new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation

Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.

  • 4 authors
·
Oct 11, 2024

Just Do It!? Computer-Use Agents Exhibit Blind Goal-Directedness

Computer-Use Agents (CUAs) are an increasingly deployed class of agents that take actions on GUIs to accomplish user goals. In this paper, we show that CUAs consistently exhibit Blind Goal-Directedness (BGD): a bias to pursue goals regardless of feasibility, safety, reliability, or context. We characterize three prevalent patterns of BGD: (i) lack of contextual reasoning, (ii) assumptions and decisions under ambiguity, and (iii) contradictory or infeasible goals. We develop BLIND-ACT, a benchmark of 90 tasks capturing these three patterns. Built on OSWorld, BLIND-ACT provides realistic environments and employs LLM-based judges to evaluate agent behavior, achieving 93.75% agreement with human annotations. We use BLIND-ACT to evaluate nine frontier models, including Claude Sonnet and Opus 4, Computer-Use-Preview, and GPT-5, observing high average BGD rates (80.8%) across them. We show that BGD exposes subtle risks that arise even when inputs are not directly harmful. While prompting-based interventions lower BGD levels, substantial risk persists, highlighting the need for stronger training- or inference-time interventions. Qualitative analysis reveals observed failure modes: execution-first bias (focusing on how to act over whether to act), thought-action disconnect (execution diverging from reasoning), and request-primacy (justifying actions due to user request). Identifying BGD and introducing BLIND-ACT establishes a foundation for future research on studying and mitigating this fundamental risk and ensuring safe CUA deployment.

microsoft Microsoft
·
Oct 2, 2025 3

Language Models for Code Completion: A Practical Evaluation

Transformer-based language models for automatic code completion have shown great promise so far, yet the evaluation of these models rarely uses real data. This study provides both quantitative and qualitative assessments of three public code language models when completing real-world code. We first developed an open-source IDE extension, Code4Me, for the online evaluation of the models. We collected real auto-completion usage data for over a year from more than 1200 users, resulting in over 600K valid completions. These models were then evaluated using six standard metrics across twelve programming languages. Next, we conducted a qualitative study of 1690 real-world completion requests to identify the reasons behind the poor model performance. A comparative analysis of the models' performance in online and offline settings was also performed, using benchmark synthetic datasets and two masking strategies. Our findings suggest that while developers utilize code completion across various languages, the best results are achieved for mainstream languages such as Python and Java. InCoder outperformed the other models across all programming languages, highlighting the significance of training data and objectives. Our study also revealed that offline evaluations do not accurately reflect real-world scenarios. Upon qualitative analysis of the model's predictions, we found that 66.3% of failures were due to the models' limitations, 24.4% occurred due to inappropriate model usage in a development context, and 9.3% were valid requests that developers overwrote. Given these findings, we propose several strategies to overcome the current limitations. These include refining training objectives, improving resilience to typographical errors, adopting hybrid approaches, and enhancing implementations and usability.

  • 6 authors
·
Feb 25, 2024

Thinking Sparks!: Emergent Attention Heads in Reasoning Models During Post Training

The remarkable capabilities of modern large reasoning models are largely unlocked through post-training techniques such as supervised fine-tuning and reinforcement learning. However, the architectural mechanisms behind such improvements remain largely opaque. In this work, we use circuit analysis to demonstrate that post-training for complex reasoning sparks the emergence of novel, functionally specialized attention heads. These heads collectively support structured reasoning and computation. Our comparative analysis across Qwen families and DeepSeek-distilled model reveals that these emergent heads evolve differently under different training regimes. Distillation and SFT foster a cumulative addition of stable reasoning heads. In contrast, group relative policy optimization operates in a dynamic search mode: relatively few attention heads are iteratively activated, evaluated, and pruned, with their survival closely tracking fluctuations in the task reward signal. Furthermore, we find that controllable think on/off models do not possess dedicated thinking heads. Instead, turning off explicit reasoning triggers a broader-but less efficient-set of compensatory heads. Through ablation and qualitative analyses, we connect these circuit-level dynamics to a crucial performance trade-off: strengthened heads enable sophisticated problem-solving strategies for difficult problems but can also introduce over-thinking failure modes, such as calculation errors or logical loops on simpler tasks. These findings connect circuit-level dynamics to macro-level performance, identifying an inherent tension where complex reasoning comes at the cost of elementary computations. More broadly, our work points to future directions for training policy design, emphasizing the need to balance the development of effective reasoning strategies with the assurance of reliable, flawless execution.

Korea University
·
Sep 30, 2025 2

FailureSensorIQ: A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes

We introduce FailureSensorIQ, a novel Multi-Choice Question-Answering (MCQA) benchmarking system designed to assess the ability of Large Language Models (LLMs) to reason and understand complex, domain-specific scenarios in Industry 4.0. Unlike traditional QA benchmarks, our system focuses on multiple aspects of reasoning through failure modes, sensor data, and the relationships between them across various industrial assets. Through this work, we envision a paradigm shift where modeling decisions are not only data-driven using statistical tools like correlation analysis and significance tests, but also domain-driven by specialized LLMs which can reason about the key contributors and useful patterns that can be captured with feature engineering. We evaluate the Industrial knowledge of over a dozen LLMs-including GPT-4, Llama, and Mistral-on FailureSensorIQ from different lens using Perturbation-Uncertainty-Complexity analysis, Expert Evaluation study, Asset-Specific Knowledge Gap analysis, ReAct agent using external knowledge-bases. Even though closed-source models with strong reasoning capabilities approach expert-level performance, the comprehensive benchmark reveals a significant drop in performance that is fragile to perturbations, distractions, and inherent knowledge gaps in the models. We also provide a real-world case study of how LLMs can drive the modeling decisions on 3 different failure prediction datasets related to various assets. We release: (a) expert-curated MCQA for various industrial assets, (b) FailureSensorIQ benchmark and Hugging Face leaderboard based on MCQA built from non-textual data found in ISO documents, and (c) LLMFeatureSelector, an LLM-based feature selection scikit-learn pipeline. The software is available at https://github.com/IBM/FailureSensorIQ.

  • 6 authors
·
Jun 3, 2025 1

What do we know about Hugging Face? A systematic literature review and quantitative validation of qualitative claims

Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative claims lacking quantitative analysis. Our research fills these gaps by providing a knowledge synthesis and quantitative analyses. Methods: We first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our findings are: (1) PTMs have a much higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: We confirm qualitative research claims with concrete metrics, supporting prior qualitative and case study research. Our measures show further dynamics of PTM reuse, inspiring research infrastructure and new measures.

  • 5 authors
·
Jun 12, 2024

When Models Can't Follow: Testing Instruction Adherence Across 256 LLMs

Despite widespread deployment of Large Language Models, systematic evaluation of instruction-following capabilities remains challenging. While comprehensive benchmarks exist, focused assessments that quickly diagnose specific instruction adherence patterns are valuable. As newer models may be trained on existing benchmarks, novel evaluation approaches are needed to assess genuine capabilities rather than memorized performance. This paper presents a streamlined evaluation framework using twenty carefully designed prompts to assess LLM instruction-following across diverse task categories. We demonstrate this framework through a large-scale empirical study conducted on October 14, 2025, testing 256 verified working models from 331 available via OpenRouter. To ensure methodological rigor and prevent selection bias, we first verified each model's basic functionality before inclusion. Unlike large-scale benchmarks requiring extensive computational resources, our approach offers a practical diagnostic tool researchers and practitioners can readily apply. Our methodology builds upon verifiable instructions while introducing a compact test suite balancing comprehensiveness with efficiency. Each prompt targets distinct aspects of instruction following, including format compliance, content constraints, logical sequencing, and multi-step task execution. We evaluate models from major providers (OpenAI, Anthropic, Google, Meta, Mistral) and emerging implementations (Qwen, DeepSeek, community models), providing comparative performance analysis. Our findings reveal consistent failure modes and identify specific instruction types posing particular challenges. This work contributes both a practical evaluation tool and one of the most comprehensive empirical analyses of instruction-following capabilities across the contemporary LLM landscape.

  • 3 authors
·
Oct 18, 2025

Building Safe and Reliable AI systems for Safety Critical Tasks with Vision-Language Processing

Although AI systems have been applied in various fields and achieved impressive performance, their safety and reliability are still a big concern. This is especially important for safety-critical tasks. One shared characteristic of these critical tasks is their risk sensitivity, where small mistakes can cause big consequences and even endanger life. There are several factors that could be guidelines for the successful deployment of AI systems in sensitive tasks: (i) failure detection and out-of-distribution (OOD) detection; (ii) overfitting identification; (iii) uncertainty quantification for predictions; (iv) robustness to data perturbations. These factors are also challenges of current AI systems, which are major blocks for building safe and reliable AI. Specifically, the current AI algorithms are unable to identify common causes for failure detection. Furthermore, additional techniques are required to quantify the quality of predictions. All these contribute to inaccurate uncertainty quantification, which lowers trust in predictions. Hence obtaining accurate model uncertainty quantification and its further improvement are challenging. To address these issues, many techniques have been proposed, such as regularization methods and learning strategies. As vision and language are the most typical data type and have many open source benchmark datasets, this thesis will focus on vision-language data processing for tasks like classification, image captioning, and vision question answering. In this thesis, we aim to build a safeguard by further developing current techniques to ensure the accurate model uncertainty for safety-critical tasks.

  • 1 authors
·
Aug 6, 2023

SAFE: Multitask Failure Detection for Vision-Language-Action Models

While vision-language-action models (VLAs) have shown promising robotic behaviors across a diverse set of manipulation tasks, they achieve limited success rates when deployed on novel tasks out-of-the-box. To allow these policies to safely interact with their environments, we need a failure detector that gives a timely alert such that the robot can stop, backtrack, or ask for help. However, existing failure detectors are trained and tested only on one or a few specific tasks, while VLAs require the detector to generalize and detect failures also in unseen tasks and novel environments. In this paper, we introduce the multitask failure detection problem and propose SAFE, a failure detector for generalist robot policies such as VLAs. We analyze the VLA feature space and find that VLAs have sufficient high-level knowledge about task success and failure, which is generic across different tasks. Based on this insight, we design SAFE to learn from VLA internal features and predict a single scalar indicating the likelihood of task failure. SAFE is trained on both successful and failed rollouts, and is evaluated on unseen tasks. SAFE is compatible with different policy architectures. We test it on OpenVLA, pi_0, and pi_0-FAST in both simulated and real-world environments extensively. We compare SAFE with diverse baselines and show that SAFE achieves state-of-the-art failure detection performance and the best trade-off between accuracy and detection time using conformal prediction. More qualitative results can be found at https://vla-safe.github.io/.

  • 7 authors
·
Jun 11, 2025 2

LLM Interactive Optimization of Open Source Python Libraries -- Case Studies and Generalization

With the advent of large language models (LLMs) like GPT-3, a natural question is the extent to which these models can be utilized for source code optimization. This paper presents methodologically stringent case studies applied to well-known open source python libraries pillow and numpy. We find that contemporary LLM ChatGPT-4 (state September and October 2023) is surprisingly adept at optimizing energy and compute efficiency. However, this is only the case in interactive use, with a human expert in the loop. Aware of experimenter bias, we document our qualitative approach in detail, and provide transcript and source code. We start by providing a detailed description of our approach in conversing with the LLM to optimize the _getextrema function in the pillow library, and a quantitative evaluation of the performance improvement. To demonstrate qualitative replicability, we report further attempts on another locus in the pillow library, and one code locus in the numpy library, to demonstrate generalization within and beyond a library. In all attempts, the performance improvement is significant (factor up to 38). We have also not omitted reporting of failed attempts (there were none). We conclude that LLMs are a promising tool for code optimization in open source libraries, but that the human expert in the loop is essential for success. Nonetheless, we were surprised by how few iterations were required to achieve substantial performance improvements that were not obvious to the expert in the loop. We would like bring attention to the qualitative nature of this study, more robust quantitative studies would need to introduce a layer of selecting experts in a representative sample -- we invite the community to collaborate.

  • 1 authors
·
Dec 8, 2023

Assessing the Quality and Security of AI-Generated Code: A Quantitative Analysis

This study presents a quantitative evaluation of the code quality and security of five prominent Large Language Models (LLMs): Claude Sonnet 4, Claude 3.7 Sonnet, GPT-4o, Llama 3.2 90B, and OpenCoder 8B. While prior research has assessed the functional performance of LLM-generated code, this research tested LLM output from 4,442 Java coding assignments through comprehensive static analysis using SonarQube. The findings suggest that although LLMs can generate functional code, they also introduce a range of software defects, including bugs, security vulnerabilities, and code smells. These defects do not appear to be isolated; rather, they may represent shared weaknesses stemming from systemic limitations within current LLM code generation methods. In particular, critically severe issues, such as hard-coded passwords and path traversal vulnerabilities, were observed across multiple models. These results indicate that LLM-generated code requires verification in order to be considered production-ready. This study found no direct correlation between a model's functional performance (measured by Pass@1 rate of unit tests) and the overall quality and security of its generated code, measured by the number of SonarQube issues in benchmark solutions that passed the functional tests. This suggests that functional benchmark performance score is not a good indicator of overall code quality and security. The goal of this study is not to rank LLM performance but to highlight that all evaluated models appear to share certain weaknesses. Consequently, these findings support the view that static analysis can be a valuable instrument for detecting latent defects and an important safeguard for organizations that deploy AI in software development.

  • 3 authors
·
Aug 20, 2025

SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts

Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.

  • 4 authors
·
Jun 15, 2023

Diagnosing Failure Root Causes in Platform-Orchestrated Agentic Systems: Dataset, Taxonomy, and Benchmark

Agentic systems consisting of multiple LLM-driven agents coordinating through tools and structured interactions, are increasingly deployed for complex reasoning and problem-solving tasks. At the same time, emerging low-code and template-based agent development platforms (e.g., Dify) enable users to rapidly build and orchestrate agentic systems, which we refer to as platform-orchestrated agentic systems. However, these systems are also fragile and it remains unclear how to systematically identify their potential failure root cause. This paper presents a study of root cause identification of these platform-orchestrated agentic systems. To support this initiative, we construct a dataset AgentFail containing 307 failure logs from ten agentic systems, each with fine-grained annotations linking failures to their root causes. We additionally utilize counterfactual reasoning-based repair strategy to ensure the reliability of the annotation. Building on the dataset, we develop a taxonomy that characterizes failure root causes and analyze their distribution across different platforms and task domains. Furthermore, we introduce a benchmark that leverages LLMs for automatically identifying root causes, in which we also utilize the proposed taxonomy as guidance for LLMs. Results show that the taxonomy can largely improve the performance, thereby confirming its utility. Nevertheless, the accuracy of root cause identification reaches at most 33.6%, which indicates that this task still remains challenging. In light of these results, we also provide actionable guidelines for building such agentic systems. In summary, this paper provides a reliable dataset of failure root cause for platform-orchestrated agentic systems, corresponding taxonomy and benchmark, which serves as a foundation for advancing the development of more reliable agentic systems.

  • 7 authors
·
Sep 28, 2025

Multi-LLM Thematic Analysis with Dual Reliability Metrics: Combining Cohen's Kappa and Semantic Similarity for Qualitative Research Validation

Qualitative research faces a critical reliability challenge: traditional inter-rater agreement methods require multiple human coders, are time-intensive, and often yield moderate consistency. We present a multi-perspective validation framework for LLM-based thematic analysis that combines ensemble validation with dual reliability metrics: Cohen's Kappa (κ) for inter-rater agreement and cosine similarity for semantic consistency. Our framework enables configurable analysis parameters (1-6 seeds, temperature 0.0-2.0), supports custom prompt structures with variable substitution, and provides consensus theme extraction across any JSON format. As proof-of-concept, we evaluate three leading LLMs (Gemini 2.5 Pro, GPT-4o, Claude 3.5 Sonnet) on a psychedelic art therapy interview transcript, conducting six independent runs per model. Results demonstrate Gemini achieves highest reliability (κ= 0.907, cosine=95.3%), followed by GPT-4o (κ= 0.853, cosine=92.6%) and Claude (κ= 0.842, cosine=92.1%). All three models achieve a high agreement (κ> 0.80), validating the multi-run ensemble approach. The framework successfully extracts consensus themes across runs, with Gemini identifying 6 consensus themes (50-83% consistency), GPT-4o identifying 5 themes, and Claude 4 themes. Our open-source implementation provides researchers with transparent reliability metrics, flexible configuration, and structure-agnostic consensus extraction, establishing methodological foundations for reliable AI-assisted qualitative research.

YaleUniversity Yale University
·
Dec 23, 2025 2

miniF2F-Lean Revisited: Reviewing Limitations and Charting a Path Forward

We perform a thorough analysis of the formal and informal statements in the miniF2F benchmark from the perspective of an AI system that is tasked to participate in a math Olympiad consisting of the problems in miniF2F. In such setting, the model has to read and comprehend the problems in natural language, formalize them in Lean language, then proceed with proving the problems, and it will get credit for each problem if the formal proof corresponds to the original informal statement presented to the model. Our evaluation results reveal that the best accuracy of such pipeline can be about 36% using the SoTA models in the literature, considerably lower than the individual SoTA accuracies, 97% and 69% reported in the autoformalization and theorem proving literature. Analyzing the failure modes, we trace back a considerable portion of this drop to discrepancies between the formal and informal statements for more than half of the problems in miniF2F. We proceed with correcting all the errors, discrepancies and simplifications in formal and informal statements, and present the miniF2F-v2 with fully verified formal and informal statements and proofs. Evaluating the full theorem proving pipeline on miniF2F-v2 leads to the best accuracy of 70%, a significant improvement from the 40% on the original miniF2F, yet indicating considerable misalignment between the autoformalization models and theorem provers. Our deep analysis suggests that a higher quality benchmark can help the community better evaluate progress in the field of formal reasoning and also better diagnose the failure and success modes of autoformalization and theorem proving models. Our dataset is available at https://github.com/roozbeh-yz/miniF2F_v2.

  • 3 authors
·
Nov 4, 2025 2

MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains

Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including teal{Tool-use}, teal{Directed Acyclic Graph (DAG) QA}, teal{Data Science and Machine Learning coding}, teal{Contest-level programming} and teal{Mathematics}, and covers five essential capabilities: orange{Understanding}, orange{Reasoning}, orange{Planning}, orange{Problem-solving}, and orange{Self-correction}. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at https://github.com/apple/axlearn/docs/research/mmau.

  • 24 authors
·
Jul 17, 2024 4

Using LLMs to Establish Implicit User Sentiment of Software Desirability

This study explores the use of LLMs for providing quantitative zero-shot sentiment analysis of implicit software desirability, addressing a critical challenge in product evaluation where traditional review scores, though convenient, fail to capture the richness of qualitative user feedback. Innovations include establishing a method that 1) works with qualitative user experience data without the need for explicit review scores, 2) focuses on implicit user satisfaction, and 3) provides scaled numerical sentiment analysis, offering a more nuanced understanding of user sentiment, instead of simply classifying sentiment as positive, neutral, or negative. Data is collected using the Microsoft Product Desirability Toolkit (PDT), a well-known qualitative user experience analysis tool. For initial exploration, the PDT metric was given to users of two software systems. PDT data was fed through several LLMs (Claude Sonnet 3 and 3.5, GPT4, and GPT4o) and through a leading transfer learning technique, Twitter-Roberta-Base-Sentiment, and Vader, a leading sentiment analysis tool. Each system was asked to evaluate the data in two ways, by looking at the sentiment expressed in the PDT word/explanation pairs; and by looking at the sentiment expressed by the users in their grouped selection of five words and explanations, as a whole. Each LLM provided a sentiment score, its confidence (low, medium, high) in the score, and an explanation of the score. All LLMs tested were able to statistically detect user sentiment from the users' grouped data, whereas TRBS and Vader were not. The confidence and explanation of confidence provided by the LLMs assisted in understanding user sentiment. This study adds deeper understanding of evaluating user experiences, toward the goal of creating a universal tool that quantifies implicit sentiment.

  • 3 authors
·
Aug 2, 2024

CSnake: Detecting Self-Sustaining Cascading Failure via Causal Stitching of Fault Propagations

Recent studies have revealed that self-sustaining cascading failures in distributed systems frequently lead to widespread outages, which are challenging to contain and recover from. Existing failure detection techniques struggle to expose such failures prior to deployment, as they typically require a complex combination of specific conditions to be triggered. This challenge stems from the inherent nature of cascading failures, as they typically involve a sequence of fault propagations, each activated by distinct conditions. This paper presents CSnake, a fault injection framework to expose self-sustaining cascading failures in distributed systems. CSnake uses the novel idea of causal stitching, which causally links multiple single-fault injections in different tests to simulate complex fault propagation chains. To identify these chains, CSnake designs a counterfactual causality analysis of fault propagations - fault causality analysis (FCA): FCA compares the execution trace of a fault injection run with its corresponding profile run (i.e., same test w/o the injection) and identifies any additional faults triggered, which are considered to have a causal relationship with the injected fault. To address the large search space of fault and workload combinations, CSnake employs a three-phase allocation protocol of test budget that prioritizes faults with unique and diverse causal consequences, increasing the likelihood of uncovering conditional fault propagations. Furthermore, to avoid incorrectly connecting fault propagations from workloads with incompatible conditions, CSnake performs a local compatibility check that approximately checks the compatibility of the path constraints associated with connected fault propagations with low overhead. CSnake detected 15 bugs that cause self-sustaining cascading failures in five systems, five of which have been confirmed with two fixed.

  • 3 authors
·
Sep 30, 2025

DoVer: Intervention-Driven Auto Debugging for LLM Multi-Agent Systems

Large language model (LLM)-based multi-agent systems are challenging to debug because failures often arise from long, branching interaction traces. The prevailing practice is to leverage LLMs for log-based failure localization, attributing errors to a specific agent and step. However, this paradigm has two key limitations: (i) log-only debugging lacks validation, producing untested hypotheses, and (ii) single-step or single-agent attribution is often ill-posed, as we find that multiple distinct interventions can independently repair the failed task. To address the first limitation, we introduce DoVer, an intervention-driven debugging framework, which augments hypothesis generation with active verification through targeted interventions (e.g., editing messages, altering plans). For the second limitation, rather than evaluating on attribution accuracy, we focus on measuring whether the system resolves the failure or makes quantifiable progress toward task success, reflecting a more outcome-oriented view of debugging. Within the Magnetic-One agent framework, on the datasets derived from GAIA and AssistantBench, DoVer flips 18-28% of failed trials into successes, achieves up to 16% milestone progress, and validates or refutes 30-60% of failure hypotheses. DoVer also performs effectively on a different dataset (GSMPlus) and agent framework (AG2), where it recovers 49% of failed trials. These results highlight intervention as a practical mechanism for improving reliability in agentic systems and open opportunities for more robust, scalable debugging methods for LLM-based multi-agent systems. Project website and code will be available at https://aka.ms/DoVer.

microsoft Microsoft
·
Dec 7, 2025 4

GraphTracer: Graph-Guided Failure Tracing in LLM Agents for Robust Multi-Turn Deep Search

Multi-agent systems powered by Large Language Models excel at complex tasks through coordinated collaboration, yet they face high failure rates in multi-turn deep search scenarios. Existing temporal attribution methods struggle to accurately diagnose root causes, particularly when errors propagate across multiple agents. Attempts to automate failure attribution by analyzing action sequences remain ineffective due to their inability to account for information dependencies that span agents. This paper identifies two core challenges: (i) distinguishing symptoms from root causes in multi-agent error propagation, and (ii) tracing information dependencies beyond temporal order. To address these issues, we introduce GraphTracer, a framework that redefines failure attribution through information flow analysis. GraphTracer constructs Information Dependency Graphs (IDGs) to explicitly capture how agents reference and build on prior outputs. It localizes root causes by tracing through these dependency structures instead of relying on temporal sequences. GraphTracer also uses graph-aware synthetic data generation to target critical nodes, creating realistic failure scenarios. Evaluations on the Who\&When benchmark and integration into production systems demonstrate that GraphTracer-8B achieves up to 18.18\% higher attribution accuracy compared to state-of-the-art models and enables 4.8\% to 14.2\% performance improvements in deployed multi-agent frameworks, establishing a robust solution for multi-agent system debugging.

  • 8 authors
·
Oct 12, 2025 2

LLM Swiss Round: Aggregating Multi-Benchmark Performance via Competitive Swiss-System Dynamics

The rapid proliferation of Large Language Models (LLMs) and diverse specialized benchmarks necessitates a shift from fragmented, task-specific metrics to a holistic, competitive ranking system that effectively aggregates performance across multiple ability dimensions. Primarily using static scoring, current evaluation methods are fundamentally limited. They struggle to determine the proper mix ratio across diverse benchmarks, and critically, they fail to capture a model's dynamic competitive fitness or its vulnerability when confronted with sequential, high-stakes tasks. To address this, we introduce the novel Competitive Swiss-System Dynamics (CSD) framework. CSD simulates a multi-round, sequential contest where models are dynamically paired across a curated sequence of benchmarks based on their accumulated win-loss record. And Monte Carlo Simulation (N=100,000 iterations) is used to approximate the statistically robust Expected Win Score (E[S_m]), which eliminates the noise of random pairing and early-round luck. Furthermore, we implement a Failure Sensitivity Analysis by parameterizing the per-round elimination quantity (T_k), which allows us to profile models based on their risk appetite--distinguishing between robust generalists and aggressive specialists. We demonstrate that CSD provides a more nuanced and context-aware ranking than traditional aggregate scoring and static pairwise models, representing a vital step towards risk-informed, next-generation LLM evaluation.

ByteDance-Seed ByteDance Seed
·
Dec 24, 2025 2

Towards Automated Formal Verification of Backend Systems with LLMs

Software testing plays a critical role in ensuring that systems behave as intended. However, existing automated testing approaches struggle to match the capabilities of human engineers due to key limitations such as test locality, lack of general reliability, and business logic blindness. In this work, we propose a novel framework that leverages functional programming and type systems to translate Scala backend code into formal Lean representations. Our pipeline automatically generates theorems that specify the intended behavior of APIs and database operations, and uses LLM-based provers to verify them. When a theorem is proved, the corresponding logic is guaranteed to be correct and no further testing is needed. If the negation of a theorem is proved instead, it confirms a bug. In cases where neither can be proved, human intervention is required. We evaluate our method on realistic backend systems and find that it can formally verify over 50% of the test requirements, which suggests that half of a testing engineer's workload can be automated. Additionally, with an average cost of only $2.19 per API, LLM-based verification is significantly more cost-effective than manual testing and can be scaled easily through parallel execution. Our results indicate a promising direction for scalable, AI-powered software testing, with the potential to greatly improve engineering productivity as models continue to advance.

  • 4 authors
·
Apr 13, 2025

Is Your Automated Software Engineer Trustworthy?

Large Language Models (LLMs) are being increasingly used in software engineering tasks, with an increased focus on bug report resolution over the past year. However, most proposed systems fail to properly handle uncertain or incorrect inputs and outputs. Existing LLM-based tools and coding agents respond to every issue and generate a patch for every case, even when the input is vague or their own output is incorrect. There are no mechanisms in place to abstain when confidence is low. This leads to unreliable behaviour, such as hallucinated code changes or responses based on vague issue reports. We introduce BouncerBench, a benchmark that evaluates whether LLM-based software agents can refuse to act when inputs are ill-defined or refuse to respond when their own outputs are likely to be incorrect. Unlike prior benchmarks that implicitly incentivize models to generate responses even when uncertain, BouncerBench aims to improve precision by targeting two overlooked failure points: (1) vague or underspecified issue descriptions in tickets and (2) logically or functionally incorrect code patches created by the system. It measures whether proposed systems can distinguish actionable issues from vague tickets and valid patches from untrustworthy ones. We also implement a basic input and output bouncer, evaluating how well current LLMs can abstain when needed. Our results show that most models fail to abstain from underspecified inputs or incorrect outputs. Hence, we conclude that there is significant room for improvement before LLMs can be trusted to make correct decisions and recommendations in real-world software engineering workflows. BouncerBench provides a first step toward evaluating and building more cautious, trustworthy code agents. The replication package, dataset, and leaderboard can be found at bouncerbench.com

  • 2 authors
·
Jun 21, 2025

Making LLMs Reliable When It Matters Most: A Five-Layer Architecture for High-Stakes Decisions

Current large language models (LLMs) excel in verifiable domains where outputs can be checked before action but prove less reliable for high-stakes strategic decisions with uncertain outcomes. This gap, driven by mutually reinforcing cognitive biases in both humans and artificial intelligence (AI) systems, threatens the defensibility of valuations and sustainability of investments in the sector. This report describes a framework emerging from systematic qualitative assessment across 7 frontier-grade LLMs and 3 market-facing venture vignettes under time pressure. Detailed prompting specifying decision partnership and explicitly instructing avoidance of sycophancy, confabulation, solution drift, and nihilism achieved initial partnership state but failed to maintain it under operational pressure. Sustaining protective partnership state required an emergent 7-stage calibration sequence, built upon a 4-stage initialization process, within a 5-layer protection architecture enabling bias self-monitoring, human-AI adversarial challenge, partnership state verification, performance degradation detection, and stakeholder protection. Three discoveries resulted: partnership state is achievable through ordered calibration but requires emergent maintenance protocols; reliability degrades when architectural drift and context exhaustion align; and dissolution discipline prevents costly pursuit of fundamentally wrong directions. Cross-model validation revealed systematic performance differences across LLM architectures. This approach demonstrates that human-AI teams can achieve cognitive partnership capable of preventing avoidable regret in high-stakes decisions, addressing return-on-investment expectations that depend on AI systems supporting consequential decision-making without introducing preventable cognitive traps when verification arrives too late.

  • 1 authors
·
Nov 10, 2025

Impact of Large Language Models on Generating Software Specifications

Software specifications are essential for ensuring the reliability of software systems. Existing specification extraction approaches, however, suffer from limited generalizability and require manual efforts. The recent emergence of Large Language Models (LLMs), which have been successfully applied to numerous software engineering tasks, offers a promising avenue for automating this process. In this paper, we conduct the first empirical study to evaluate the capabilities of LLMs for generating software specifications from software comments or documentation. We evaluate LLMs' performance with Few Shot Learning (FSL), enabling LLMs to generalize from a small number of examples, as well as different prompt construction strategies, and compare the performance of LLMs with traditional approaches. Additionally, we conduct a comparative diagnosis of the failure cases from both LLMs and traditional methods, identifying their unique strengths and weaknesses. Lastly, we conduct extensive experiments on 15 state of the art LLMs, evaluating their performance and cost effectiveness for generating software specifications. Our results show that with FSL, LLMs outperform traditional methods (by 5.6%), and more sophisticated prompt construction strategies can further enlarge this performance gap (up to 5.1 to 10.0%). Yet, LLMs suffer from their unique challenges, such as ineffective prompts and the lack of domain knowledge, which together account for 53 to 60% of LLM unique failures. The strong performance of open source models (e.g., StarCoder) makes closed source models (e.g., GPT 3 Davinci) less desirable due to size and cost. Our study offers valuable insights for future research to improve specification generation.

  • 7 authors
·
Jun 5, 2023

Experience of Training a 1.7B-Parameter LLaMa Model From Scratch

Pretraining large language models is a complex endeavor influenced by multiple factors, including model architecture, data quality, training continuity, and hardware constraints. In this paper, we share insights gained from the experience of training DMaS-LLaMa-Lite, a fully open source, 1.7-billion-parameter, LLaMa-based model, on approximately 20 billion tokens of carefully curated data. We chronicle the full training trajectory, documenting how evolving validation loss levels and downstream benchmarks reflect transitions from incoherent text to fluent, contextually grounded output. Beyond standard quantitative metrics, we highlight practical considerations such as the importance of restoring optimizer states when resuming from checkpoints, and the impact of hardware changes on training stability and throughput. While qualitative evaluation provides an intuitive understanding of model improvements, our analysis extends to various performance benchmarks, demonstrating how high-quality data and thoughtful scaling enable competitive results with significantly fewer training tokens. By detailing these experiences and offering training logs, checkpoints, and sample outputs, we aim to guide future researchers and practitioners in refining their pretraining strategies. The training script is available on Github at https://github.com/McGill-DMaS/DMaS-LLaMa-Lite-Training-Code. The model checkpoints are available on Huggingface at https://huggingface.co/collections/McGill-DMaS/dmas-llama-lite-6761d97ba903f82341954ceb.

  • 3 authors
·
Dec 17, 2024

CORRECT: COndensed eRror RECognition via knowledge Transfer in multi-agent systems

Multi-agent systems (MAS) are increasingly capable of tackling complex real-world tasks, yet their reliance on inter-agent coordination, tool use, and long-horizon reasoning makes error recognition particularly challenging. Minor errors can propagate across agents, escalating into task failures while producing long, intertwined execution trajectories that impose significant costs for both human developers and automated systems to debug and analyze. Our key insight is that, despite surface differences in failure trajectories (e.g., logs), MAS errors often recur with similar structural patterns. This paper presents CORRECT, the first lightweight, training-free framework that leverages an online cache of distilled error schemata to recognize and transfer knowledge of failure structures across new requests. This cache-based reuse allows LLMs to perform targeted error localization at inference time, avoiding the need for expensive retraining while adapting to dynamic MAS deployments in subseconds. To support rigorous study in this domain, we also introduce CORRECT-Error, a large-scale dataset of over 2,000 annotated trajectories collected through a novel error-injection pipeline guided by real-world distributions, and further validated through human evaluation to ensure alignment with natural failure patterns. Experiments across seven diverse MAS applications show that CORRECT improves step-level error localization up to 19.8% over existing advances while at near-zero overhead, substantially narrowing the gap between automated and human-level error recognition.

  • 7 authors
·
Sep 28, 2025 2

Disentangled Causal Graph Learning for Online Unsupervised Root Cause Analysis

The task of root cause analysis (RCA) is to identify the root causes of system faults/failures by analyzing system monitoring data. Efficient RCA can greatly accelerate system failure recovery and mitigate system damages or financial losses. However, previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process, a significant amount of time and data to train a robust model, and then being retrained from scratch for a new system fault. In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model. CORAL consists of Trigger Point Detection, Incremental Disentangled Causal Graph Learning, and Network Propagation-based Root Cause Localization. The Trigger Point Detection component aims to detect system state transitions automatically and in near-real-time. To achieve this, we develop an online trigger point detection approach based on multivariate singular spectrum analysis and cumulative sum statistics. To efficiently update the RCA model, we propose an incremental disentangled causal graph learning approach to decouple the state-invariant and state-dependent information. After that, CORAL applies a random walk with restarts to the updated causal graph to accurately identify root causes. The online RCA process terminates when the causal graph and the generated root cause list converge. Extensive experiments on three real-world datasets with case studies demonstrate the effectiveness and superiority of the proposed framework.

  • 5 authors
·
May 17, 2023

AHA: A Vision-Language-Model for Detecting and Reasoning Over Failures in Robotic Manipulation

Robotic manipulation in open-world settings requires not only task execution but also the ability to detect and learn from failures. While recent advances in vision-language models (VLMs) and large language models (LLMs) have improved robots' spatial reasoning and problem-solving abilities, they still struggle with failure recognition, limiting their real-world applicability. We introduce AHA, an open-source VLM designed to detect and reason about failures in robotic manipulation using natural language. By framing failure detection as a free-form reasoning task, AHA identifies failures and provides detailed, adaptable explanations across different robots, tasks, and environments. We fine-tuned AHA using FailGen, a scalable framework that generates the first large-scale dataset of robotic failure trajectories, the AHA dataset. FailGen achieves this by procedurally perturbing successful demonstrations from simulation. Despite being trained solely on the AHA dataset, AHA generalizes effectively to real-world failure datasets, robotic systems, and unseen tasks. It surpasses the second-best model (GPT-4o in-context learning) by 10.3% and exceeds the average performance of six compared models including five state-of-the-art VLMs by 35.3% across multiple metrics and datasets. We integrate AHA into three manipulation frameworks that utilize LLMs/VLMs for reinforcement learning, task and motion planning, and zero-shot trajectory generation. AHA's failure feedback enhances these policies' performances by refining dense reward functions, optimizing task planning, and improving sub-task verification, boosting task success rates by an average of 21.4% across all three tasks compared to GPT-4 models.

  • 10 authors
·
Sep 30, 2024

Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models

Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.

  • 7 authors
·
Jun 20, 2025

HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation

We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.

  • 4 authors
·
Dec 30, 2024 3

Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses

The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research has explored methodologies to enhance the effectiveness of feedback. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education. We examine the effectiveness of LLMs in evaluating student responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide both a quantitative score and qualitative feedback on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems. A similar approach was taken for training the SBERT model as well, while the GPT4 model used a zero-shot learning approach. We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers. The teachers utilized a shared rubric in assessing the accuracy and relevance of the generated feedback. We conduct both quantitative and qualitative analyses of the model performance. By offering a detailed comparison of these methods, this study aims to further the ongoing development of automated feedback systems and outlines potential future directions for leveraging generative LLMs to create more personalized learning experiences.

  • 7 authors
·
Oct 29, 2024

SWE-Bench Pro: Can AI Agents Solve Long-Horizon Software Engineering Tasks?

We introduce SWE-Bench Pro, a substantially more challenging benchmark that builds upon the best practices of SWE-BENCH [25], but is explicitly designed to capture realistic, complex, enterprise-level problems beyond the scope of SWE-BENCH. SWE-BENCH PRO contains 1,865 problems sourced from a diverse set of 41 actively maintained repositories spanning business applications, B2B services, and developer tools. The benchmark is partitioned into a public set with open access to problems sourced from 11 repositories, a held-out set of 12 repositories and a commercial set of 18 proprietary repositories where we have formal partnership agreements with early-stage startups. Problems in the held-out and the commercial set are not publicly accessible, but we release results on the commercial set. Our benchmark features long-horizon tasks that may require hours to days for a professional software engineer to complete, often involving patches across multiple files and substantial code modifications. All tasks are human-verified and augmented with sufficient context to ensure resolvability. In our evaluation of widely used coding models, under a unified scaffold, we observe that their performance on SWE-Bench PRO remains below 25% (Pass@1), with GPT-5 achieving the highest score to date at 23.3%. To better understand these limitations, we cluster the failure modes observed in the collected agent trajectories for a clearer characterization of the error patterns exhibited by current models. Overall, SWE-BENCH PRO provides a contamination-resistant testbed that more faithfully captures the complexity and diversity of real-world software development, advancing the pursuit of truly autonomous software engineering agents at a professional level.

  • 19 authors
·
Sep 21, 2025 3

GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging

Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks. Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.

  • 18 authors
·
Aug 26, 2025 1

GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training Data Exploration

Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub at https://github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces - https://huggingface.co/spaces/spacerini/gaia.

  • 9 authors
·
Jun 2, 2023

Reasoning with LLMs for Zero-Shot Vulnerability Detection

Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the context-aware robustness necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present VulnSage, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git

  • 2 authors
·
Mar 22, 2025

How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study

Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.

  • 11 authors
·
May 21, 2025 2

AEGIS: Automated Error Generation and Identification for Multi-Agent Systems

As Multi-Agent Systems (MAS) become increasingly autonomous and complex, understanding their error modes is critical for ensuring their reliability and safety. However, research in this area has been severely hampered by the lack of large-scale, diverse datasets with precise, ground-truth error labels. To address this bottleneck, we introduce AEGIS, a novel framework for Automated Error Generation and Identification for Multi-Agent Systems. By systematically injecting controllable and traceable errors into initially successful trajectories, we create a rich dataset of realistic failures. This is achieved using a context-aware, LLM-based adaptive manipulator that performs sophisticated attacks like prompt injection and response corruption to induce specific, predefined error modes. We demonstrate the value of our dataset by exploring three distinct learning paradigms for the error identification task: Supervised Fine-Tuning, Reinforcement Learning, and Contrastive Learning. Our comprehensive experiments show that models trained on AEGIS data achieve substantial improvements across all three learning paradigms. Notably, several of our fine-tuned models demonstrate performance competitive with or superior to proprietary systems an order of magnitude larger, validating our automated data generation framework as a crucial resource for developing more robust and interpretable multi-agent systems. Our project website is available at https://kfq20.github.io/AEGIS-Website.

  • 10 authors
·
Sep 16, 2025

Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference

Multi-agent systems (MAS) are critical for automating complex tasks, yet their practical deployment is severely hampered by the challenge of failure attribution. Current diagnostic tools, which rely on statistical correlations, are fundamentally inadequate; on challenging benchmarks like Who\&When, state-of-the-art methods achieve less than 15\% accuracy in locating the root-cause step of a failure. To address this critical gap, we introduce the first failure attribution framework for MAS grounded in multi-granularity causal inference. Our approach makes two key technical contributions: (1) a performance causal inversion principle, which correctly models performance dependencies by reversing the data flow in execution logs, combined with Shapley values to accurately assign agent-level blame; (2) a novel causal discovery algorithm, CDC-MAS, that robustly identifies critical failure steps by tackling the non-stationary nature of MAS interaction data. The framework's attribution results directly fuel an automated optimization loop, generating targeted suggestions whose efficacy is validated via counterfactual simulations. Evaluations on the Who\&When and TRAIL benchmarks demonstrate a significant leap in performance. Our method achieves up to 36.2\% step-level accuracy. Crucially, the generated optimizations boost overall task success rates by an average of 22.4\%. This work provides a principled and effective solution for debugging complex agent interactions, paving the way for more reliable and interpretable multi-agent systems.

  • 7 authors
·
Sep 10, 2025

Eureka: Evaluating and Understanding Large Foundation Models

Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.

  • 9 authors
·
Sep 13, 2024

PublicAgent: Multi-Agent Design Principles From an LLM-Based Open Data Analysis Framework

Open data repositories hold potential for evidence-based decision-making, yet are inaccessible to non-experts lacking expertise in dataset discovery, schema mapping, and statistical analysis. Large language models show promise for individual tasks, but end-to-end analytical workflows expose fundamental limitations: attention dilutes across growing contexts, specialized reasoning patterns interfere, and errors propagate undetected. We present PublicAgent, a multi-agent framework that addresses these limitations through decomposition into specialized agents for intent clarification, dataset discovery, analysis, and reporting. This architecture maintains focused attention within agent contexts and enables validation at each stage. Evaluation across five models and 50 queries derives five design principles for multi-agent LLM systems. First, specialization provides value independent of model strength--even the strongest model shows 97.5% agent win rates, with benefits orthogonal to model scale. Second, agents divide into universal (discovery, analysis) and conditional (report, intent) categories. Universal agents show consistent effectiveness (std dev 12.4%) while conditional agents vary by model (std dev 20.5%). Third, agents mitigate distinct failure modes--removing discovery or analysis causes catastrophic failures (243-280 instances), while removing report or intent causes quality degradation. Fourth, architectural benefits persist across task complexity with stable win rates (86-92% analysis, 84-94% discovery), indicating workflow management value rather than reasoning enhancement. Fifth, wide variance in agent effectiveness across models (42-96% for analysis) requires model-aware architecture design. These principles guide when and why specialization is necessary for complex analytical workflows while enabling broader access to public data through natural language interfaces.

  • 3 authors
·
Nov 4, 2025

Failure Prediction at Runtime for Generative Robot Policies

Imitation learning (IL) with generative models, such as diffusion and flow matching, has enabled robots to perform complex, long-horizon tasks. However, distribution shifts from unseen environments or compounding action errors can still cause unpredictable and unsafe behavior, leading to task failure. Early failure prediction during runtime is therefore essential for deploying robots in human-centered and safety-critical environments. We propose FIPER, a general framework for Failure Prediction at Runtime for generative IL policies that does not require failure data. FIPER identifies two key indicators of impending failure: (i) out-of-distribution (OOD) observations detected via random network distillation in the policy's embedding space, and (ii) high uncertainty in generated actions measured by a novel action-chunk entropy score. Both failure prediction scores are calibrated using a small set of successful rollouts via conformal prediction. A failure alarm is triggered when both indicators, aggregated over short time windows, exceed their thresholds. We evaluate FIPER across five simulation and real-world environments involving diverse failure modes. Our results demonstrate that FIPER better distinguishes actual failures from benign OOD situations and predicts failures more accurately and earlier than existing methods. We thus consider this work an important step towards more interpretable and safer generative robot policies. Code, data and videos are available at https://tum-lsy.github.io/fiper_website.

  • 4 authors
·
Oct 10, 2025

LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild

Deep research -- producing comprehensive, citation-grounded reports by searching and synthesizing information from hundreds of live web sources -- marks an important frontier for agentic systems. To rigorously evaluate this ability, four principles are essential: tasks should be (1) user-centric, reflecting realistic information needs, (2) dynamic, requiring up-to-date information beyond parametric knowledge, (3) unambiguous, ensuring consistent interpretation across users, and (4) multi-faceted and search-intensive, requiring search over numerous web sources and in-depth analysis. Existing benchmarks fall short of these principles, often focusing on narrow domains or posing ambiguous questions that hinder fair comparison. Guided by these principles, we introduce LiveResearchBench, a benchmark of 100 expert-curated tasks spanning daily life, enterprise, and academia, each requiring extensive, dynamic, real-time web search and synthesis. Built with over 1,500 hours of human labor, LiveResearchBench provides a rigorous basis for systematic evaluation. To evaluate citation-grounded long-form reports, we introduce DeepEval, a comprehensive suite covering both content- and report-level quality, including coverage, presentation, citation accuracy and association, consistency and depth of analysis. DeepEval integrates four complementary evaluation protocols, each designed to ensure stable assessment and high agreement with human judgments. Using LiveResearchBench and DeepEval, we conduct a comprehensive evaluation of 17 frontier deep research systems, including single-agent web search, single-agent deep research, and multi-agent systems. Our analysis reveals current strengths, recurring failure modes, and key system components needed to advance reliable, insightful deep research.

Salesforce Salesforce
·
Oct 15, 2025 3

Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems

Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this counterfactual inference gap, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85times improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43times improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.

  • 6 authors
·
Sep 12, 2025

TrueGL: A Truthful, Reliable, and Unified Engine for Grounded Learning in Full-Stack Search

In the age of open and free information, a concerning trend of reliance on AI is emerging. However, existing AI tools struggle to evaluate the credibility of information and to justify their assessments. Hence, there is a growing need for systems that can help users evaluate the trustworthiness of online information. Although major search engines incorporate AI features, they often lack clear reliability indicators. We present TrueGL, a model that makes trustworthy search results more accessible. The model is a fine-tuned version of IBM's Granite-1B, trained on the custom dataset and integrated into a search engine with a reliability scoring system. We evaluate the system using prompt engineering and assigning each statement a continuous reliability score from 0.1 to 1, then instructing the model to return a textual explanation alongside the score. Each model's predicted scores are measured against real scores using standard evaluation metrics. TrueGL consistently outperforms other small-scale LLMs and rule-based approaches across all experiments on key evaluation metrics, including MAE, RMSE, and R2. The model's high accuracy, broad content coverage, and ease of use make trustworthy information more accessible and help reduce the spread of false or misleading content online. Our code is publicly available at https://github.com/AlgazinovAleksandr/TrueGL, and our model is publicly released at https://huggingface.co/JoydeepC/trueGL.

  • 6 authors
·
Jun 4, 2025

Where LLM Agents Fail and How They can Learn From Failures

Large Language Model (LLM) agents, which integrate planning, memory, reflection, and tool-use modules, have shown promise in solving complex, multi-step tasks. Yet their sophisticated architectures amplify vulnerability to cascading failures, where a single root-cause error propagates through subsequent decisions, leading to task failure. Current systems lack a framework that can comprehensively understand agent error in a modular and systemic way, and therefore fail to detect these errors accordingly. We address this gap with three contributions. First, we introduce the AgentErrorTaxonomy, a modular classification of failure modes spanning memory, reflection, planning, action, and system-level operations. Second, we construct AgentErrorBench, the first dataset of systematically annotated failure trajectories from ALFWorld, GAIA, and WebShop, grounding error analysis in real-world agent rollouts. Third, we propose AgentDebug, a debugging framework that isolates root-cause failures and provides corrective feedback, enabling agents to recover and iteratively improve. Experiments on AgentErrorBench show that AgentDebug achieves 24% higher all-correct accuracy and 17% higher step accuracy compared to the strongest baseline. Beyond detection, the targeted feedback generated by AgentDebug enables LLM agents to iteratively recover from failures, yielding up to 26% relative improvements in task success across ALFWorld, GAIA, and WebShop. These results establish principled debugging as a pathway to more reliable and adaptive LLM agents. The code and data will be available at https://github.com/ulab-uiuc/AgentDebug

Enhancing Safety and Robustness of Vision-Based Controllers via Reachability Analysis

Autonomous systems, such as self-driving cars and drones, have made significant strides in recent years by leveraging visual inputs and machine learning for decision-making and control. Despite their impressive performance, these vision-based controllers can make erroneous predictions when faced with novel or out-of-distribution inputs. Such errors can cascade into catastrophic system failures and compromise system safety. In this work, we compute Neural Reachable Tubes, which act as parameterized approximations of Backward Reachable Tubes to stress-test the vision-based controllers and mine their failure modes. The identified failures are then used to enhance the system safety through both offline and online methods. The online approach involves training a classifier as a run-time failure monitor to detect closed-loop, system-level failures, subsequently triggering a fallback controller that robustly handles these detected failures to preserve system safety. For the offline approach, we improve the original controller via incremental training using a carefully augmented failure dataset, resulting in a more robust controller that is resistant to the known failure modes. In either approach, the system is safeguarded against shortcomings that transcend the vision-based controller and pertain to the closed-loop safety of the overall system. We validate the proposed approaches on an autonomous aircraft taxiing task that involves using a vision-based controller to guide the aircraft towards the centerline of the runway. Our results show the efficacy of the proposed algorithms in identifying and handling system-level failures, outperforming methods that rely on controller prediction error or uncertainty quantification for identifying system failures.

  • 3 authors
·
Oct 29, 2024

D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using Differential Analysis

Static analysis tools are widely used for vulnerability detection as they understand programs with complex behavior and millions of lines of code. Despite their popularity, static analysis tools are known to generate an excess of false positives. The recent ability of Machine Learning models to understand programming languages opens new possibilities when applied to static analysis. However, existing datasets to train models for vulnerability identification suffer from multiple limitations such as limited bug context, limited size, and synthetic and unrealistic source code. We propose D2A, a differential analysis based approach to label issues reported by static analysis tools. The D2A dataset is built by analyzing version pairs from multiple open source projects. From each project, we select bug fixing commits and we run static analysis on the versions before and after such commits. If some issues detected in a before-commit version disappear in the corresponding after-commit version, they are very likely to be real bugs that got fixed by the commit. We use D2A to generate a large labeled dataset to train models for vulnerability identification. We show that the dataset can be used to build a classifier to identify possible false alarms among the issues reported by static analysis, hence helping developers prioritize and investigate potential true positives first.

  • 9 authors
·
Feb 16, 2021

NL2Repo-Bench: Towards Long-Horizon Repository Generation Evaluation of Coding Agents

Recent advances in coding agents suggest rapid progress toward autonomous software development, yet existing benchmarks fail to rigorously evaluate the long-horizon capabilities required to build complete software systems. Most prior evaluations focus on localized code generation, scaffolded completion, or short-term repair tasks, leaving open the question of whether agents can sustain coherent reasoning, planning, and execution over the extended horizons demanded by real-world repository construction. To address this gap, we present NL2Repo Bench, a benchmark explicitly designed to evaluate the long-horizon repository generation ability of coding agents. Given only a single natural-language requirements document and an empty workspace, agents must autonomously design the architecture, manage dependencies, implement multi-module logic, and produce a fully installable Python library. Our experiments across state-of-the-art open- and closed-source models reveal that long-horizon repository generation remains largely unsolved: even the strongest agents achieve below 40% average test pass rates and rarely complete an entire repository correctly. Detailed analysis uncovers fundamental long-horizon failure modes, including premature termination, loss of global coherence, fragile cross-file dependencies, and inadequate planning over hundreds of interaction steps. NL2Repo Bench establishes a rigorous, verifiable testbed for measuring sustained agentic competence and highlights long-horizon reasoning as a central bottleneck for the next generation of autonomous coding agents.

  • 48 authors
·
Dec 14, 2025 2

I-GLIDE: Input Groups for Latent Health Indicators in Degradation Estimation

Accurate remaining useful life (RUL) prediction hinges on the quality of health indicators (HIs), yet existing methods often fail to disentangle complex degradation mechanisms in multi-sensor systems or quantify uncertainty in HI reliability. This paper introduces a novel framework for HI construction, advancing three key contributions. First, we adapt Reconstruction along Projected Pathways (RaPP) as a health indicator (HI) for RUL prediction for the first time, showing that it outperforms traditional reconstruction error metrics. Second, we show that augmenting RaPP-derived HIs with aleatoric and epistemic uncertainty quantification (UQ) via Monte Carlo dropout and probabilistic latent spaces- significantly improves RUL-prediction robustness. Third, and most critically, we propose indicator groups, a paradigm that isolates sensor subsets to model system-specific degradations, giving rise to our novel method, I-GLIDE which enables interpretable, mechanism-specific diagnostics. Evaluated on data sourced from aerospace and manufacturing systems, our approach achieves marked improvements in accuracy and generalizability compared to state-of-the-art HI methods while providing actionable insights into system failure pathways. This work bridges the gap between anomaly detection and prognostics, offering a principled framework for uncertainty-aware degradation modeling in complex systems.

orailix Orailix
·
Nov 26, 2025 2

Demystifying deep search: a holistic evaluation with hint-free multi-hop questions and factorised metrics

RAG (Retrieval-Augmented Generation) systems and web agents are increasingly evaluated on multi-hop deep search tasks, yet current practice suffers from two major limitations. First, most benchmarks leak the reasoning path in the question text, allowing models to follow surface cues rather than discover reasoning chains autonomously. Second, evaluation is typically reduced to a single pass rate, which collapses diverse behaviours into one score and obscures whether failures stem from inadequate search, poor knowledge use, or inappropriate refusal. To address these issues, we present WebDetective, a benchmark of hint-free multi-hop questions paired with a controlled Wikipedia sandbox that ensures full traceability of model actions, and a holistic evaluation framework that separates search sufficiency, knowledge utilisation, and refusal behaviour. Our evaluation of 25 state-of-the-art models reveals systematic weaknesses across all architectures: models struggle with knowledge utilisation despite having sufficient evidence and demonstrate near-absent appropriate refusal when evidence is lacking. These patterns expose a fundamental gap: today's systems excel at executing given reasoning paths but fail when required to discover them. We develop an agentic workflow, EvidenceLoop, that explicitly targets the challenges our benchmark identifies, incorporating verification loops and systematic evidence tracking that improve both search and synthesis capabilities. This baseline demonstrates that WebDetective's diagnostic framework can guide concrete architectural improvements, establishing our benchmark as a critical tool for developing genuinely autonomous reasoning systems rather than pattern-following agents.

PRBench: Large-Scale Expert Rubrics for Evaluating High-Stakes Professional Reasoning

Frontier model progress is often measured by academic benchmarks, which offer a limited view of performance in real-world professional contexts. Existing evaluations often fail to assess open-ended, economically consequential tasks in high-stakes domains like Legal and Finance, where practical returns are paramount. To address this, we introduce Professional Reasoning Bench (PRBench), a realistic, open-ended, and difficult benchmark of real-world problems in Finance and Law. We open-source its 1,100 expert-authored tasks and 19,356 expert-curated criteria, making it, to our knowledge, the largest public, rubric-based benchmark for both legal and finance domains. We recruit 182 qualified professionals, holding JDs, CFAs, or 6+ years of experience, who contributed tasks inspired by their actual workflows. This process yields significant diversity, with tasks spanning 114 countries and 47 US jurisdictions. Our expert-curated rubrics are validated through a rigorous quality pipeline, including independent expert validation. Subsequent evaluation of 20 leading models reveals substantial room for improvement, with top scores of only 0.39 (Finance) and 0.37 (Legal) on our Hard subsets. We further catalog associated economic impacts of the prompts and analyze performance using human-annotated rubric categories. Our analysis shows that models with similar overall scores can diverge significantly on specific capabilities. Common failure modes include inaccurate judgments, a lack of process transparency and incomplete reasoning, highlighting critical gaps in their reliability for professional adoption.

  • 24 authors
·
Nov 14, 2025

3DPFIX: Improving Remote Novices' 3D Printing Troubleshooting through Human-AI Collaboration

The widespread consumer-grade 3D printers and learning resources online enable novices to self-train in remote settings. While troubleshooting plays an essential part of 3D printing, the process remains challenging for many remote novices even with the help of well-developed online sources, such as online troubleshooting archives and online community help. We conducted a formative study with 76 active 3D printing users to learn how remote novices leverage online resources in troubleshooting and their challenges. We found that remote novices cannot fully utilize online resources. For example, the online archives statically provide general information, making it hard to search and relate their unique cases with existing descriptions. Online communities can potentially ease their struggles by providing more targeted suggestions, but a helper who can provide custom help is rather scarce, making it hard to obtain timely assistance. We propose 3DPFIX, an interactive 3D troubleshooting system powered by the pipeline to facilitate Human-AI Collaboration, designed to improve novices' 3D printing experiences and thus help them easily accumulate their domain knowledge. We built 3DPFIX that supports automated diagnosis and solution-seeking. 3DPFIX was built upon shared dialogues about failure cases from Q&A discourses accumulated in online communities. We leverage social annotations (i.e., comments) to build an annotated failure image dataset for AI classifiers and extract a solution pool. Our summative study revealed that using 3DPFIX helped participants spend significantly less effort in diagnosing failures and finding a more accurate solution than relying on their common practice. We also found that 3DPFIX users learn about 3D printing domain-specific knowledge. We discuss the implications of leveraging community-driven data in developing future Human-AI Collaboration designs.

  • 7 authors
·
Jan 28, 2024

Predicting Maintenance Cessation of Open Source Software Repositories with An Integrated Feature Framework

The maintenance risks of open source software (OSS) projects pose significant threats to the quality, security, and resilience of modern software supply chains. While prior research has proposed diverse approaches for predicting OSS maintenance risk -- leveraging signals ranging from surface features (e.g., stars, commits) to social network analyses and behavioral patterns -- existing methods often suffer from ambiguous operational definitions, limited interpretability, and datasets of insufficient scale or generalizability. In this work, we introduce ``maintenance cessation'', grounded in both explicit archival status and rigorous semantic analysis of project documentation. Building on this foundation, we curate a large-scale, longitudinal dataset of 115,466 GitHub repositories -- encompassing 57,733 confirmed cessation events -- complemented by comprehensive, timeline-based behavioral features. We propose an integrated, multi-perspective feature framework for predicting maintenance cessation, systematically combining user-centric features, maintainer-centric features and project evolution features. AFT survival analysis demonstrates a high C-index (0.846), substantially outperforming models relying only on surface features. Feature ablation and SHAP analysis further confirm the effectiveness and interpretability of our approach. Finally, we demonstrate real-world applicability by deploying a GBSA classifier in the openEuler ecosystem for proactive package risk screening. Our work establishes a scalable, interpretable foundation for maintenance-risk prediction, enabling reproducible risk management across large-scale open source ecosystems.

  • 5 authors
·
Jul 29, 2025

CORE: Benchmarking LLMs Code Reasoning Capabilities through Static Analysis Tasks

Large language models (LLMs) have been widely adopted across diverse software engineering domains, such as code generation, program repair, and vulnerability detection. These applications require understanding beyond surface-level code patterns: value propagation, control flow, and interdependence between program elements. However, existing benchmarks primarily evaluate end-to-end outcomes, such as whether code is correctly repaired or generated, leaving the models ability for program semantic reasoning underexplored. This work presents CoRe, a high-quality, human-verified benchmark designed to evaluate LLMs on fundamental static analysis tasks. CoRe includes 12,553 task instances spanning data dependency, control dependency, and information flow across programs written in C/C++, Java, and Python. To ensure semantic diversity and reasoning complexity, we propose a semantics-aware diverse sampling strategy that selects targets and task instances based on structural coverage and dependency depth. We evaluate 10 mainstream LLMs and show that, while they perform well at identifying dependencies, models still struggle with tasks that require deeper semantic understanding and multi-step reasoning. We further conduct qualitative analyses to uncover key challenges, such as complex control structures and backward dependency patterns, offering insights into improving LLMs code reasoning capabilities.

  • 7 authors
·
Jul 2, 2025 1

Discovering Knowledge Deficiencies of Language Models on Massive Knowledge Base

Large language models (LLMs) possess impressive linguistic capabilities but often fail to faithfully retain factual knowledge, leading to hallucinations and unreliable outputs. Understanding LLMs' knowledge deficiencies by exhaustively evaluating against full-scale knowledge bases is computationally prohibitive, especially for closed-weight models. We propose stochastic error ascent (SEA), a scalable and efficient framework for discovering knowledge deficiencies (errors) in closed-weight LLMs under a strict query budget. Rather than naively probing all knowledge candidates, SEA formulates error discovery as a stochastic optimization process: it iteratively retrieves new high-error candidates by leveraging the semantic similarity to previously observed failures. To further enhance search efficiency and coverage, SEA employs hierarchical retrieval across document and paragraph levels, and constructs a relation directed acyclic graph to model error propagation and identify systematic failure modes. Empirically, SEA uncovers 40.7x more knowledge errors than Automated Capability Discovery and 26.7% more than AutoBencher, while reducing the cost-per-error by 599x and 9x, respectively. Human evaluation confirms the high quality of generated questions, while ablation and convergence analyses validate the contribution of each component in SEA. Further analysis on the discovered errors reveals correlated failure patterns across LLM families and recurring deficits, highlighting the need for better data coverage and targeted fine-tuning in future LLM development.

  • 9 authors
·
Mar 30, 2025 2

Agentic Troubleshooting Guide Automation for Incident Management

Effective incident management in large-scale IT systems relies on troubleshooting guides (TSGs), but their manual execution is slow and error-prone. While recent advances in LLMs offer promise for automating incident management tasks, existing LLM-based solutions lack specialized support for several key challenges, including managing TSG quality issues, interpreting complex control flow, handling data-intensive queries, and exploiting execution parallelism. We first conducted an empirical study on 92 real-world TSGs, and, guided by our findings, we present StepFly, a novel end-to-end agentic framework for troubleshooting guide automation. Our approach features a three-stage workflow: the first stage provides a comprehensive guide together with a tool, TSG Mentor, to assist SREs in improving TSG quality; the second stage performs offline preprocessing using LLMs to extract structured execution DAGs from unstructured TSGs and to create dedicated Query Preparation Plugins (QPPs); and the third stage executes online using a DAG-guided scheduler-executor framework with a memory system to guarantee correct workflow and support parallel execution of independent steps. Our empirical evaluation on a collection of real-world TSGs and incidents demonstrates that StepFly achieves a ~94% success rate on GPT-4.1, outperforming baselines with less time and token consumption. Furthermore, it achieves a remarkable execution time reduction of 32.9% to 70.4% for parallelizable TSGs.

  • 12 authors
·
Oct 11, 2025

Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?

Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still suffer from a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have reduced this gap, its underlying causes remain largely unexplored. In this paper, we address this by showing that the multilingual reasoning gap largely stems from failures in language understanding-the model's inability to represent the multilingual input meaning into the dominant language (i.e., English) within its reasoning trace. This motivates us to examine whether understanding failures can be detected, as this ability could help mitigate the multilingual reasoning gap. To this end, we evaluate a range of detection methods and find that understanding failures can indeed be identified, with supervised approaches performing best. Building on this, we propose Selective Translation, a simple yet effective strategy that translates the multilingual input into English only when an understanding failure is detected. Experimental results show that Selective Translation bridges the multilingual reasoning gap, achieving near full-translation performance while using translation for only about 20% of inputs. Together, our work demonstrates that understanding failures are the primary cause of the multilingual reasoning gap and can be detected and selectively mitigated, providing key insight into its origin and a promising path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis.

  • 5 authors
·
Oct 31, 2025

REMA: A Unified Reasoning Manifold Framework for Interpreting Large Language Model

Understanding how Large Language Models (LLMs) perform complex reasoning and their failure mechanisms is a challenge in interpretability research. To provide a measurable geometric analysis perspective, we define the concept of the Reasoning Manifold, a latent low-dimensional geometric structure formed by the internal representations corresponding to all correctly reasoned generations. This structure can be conceptualized as the embodiment of the effective thinking paths that the model has learned to successfully solve a given task. Based on this concept, we build REMA, a framework that explains the origins of failures by quantitatively comparing the spatial relationships of internal model representations corresponding to both erroneous and correct reasoning samples. Specifically, REMA first quantifies the geometric deviation of each erroneous representation by calculating its k-nearest neighbors distance to the approximated manifold formed by correct representations, thereby providing a unified failure signal. It then localizes the divergence points where these deviations first become significant by tracking this deviation metric across the model's layers and comparing it against a baseline of internal fluctuations from correct representations, thus identifying where the reasoning chain begins to go off-track. Our extensive experiments on diverse language and multimodal models and tasks demonstrate the low-dimensional nature of the reasoning manifold and the high separability between erroneous and correct reasoning representations. The results also validate the effectiveness of the REMA framework in analyzing the origins of reasoning failures. This research connects abstract reasoning failures to measurable geometric deviations in representations, providing new avenues for in-depth understanding and diagnosis of the internal computational processes of black-box models.

  • 8 authors
·
Sep 26, 2025 2

Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation

Bug reports contain the information developers need to triage and fix software bugs. However, unclear, incomplete, or ambiguous information may lead to delays and excessive manual effort spent on bug triage and resolution. In this paper, we explore whether Instruction fine-tuned Large Language Models (LLMs) can automatically transform casual, unstructured bug reports into high-quality, structured bug reports adhering to a standard template. We evaluate three open-source instruction-tuned LLMs (Qwen 2.5, Mistral, and Llama 3.2) against ChatGPT-4o, measuring performance on established metrics such as CTQRS, ROUGE, METEOR, and SBERT. Our experiments show that fine-tuned Qwen 2.5 achieves a CTQRS score of 77%, outperforming both fine-tuned Mistral (71%), Llama 3.2 (63%) and ChatGPT in 3-shot learning (75%). Further analysis reveals that Llama 3.2 shows higher accuracy of detecting missing fields particularly Expected Behavior and Actual Behavior, while Qwen 2.5 demonstrates superior performance in capturing Steps-to-Reproduce, with an F1 score of 76%. Additional testing of the models on other popular projects (e.g., Eclipse, GCC) demonstrates that our approach generalizes well, achieving up to 70% CTQRS in unseen projects' bug reports. These findings highlight the potential of instruction fine-tuning in automating structured bug report generation, reducing manual effort for developers and streamlining the software maintenance process.

  • 2 authors
·
Apr 26, 2025