, nitrides, and 2D monolayer materials. We analyzed and discussed the applicability of such direct and fast predictions. We applied the model to predict 192494 E_{vac} for 55723 materials in the JARVIS-DFT database.
Comments on Fermi Liquid from Holography
We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7 brane dynamics in AdS_5 x S^5 background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In case of vanishing hypermultiplet mass, Karch, Son and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling.
Spin pumping by a moving domain wall at the interface of an antiferromagnetic insulator and a two-dimensional metal
A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the formalism of Keldysh Green's functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron's Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width.
Holographic Responses of Fermion Matter
We consider the D4-D8-D8 brane system which serves as ultraviolet completion of the Nambu-Jona-Lasinio model, where the only degrees of freedom carrying baryon charge are fermions. By turning on chemical potential for this charge one may expect the formation of the Fermi liquid ground state. At strong coupling we use the dual holographic description to investigate the responses of the system to small perturbations. In the chirally symmetric phase we find that the density dependent part of the heat capacity vanishes linearly with temperature. We also observe a zero sound excitation in the collisionless regime, whose speed is equal to that of normal sound in the hydrodynamic regime. Both the linear dependence of the heat capacity and the existence of zero sound are properties of the Fermi liquid ground state. We also compute the two-point function of the currents at vanishing frequency but do not find any singularities at finite values of the momentum.
Detecting Fermi Surface Nesting Effect for Fermionic Dicke Transition by Trap Induced Localization
Recently, the statistical effect of fermionic superradiance is approved by series of experiments both in free space and in a cavity. The Pauli blocking effect can be visualized by a 1/2 scaling of Dicke transition critical pumping strength against particle number Nat for fermions in a trap. However, the Fermi surface nesting effect, which manifests the enhancement of superradiance by Fermi statistics is still very hard to be identified. Here we studied the influence of localized fermions on the trap edge when both pumping optical lattice and the trap are presented. We find due to localization, the statistical effect in superradiant transition is enhanced. Two new scalings of critical pumping strength are observed as 4/3, and 2/3 for mediate particle number, and the Pauli blocking scaling 1/3 (2d case) in large particle number limit is unaffected. Further, we find the 4/3 scaling is subject to a power law increasing with rising ratio between recoil energy and trap frequency in pumping laser direction. The divergence of this scaling of critical pumping strength against N_{rm at} in E_R/omega_xrightarrow+infty limit can be identified as the Fermi surface nesting effect. Thus we find a practical experimental scheme for visualizing the long-desired Fermi surface nesting effect with the help of trap induced localization in a two-dimensional Fermi gas in a cavity.
From structure mining to unsupervised exploration of atomic octahedral networks
Networks of atom-centered coordination octahedra commonly occur in inorganic and hybrid solid-state materials. Characterizing their spatial arrangements and characteristics is crucial for relating structures to properties for many materials families. The traditional method using case-by-case inspection becomes prohibitive for discovering trends and similarities in large datasets. Here, we operationalize chemical intuition to automate the geometric parsing, quantification, and classification of coordination octahedral networks. We find axis-resolved tilting trends in ABO_{3} perovskite polymorphs, which assist in detecting oxidation state changes. Moreover, we develop a scale-invariant encoding scheme to represent these networks, which, combined with human-assisted unsupervised machine learning, allows us to taxonomize the inorganic framework polytypes in hybrid iodoplumbates (A_xPb_yI_z). Consequently, we uncover a violation of Pauling's third rule and the design principles underpinning their topological diversity. Our results offer a glimpse into the vast design space of atomic octahedral networks and inform high-throughput, targeted screening of specific structure types.
Lattice models of random advection and diffusion and their statistics
We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept.
Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware
The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems (N>12, where N is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems Ngeq12 compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal correlators computation in quantum many-body systems on near-term quantum hardware. The code is available at https://github.com/Aqasch/solving_SYK_model_with_RL.
HMC with Normalizing Flows
We propose using Normalizing Flows as a trainable kernel within the molecular dynamics update of Hamiltonian Monte Carlo (HMC). By learning (invertible) transformations that simplify our dynamics, we can outperform traditional methods at generating independent configurations. We show that, using a carefully constructed network architecture, our approach can be easily scaled to large lattice volumes with minimal retraining effort. The source code for our implementation is publicly available online at https://github.com/nftqcd/fthmc.
Predictive power of the Berezinskii-Kosterlitz-Thouless theory based on Renormalization Group throughout the BCS-BEC crossover in 2D superconductors
Recent experiments on 2D superconductors allow the characterization of the critical temperature and of the phase diagram across the BCS-BEC crossover as a function of density. We obtain from these experiments the microscopic parameters of the superconducting state at low temperatures by the BCS mean-field approach. For Li_xZrNCl, the extracted parameters are used to evaluate the superconducting phase stiffness and the Berezinskii-Kosterlitz-Thouless (BKT) critical temperature throughout the BCS-BEC crossover, by implementing the corresponding Renormalization Group (RG) approach. In this way, we make a quantitative test of the predictive power of the BKT theory for evaluating the critical temperature. The RG flow equations turn out to give a sizable renormalization of the phase stiffness and of the critical temperature, which is crucial to obtain a satisfactory agreement between the BKT theory and the experiments, in particular in the BCS-BEC crossover regime. We predict the temperature range where phase stiffness renormalization can be measured in Li_xZrNCl across the BCS-BEC crossover. Contrary to other microscopic theories of superconductivity, we find that the BKT theory can be exploited to evaluate quantitatively the critical temperature of 2D superconductors in different pairing regimes.
Generative Latent Space Dynamics of Electron Density
Modeling the time-dependent evolution of electron density is essential for understanding quantum mechanical behaviors of condensed matter and enabling predictive simulations in spectroscopy, photochemistry, and ultrafast science. Yet, while machine learning methods have advanced static density prediction, modeling its spatiotemporal dynamics remains largely unexplored. In this work, we introduce a generative framework that combines a 3D convolutional autoencoder with a latent diffusion model (LDM) to learn electron density trajectories from ab-initio molecular dynamics (AIMD) simulations. Our method encodes electron densities into a compact latent space and predicts their future states by sampling from the learned conditional distribution, enabling stable long-horizon rollouts without drift or collapse. To preserve statistical fidelity, we incorporate a scaled Jensen-Shannon divergence regularization that aligns generated and reference density distributions. On AIMD trajectories of liquid lithium at 800 K, our model accurately captures both the spatial correlations and the log-normal-like statistical structure of the density. The proposed framework has the potential to accelerate the simulation of quantum dynamics and overcome key challenges faced by current spatiotemporal machine learning methods as surrogates of quantum mechanical simulators.
Examples of renormalization group transformations for image sets
Using the example of configurations generated with the worm algorithm for the two-dimensional Ising model, we propose renormalization group (RG) transformations, inspired by the tensor RG, that can be applied to sets of images. We relate criticality to the logarithmic divergence of the largest principal component. We discuss the changes in link occupation under the RG transformation, suggest ways to obtain data collapse, and compare with the two state tensor RG approximation near the fixed point.
Deep learning probability flows and entropy production rates in active matter
Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.
Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime
We study Einstein-Maxwell-dilaton gravity models in four-dimensional anti-de Sitter (AdS) spacetime which admit the Reissner-Nordstrom (RN) black hole solution. We show that below a critical temperature the AdS-RN solution becomes unstable against scalar perturbations and the gravitational system undergoes a phase transition. We show using numerical calculations that the new phase is a charged dilatonic black hole. Using the AdS/CFT correspondence we discuss the phase transition in the dual field theory both for non-vanishing temperatures and in the extremal limit. The extremal solution has a Lifshitz scaling symmetry. We discuss the optical conductivity in the new dual phase and find interesting behavior at low frequencies where it shows a "Drude peak". The resistivity varies with temperature in a non-monotonic way and displays a minimum at low temperatures which is reminiscent of the celebrated Kondo effect.
Notes on Properties of Holographic Strange Metals
We investigate properties of holographic strange metals in p+2-dimensions, generalizing the analysis performed in arXiv:0912.1061. The bulk spacetime is p+2-dimensional Lifshitz black hole, while the role of charge carriers is played by probe D-branes. We mainly focus on massless charge carriers, where most of the results can be obtained analytically. We obtain exact results for the free energy and calculate the entropy density, the heat capacity as well as the speed of sound at low temperature. We obtain the DC conductivity and DC Hall conductivity and find that the DC conductivity takes a universal form in the large density limit, while the Hall conductivity is also universal in all dimensions. We also study the resistivity in different limits and clarify the condition for the linear dependence on the temperature, which is a key feature of strange metals. We show that our results for the DC conductivity are consistent with those obtained via Kubo formula and we obtain the charge diffusion constant analytically. The corresponding properties of massive charge carriers are also discussed in brief.
Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates
We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent distribution associated with eigenstate inputs as a new post-processing tool. By connecting it with the unknown phase, we find that if used as its direct estimator, it exceeds the accuracy of the standard majority rule using one less bit of resolution, making evident that it can also be inverted to provide unbiased estimation. Moreover, we show how to directly use this quantity to accurately find the energy levels when the initialized state is an eigenstate of the simulated propagator during the whole time evolution, which allows for shallower algorithms. We then use IBM Q hardware to carry out the digital quantum simulation of three toy models: a two-level system, a two-spin Ising model and a two-site Hubbard model at half-filling. Methodologies are provided to implement Trotterization and reduce the variability of results in noisy intermediate scale quantum computers.
Phase diagram of a three-dimensional dipolar model on a FCC lattice
The magnetic phase diagram at zero external field of an ensemble of dipoles with uniaxial anisotropy on a FCC lattice is investigated from tempered Monte Carlo simulations. The uniaxial anisotropy is characterized by a random distribution of easy axes and its magnitude lambda_u is the driving force of disorder and consequently frustration. The phase diagram, separating the paramagnetic, ferromagnetic, quasi long range ordered ferromagnetic and spin-glass regions is thus considered in the temperature, lambda_u plane. This system is aimed at modeling the magnetic phase diagram of supracrystals of magnetic nanoparticles.
Interference in Fuzzy Dark Matter Filaments: Idealised Models and Statistics
Fuzzy (wave) dark matter (FDM), the dynamical model underlying an ultralight bosonic dark matter species, produces a rich set of non-gravitational signatures that distinguishes it markedly from the phenomenologically related warm (particle) dark matter (WDM) scenario. The emergence of extended interference fringes hosted by cosmic filaments is one such phenomenon reported by cosmological simulations, and a detailed understanding of such may strengthen existing limits on the boson mass but also break the degeneracy with WDM, and provide a unique fingerprint of interference in cosmology. In this paper, we provide initial steps towards this goal. In particular, we show in a bottom-up approach, how the presence of interference in an idealised filament population can lead to a non-suppressive feature in the matter power spectrum -- an observation supported by fully-cosmological FDM simulations. To this end, we build on a theoretically motivated and numerically observed steady-state approximation for filaments and express the equilibrium dynamics of such in an expansion of FDM eigenstates. We optimise the size of the expansion by incorporating classical phase-space information. Ellipsoidal collapse considerations are used to construct a fuzzy filament mass function which, together with the reconstructed FDM wave function, allow us to efficiently compute the one-filament power spectrum. We showcase our non-perturbative interference model for a selection of boson masses and confirm our approach is able to produce the matter power boost observed in fully-cosmological FDM simulations. More precisely, we find an excess in correlation between the spatial scale associated with the FDM ground state and the quantum pressure scale. We speculate about applications of this effect in data analysis.
Facet: highly efficient E(3)-equivariant networks for interatomic potentials
Computational materials discovery is limited by the high cost of first-principles calculations. Machine learning (ML) potentials that predict energies from crystal structures are promising, but existing methods face computational bottlenecks. Steerable graph neural networks (GNNs) encode geometry with spherical harmonics, respecting atomic symmetries -- permutation, rotation, and translation -- for physically realistic predictions. Yet maintaining equivariance is difficult: activation functions must be modified, and each layer must handle multiple data types for different harmonic orders. We present Facet, a GNN architecture for efficient ML potentials, developed through systematic analysis of steerable GNNs. Our innovations include replacing expensive multi-layer perceptrons (MLPs) for interatomic distances with splines, which match performance while cutting computational and memory demands. We also introduce a general-purpose equivariant layer that mixes node information via spherical grid projection followed by standard MLPs -- faster than tensor products and more expressive than linear or gate layers. On the MPTrj dataset, Facet matches leading models with far fewer parameters and under 10% of their training compute. On a crystal relaxation task, it runs twice as fast as MACE models. We further show SevenNet-0's parameters can be reduced by over 25% with no accuracy loss. These techniques enable more than 10x faster training of large-scale foundation models for ML potentials, potentially reshaping computational materials discovery.
Taming Landau level mixing in fractional quantum Hall states with deep learning
Strong correlation brings a rich array of emergent phenomena, as well as a daunting challenge to theoretical physics study. In condensed matter physics, the fractional quantum Hall effect is a prominent example of strong correlation, with Landau level mixing being one of the most challenging aspects to address using traditional computational methods. Deep learning real-space neural network wavefunction methods have emerged as promising architectures to describe electron correlations in molecules and materials, but their power has not been fully tested for exotic quantum states. In this work, we employ real-space neural network wavefunction techniques to investigate fractional quantum Hall systems. On both 1/3 and 2/5 filling systems, we achieve energies consistently lower than exact diagonalization results which only consider the lowest Landau level. We also demonstrate that the real-space neural network wavefunction can naturally capture the extent of Landau level mixing up to a very high level, overcoming the limitations of traditional methods. Our work underscores the potential of neural networks for future studies of strongly correlated systems and opens new avenues for exploring the rich physics of the fractional quantum Hall effect.
A unified diagrammatic approach to quantum transport in few-level junctions for bosonic and fermionic reservoirs: Application to the quantum Rabi model
We apply the Nakajima-Zwanzig approach to open quantum systems to study steady-state transport across generic multi-level junctions coupled to bosonic or fermionic reservoirs. The method allows for a unified diagrammatic formulation in Liouville space, with diagrams being classified according to an expansion in the coupling strength between the reservoirs and the junction. Analytical, approximate expressions are provided up to fourth order for the steady-state boson transport that generalize to multi-level systems the known results for the low-temperature thermal conductance in the spin-boson model. The formalism is applied to the problem of heat transport in a qubit-resonator junction modeled by the quantum Rabi model. Nontrivial transport features emerge as a result of the interplay between the qubit-oscillator detuning and coupling strength. For quasi-degenerate spectra, nonvanishing steady-state coherences cause a suppression of the thermal conductance.
Deep Variational Free Energy Calculation of Hydrogen Hugoniot
We develop a deep variational free energy framework to compute the equation of state of hydrogen in the warm dense matter region. This method parameterizes the variational density matrix of hydrogen nuclei and electrons at finite temperature using three deep generative models: a normalizing flow model that represents the Boltzmann distribution of the classical nuclei, an autoregressive transformer that models the distribution of electrons in excited states, and a permutational equivariant flow model that constructs backflow coordinates for electrons in Hartree-Fock orbitals. By jointly optimizing the three neural networks to minimize the variational free energy, we obtain the equation of state and related thermodynamic properties of dense hydrogen. We compare our results with other theoretical and experimental results on the deuterium Hugoniot curve, aiming to resolve existing discrepancies. The calculated results provide a valuable benchmark for deuterium in the warm dense matter region.
Dense Hebbian neural networks: a replica symmetric picture of supervised learning
We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.
Information Theory and Statistical Mechanics Revisited
The statistical mechanics of Gibbs is a juxtaposition of subjective, probabilistic ideas on the one hand and objective, mechanical ideas on the other. In this paper, we follow the path set out by Jaynes, including elements added subsequently to that original work, to explore the consequences of the purely statistical point of view. We show how standard methods in the equilibrium theory could have been derived simply from a description of the available problem information. In addition, our presentation leads to novel insights into questions associated with symmetry and non-equilibrium statistical mechanics. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a quantity related to the thermodynamic entropy production is found by considering information loss in non-equilibrium processes. Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complexity by successively adding information to create progressively more complex descriptions of a physical system. Our result is that such statistical mechanical descriptions can be used to create transparent, computable, experimentally-relevant models that may be informed by more detailed atomistic simulations. We also derive a theory for the kinetic behavior of this system, identifying the nonequilibrium `process' free energy functional. The Gibbs relation for this functional is a fluctuation-dissipation theorem applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient driving forces. Based on this work, it is clear that statistical mechanics is a general tool for constructing the relationships between constraints on system information.
ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation
Quantum many-body physics simulation has important impacts on understanding fundamental science and has applications to quantum materials design and quantum technology. However, due to the exponentially growing size of the Hilbert space with respect to the particle number, a direct simulation is intractable. While representing quantum states with tensor networks and neural networks are the two state-of-the-art methods for approximate simulations, each has its own limitations in terms of expressivity and inductive bias. To address these challenges, we develop a novel architecture, Autoregressive Neural TensorNet (ANTN), which bridges tensor networks and autoregressive neural networks. We show that Autoregressive Neural TensorNet parameterizes normalized wavefunctions, allows for exact sampling, generalizes the expressivity of tensor networks and autoregressive neural networks, and inherits a variety of symmetries from autoregressive neural networks. We demonstrate our approach on quantum state learning as well as finding the ground state of the challenging 2D J_1-J_2 Heisenberg model with different systems sizes and coupling parameters, outperforming both tensor networks and autoregressive neural networks. Our work opens up new opportunities for scientific simulations of quantum many-body physics and quantum technology.
Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level
It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite.
Molchanov's Formula and Quantum Walks: A Probabilistic Approach
This paper establishes a robust link between quantum dynamics and classical ones by deriving probabilistic representation for both continuous time and discrete time quantum walks. We first adapt Molchanov formula, originally employed in the study of Schrodinger operators on multidimensional integer lattice, to characterize the evolution of continuous time quantum walks. Extending this framework, we develop a probabilistic method to represent discrete time quantum walks on an infinite integer line, bypassing the locality constraints that typically inhibit direct application of Molchanov formula. The validity of our representation is empirically confirmed through a benchmark analysis of the Hadamard walk, demonstrating high fidelity with traditional unitary evolution. Our results suggest that this probabilistic lens offer a powerful alternative for learning multidimensional quantum walks and provides new analytical pathways for investigating quantum systems via classical stochastic processes.
Symmetry-invariant quantum machine learning force fields
Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools.
Uniform structural phase transition in V_2O_3 without short-range distortions of the local structure
The local structure of V_{2}O_{3}, an archetypal strongly correlated electron system that displays a metal-insulator transition around 160 K, has been investigated via pair distribution function (PDF) analysis of neutron and x-ray total scattering data. The rhombohedral-to-monoclinic structural phase transition manifests as an abrupt change on all length scales in the observed PDF. No monoclinic distortions of the local structure are found above the transition, although coexisting regions of phase-separated rhombohedral and monoclinic symmetry are observed between 150 K and 160 K. This lack of structural fluctuations above the transition contrasts with the known presence of magnetic fluctuations in the high-temperature state, suggesting that the lattice degree of freedom plays a secondary role behind the spin degree of freedom in the transition mechanism.
A Periodic Bayesian Flow for Material Generation
Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.
Linear statistics for Coulomb gases: higher order cumulants
We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.
Leap into the future: shortcut to dynamics for quantum mixtures
The study of the long-time dynamics of quantum systems can be a real challenge, especially in systems like ultracold gases, where the required timescales may be longer than the lifetime of the system itself. In this work, we show that it is possible to access the long-time dynamics of a strongly repulsive atomic gas mixture in shorter times. The shortcut-to-dynamics protocol that we propose does not modify the fate of the observables, but effectively jumps ahead in time without changing the system's inherent evolution. Just like the next-chapter button in a movie player that allows to quickly reach the part of the movie one wants to watch, it is a leap into the future.
WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry
Crystalline materials often exhibit a high level of symmetry. However, most generative models do not account for symmetry, but rather model each atom without any constraints on its position or element. We propose a generative model, Wyckoff Diffusion (WyckoffDiff), which generates symmetry-based descriptions of crystals. This is enabled by considering a crystal structure representation that encodes all symmetry, and we design a novel neural network architecture which enables using this representation inside a discrete generative model framework. In addition to respecting symmetry by construction, the discrete nature of our model enables fast generation. We additionally present a new metric, Fr\'echet Wrenformer Distance, which captures the symmetry aspects of the materials generated, and we benchmark WyckoffDiff against recently proposed generative models for crystal generation. Code is available online at https://github.com/httk/wyckoffdiff
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
We propose fine-tuning large language models for generation of stable materials. While unorthodox, fine-tuning large language models on text-encoded atomistic data is simple to implement yet reliable, with around 90% of sampled structures obeying physical constraints on atom positions and charges. Using energy above hull calculations from both learned ML potentials and gold-standard DFT calculations, we show that our strongest model (fine-tuned LLaMA-2 70B) can generate materials predicted to be metastable at about twice the rate (49% vs 28%) of CDVAE, a competing diffusion model. Because of text prompting's inherent flexibility, our models can simultaneously be used for unconditional generation of stable material, infilling of partial structures and text-conditional generation. Finally, we show that language models' ability to capture key symmetries of crystal structures improves with model scale, suggesting that the biases of pretrained LLMs are surprisingly well-suited for atomistic data.
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Generating the periodic structure of stable materials is a long-standing challenge for the material design community. This task is difficult because stable materials only exist in a low-dimensional subspace of all possible periodic arrangements of atoms: 1) the coordinates must lie in the local energy minimum defined by quantum mechanics, and 2) global stability also requires the structure to follow the complex, yet specific bonding preferences between different atom types. Existing methods fail to incorporate these factors and often lack proper invariances. We propose a Crystal Diffusion Variational Autoencoder (CDVAE) that captures the physical inductive bias of material stability. By learning from the data distribution of stable materials, the decoder generates materials in a diffusion process that moves atomic coordinates towards a lower energy state and updates atom types to satisfy bonding preferences between neighbors. Our model also explicitly encodes interactions across periodic boundaries and respects permutation, translation, rotation, and periodic invariances. We significantly outperform past methods in three tasks: 1) reconstructing the input structure, 2) generating valid, diverse, and realistic materials, and 3) generating materials that optimize a specific property. We also provide several standard datasets and evaluation metrics for the broader machine learning community.
First Order Quantum Phase Transition in the Hybrid Metal-Mott Insulator Transition Metal Dichalcogenide 4Hb-TaS2
Coupling together distinct correlated and topologically non-trivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here we investigate the compound 4Hb-TaS_2 that interleaves the Mott-insulating state of 1T-TaS_2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS_2 and the low temperature superconducting phase it harbors. We reveal a thermodynamic phase diagram that hosts a first order quantum phase transition between a correlated Kondo cluster state and a flat band state in which the Kondo cluster becomes depleted. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo cluster and the flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.
A foundation model for atomistic materials chemistry
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model -- and its qualitative and at times quantitative accuracy -- on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, and chemical reactions. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.
Scaling Riemannian Diffusion Models
Riemannian diffusion models draw inspiration from standard Euclidean space diffusion models to learn distributions on general manifolds. Unfortunately, the additional geometric complexity renders the diffusion transition term inexpressible in closed form, so prior methods resort to imprecise approximations of the score matching training objective that degrade performance and preclude applications in high dimensions. In this work, we reexamine these approximations and propose several practical improvements. Our key observation is that most relevant manifolds are symmetric spaces, which are much more amenable to computation. By leveraging and combining various ans\"{a}tze, we can quickly compute relevant quantities to high precision. On low dimensional datasets, our correction produces a noticeable improvement, allowing diffusion to compete with other methods. Additionally, we show that our method enables us to scale to high dimensional tasks on nontrivial manifolds. In particular, we model QCD densities on SU(n) lattices and contrastively learned embeddings on high dimensional hyperspheres.
OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy
We present OrbNet Denali, a machine learning model for electronic structure that is designed as a drop-in replacement for ground-state density functional theory (DFT) energy calculations. The model is a message-passing neural network that uses symmetry-adapted atomic orbital features from a low-cost quantum calculation to predict the energy of a molecule. OrbNet Denali is trained on a vast dataset of 2.3 million DFT calculations on molecules and geometries. This dataset covers the most common elements in bio- and organic chemistry (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, I) as well as charged molecules. OrbNet Denali is demonstrated on several well-established benchmark datasets, and we find that it provides accuracy that is on par with modern DFT methods while offering a speedup of up to three orders of magnitude. For the GMTKN55 benchmark set, OrbNet Denali achieves WTMAD-1 and WTMAD-2 scores of 7.19 and 9.84, on par with modern DFT functionals. For several GMTKN55 subsets, which contain chemical problems that are not present in the training set, OrbNet Denali produces a mean absolute error comparable to those of DFT methods. For the Hutchison conformers benchmark set, OrbNet Denali has a median correlation coefficient of R^2=0.90 compared to the reference DLPNO-CCSD(T) calculation, and R^2=0.97 compared to the method used to generate the training data (wB97X-D3/def2-TZVP), exceeding the performance of any other method with a similar cost. Similarly, the model reaches chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional profiles, OrbNet Denali reproduces the torsion profiles of wB97X-D3/def2-TZVP with an average MAE of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the TorsionNet500 dataset.
