Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePAFT: Prompt-Agnostic Fine-Tuning
While Large Language Models (LLMs) adapt well to downstream tasks after fine-tuning, this adaptability often compromises prompt robustness, as even minor prompt variations can significantly degrade performance. To address this, we propose Prompt-Agnostic Fine-Tuning(PAFT), a simple yet effective approach that dynamically adjusts prompts during fine-tuning. This encourages the model to learn underlying task principles rather than overfitting to specific prompt formulations. PAFT operates in two stages: First, a diverse set of meaningful, synthetic candidate prompts is constructed. Second, during fine-tuning, prompts are randomly sampled from this set to create dynamic training inputs. Extensive experiments across diverse datasets and LLMs demonstrate that models trained with PAFT exhibit strong robustness and generalization across a wide range of prompts, including unseen ones. This enhanced robustness improves both model performance and inference speed while maintaining training efficiency. Ablation studies further confirm the effectiveness of PAFT.
PromptBench: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts
The increasing reliance on Large Language Models (LLMs) across academia and industry necessitates a comprehensive understanding of their robustness to prompts. In response to this vital need, we introduce PromptBench, a robustness benchmark designed to measure LLMs' resilience to adversarial prompts. This study uses a plethora of adversarial textual attacks targeting prompts across multiple levels: character, word, sentence, and semantic. These prompts are then employed in diverse tasks, such as sentiment analysis, natural language inference, reading comprehension, machine translation, and math problem-solving. Our study generates 4,032 adversarial prompts, meticulously evaluated over 8 tasks and 13 datasets, with 567,084 test samples in total. Our findings demonstrate that contemporary LLMs are vulnerable to adversarial prompts. Furthermore, we present comprehensive analysis to understand the mystery behind prompt robustness and its transferability. We then offer insightful robustness analysis and pragmatic recommendations for prompt composition, beneficial to both researchers and everyday users. We make our code, prompts, and methodologies to generate adversarial prompts publicly accessible, thereby enabling and encouraging collaborative exploration in this pivotal field: https://github.com/microsoft/promptbench.
ProSA: Assessing and Understanding the Prompt Sensitivity of LLMs
Large language models (LLMs) have demonstrated impressive capabilities across various tasks, but their performance is highly sensitive to the prompts utilized. This variability poses challenges for accurate assessment and user satisfaction. Current research frequently overlooks instance-level prompt variations and their implications on subjective evaluations. To address these shortcomings, we introduce ProSA, a framework designed to evaluate and comprehend prompt sensitivity in LLMs. ProSA incorporates a novel sensitivity metric, PromptSensiScore, and leverages decoding confidence to elucidate underlying mechanisms. Our extensive study, spanning multiple tasks, uncovers that prompt sensitivity fluctuates across datasets and models, with larger models exhibiting enhanced robustness. We observe that few-shot examples can alleviate this sensitivity issue, and subjective evaluations are also susceptible to prompt sensitivities, particularly in complex, reasoning-oriented tasks. Furthermore, our findings indicate that higher model confidence correlates with increased prompt robustness. We believe this work will serve as a helpful tool in studying prompt sensitivity of LLMs. The project is released at: https://github.com/open-compass/ProSA .
IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators
Code understanding and generation have fast become some of the most popular applications of language models (LMs). Nonetheless, research on multilingual aspects of Code-LMs (i.e., LMs for code generation) such as cross-lingual transfer between different programming languages, language-specific data augmentation, and post-hoc LM adaptation, alongside exploitation of data sources other than the original textual content, has been much sparser than for their natural language counterparts. In particular, most mainstream Code-LMs have been pre-trained on source code files alone. In this work, we investigate the prospect of leveraging readily available compiler intermediate representations (IR) - shared across programming languages - to improve the multilingual capabilities of Code-LMs and facilitate cross-lingual transfer. To this end, we first compile SLTrans, a parallel dataset consisting of nearly 4M self-contained source code files coupled with respective intermediate representations. Next, starting from various base Code-LMs (ranging in size from 1.1B to 7.3B parameters), we carry out continued causal language modelling training on SLTrans, forcing the Code-LMs to (1) learn the IR language and (2) align the IR constructs with respective constructs of various programming languages. Our resulting models, dubbed IRCoder, display sizeable and consistent gains across a wide variety of code generation tasks and metrics, including prompt robustness, multilingual code completion, code understanding, and instruction following.
Multimodal Grounding for Embodied AI via Augmented Reality Headsets for Natural Language Driven Task Planning
Recent advances in generative modeling have spurred a resurgence in the field of Embodied Artificial Intelligence (EAI). EAI systems typically deploy large language models to physical systems capable of interacting with their environment. In our exploration of EAI for industrial domains, we successfully demonstrate the feasibility of co-located, human-robot teaming. Specifically, we construct an experiment where an Augmented Reality (AR) headset mediates information exchange between an EAI agent and human operator for a variety of inspection tasks. To our knowledge the use of an AR headset for multimodal grounding and the application of EAI to industrial tasks are novel contributions within Embodied AI research. In addition, we highlight potential pitfalls in EAI's construction by providing quantitative and qualitative analysis on prompt robustness.
A Single Character can Make or Break Your LLM Evals
Common Large Language model (LLM) evaluations rely on demonstration examples to steer models' responses to the desired style. While the number of examples used has been studied and standardized, the choice of how to format examples is less investigated. In evaluation protocols and real world usage, users face the choice how to separate in-context examples: use a comma? new line? semi-colon? hashtag? etc.? Surprisingly, we find this seemingly minor choice can dramatically alter model response quality. Across leading model families (Llama, Qwen, Gemma), performance on MMLU for example can vary by pm 23% depending on the choice of delimiter. In fact, one can manipulate model rankings to put any model in the lead by only modifying the single character separating examples. We find LLMs' brittleness pervades topics, model families, and doesn't improve with scale. By probing attention head scores, we find that good-performing delimiters steer attention towards key tokens in the input. Finally, we explore methods to improve LLMs' robustness to the choice of delimiter. We find specifying the selected delimiter in the prompt boosts robustness and offer practical recommendations for the best-performing delimiters to select.
Adversarial Robustness of Prompt-based Few-Shot Learning for Natural Language Understanding
State-of-the-art few-shot learning (FSL) methods leverage prompt-based fine-tuning to obtain remarkable results for natural language understanding (NLU) tasks. While much of the prior FSL methods focus on improving downstream task performance, there is a limited understanding of the adversarial robustness of such methods. In this work, we conduct an extensive study of several state-of-the-art FSL methods to assess their robustness to adversarial perturbations. To better understand the impact of various factors towards robustness (or the lack of it), we evaluate prompt-based FSL methods against fully fine-tuned models for aspects such as the use of unlabeled data, multiple prompts, number of few-shot examples, model size and type. Our results on six GLUE tasks indicate that compared to fully fine-tuned models, vanilla FSL methods lead to a notable relative drop in task performance (i.e., are less robust) in the face of adversarial perturbations. However, using (i) unlabeled data for prompt-based FSL and (ii) multiple prompts flip the trend. We further demonstrate that increasing the number of few-shot examples and model size lead to increased adversarial robustness of vanilla FSL methods. Broadly, our work sheds light on the adversarial robustness evaluation of prompt-based FSL methods for NLU tasks.
Flip-Flop Consistency: Unsupervised Training for Robustness to Prompt Perturbations in LLMs
Large Language Models (LLMs) often produce inconsistent answers when faced with different phrasings of the same prompt. In this paper, we propose Flip-Flop Consistency (F^2C), an unsupervised training method that improves robustness to such perturbations. F^2C is composed of two key components. The first, Consensus Cross-Entropy (CCE), uses a majority vote across prompt variations to create a hard pseudo-label. The second is a representation alignment loss that pulls lower-confidence and non-majority predictors toward the consensus established by high-confidence, majority-voting variations. We evaluate our method on 11 datasets spanning four NLP tasks, with 4-15 prompt variations per dataset. On average, F^2C raises observed agreement by 11.62%, improves mean F_1 by 8.94%, and reduces performance variance across formats by 3.29%. In out-of-domain evaluations, F^2C generalizes effectively, increasing F_1 and agreement while decreasing variance across most source-target pairs. Finally, when trained on only a subset of prompt perturbations and evaluated on held-out formats, F^2C consistently improves both performance and agreement while reducing variance. These findings highlight F^2C as an effective unsupervised method for enhancing LLM consistency, performance, and generalization under prompt perturbations. Code is available at https://github.com/ParsaHejabi/Flip-Flop-Consistency-Unsupervised-Training-for-Robustness-to-Prompt-Perturbations-in-LLMs.
Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attacks pose a significant security threat to LLM-integrated applications. Model-level defenses have shown strong effectiveness, but are currently deployed into commercial-grade models in a closed-source manner. We believe open-source models are needed by the AI security community, where co-development of attacks and defenses through open research drives scientific progress in mitigation against prompt injection attacks. To this end, we develop Meta SecAlign, the first open-source and open-weight LLM with built-in model-level defense that achieves commercial-grade model performance. We provide complete details of our training recipe, which utilizes an improved version of the SOTA SecAlign defense. Evaluations on 9 utility benchmarks and 7 security benchmarks show that Meta SecAlign, despite being trained on a generic instruction-tuning dataset, confers security in unseen downstream tasks, including tool-calling and agentic web navigation, in addition general instruction-following. Our best model -- Meta-SecAlign-70B -- achieves state-of-the-art robustness against prompt injection attacks and comparable utility to closed-source commercial LLM with model-level defense.
PROMPTFUZZ: Harnessing Fuzzing Techniques for Robust Testing of Prompt Injection in LLMs
Large Language Models (LLMs) have gained widespread use in various applications due to their powerful capability to generate human-like text. However, prompt injection attacks, which involve overwriting a model's original instructions with malicious prompts to manipulate the generated text, have raised significant concerns about the security and reliability of LLMs. Ensuring that LLMs are robust against such attacks is crucial for their deployment in real-world applications, particularly in critical tasks. In this paper, we propose PROMPTFUZZ, a novel testing framework that leverages fuzzing techniques to systematically assess the robustness of LLMs against prompt injection attacks. Inspired by software fuzzing, PROMPTFUZZ selects promising seed prompts and generates a diverse set of prompt injections to evaluate the target LLM's resilience. PROMPTFUZZ operates in two stages: the prepare phase, which involves selecting promising initial seeds and collecting few-shot examples, and the focus phase, which uses the collected examples to generate diverse, high-quality prompt injections. Using PROMPTFUZZ, we can uncover more vulnerabilities in LLMs, even those with strong defense prompts. By deploying the generated attack prompts from PROMPTFUZZ in a real-world competition, we achieved the 7th ranking out of over 4000 participants (top 0.14%) within 2 hours. Additionally, we construct a dataset to fine-tune LLMs for enhanced robustness against prompt injection attacks. While the fine-tuned model shows improved robustness, PROMPTFUZZ continues to identify vulnerabilities, highlighting the importance of robust testing for LLMs. Our work emphasizes the critical need for effective testing tools and provides a practical framework for evaluating and improving the robustness of LLMs against prompt injection attacks.
AEGIS : Automated Co-Evolutionary Framework for Guarding Prompt Injections Schema
Prompt injection attacks pose a significant challenge to the safe deployment of Large Language Models (LLMs) in real-world applications. While prompt-based detection offers a lightweight and interpretable defense strategy, its effectiveness has been hindered by the need for manual prompt engineering. To address this issue, we propose AEGIS , an Automated co-Evolutionary framework for Guarding prompt Injections Schema. Both attack and defense prompts are iteratively optimized against each other using a gradient-like natural language prompt optimization technique. This framework enables both attackers and defenders to autonomously evolve via a Textual Gradient Optimization (TGO) module, leveraging feedback from an LLM-guided evaluation loop. We evaluate our system on a real-world assignment grading dataset of prompt injection attacks and demonstrate that our method consistently outperforms existing baselines, achieving superior robustness in both attack success and detection. Specifically, the attack success rate (ASR) reaches 1.0, representing an improvement of 0.26 over the baseline. For detection, the true positive rate (TPR) improves by 0.23 compared to the previous best work, reaching 0.84, and the true negative rate (TNR) remains comparable at 0.89. Ablation studies confirm the importance of co-evolution, gradient buffering, and multi-objective optimization. We also confirm that this framework is effective in different LLMs. Our results highlight the promise of adversarial training as a scalable and effective approach for guarding prompt injections.
FairEval: Evaluating Fairness in LLM-Based Recommendations with Personality Awareness
Recent advances in Large Language Models (LLMs) have enabled their application to recommender systems (RecLLMs), yet concerns remain regarding fairness across demographic and psychological user dimensions. We introduce FairEval, a novel evaluation framework to systematically assess fairness in LLM-based recommendations. FairEval integrates personality traits with eight sensitive demographic attributes,including gender, race, and age, enabling a comprehensive assessment of user-level bias. We evaluate models, including ChatGPT 4o and Gemini 1.5 Flash, on music and movie recommendations. FairEval's fairness metric, PAFS, achieves scores up to 0.9969 for ChatGPT 4o and 0.9997 for Gemini 1.5 Flash, with disparities reaching 34.79 percent. These results highlight the importance of robustness in prompt sensitivity and support more inclusive recommendation systems.
"My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models
The open-ended nature of language generation makes the evaluation of autoregressive large language models (LLMs) challenging. One common evaluation approach uses multiple-choice questions (MCQ) to limit the response space. The model is then evaluated by ranking the candidate answers by the log probability of the first token prediction. However, first-tokens may not consistently reflect the final response output, due to model's diverse response styles such as starting with "Sure" or refusing to answer. Consequently, MCQ evaluation is not indicative of model behaviour when interacting with users. But by how much? We evaluate how aligned first-token evaluation is with the text output along several dimensions, namely final option choice, refusal rate, choice distribution and robustness under prompt perturbation. Our results show that the two approaches are severely misaligned on all dimensions, reaching mismatch rates over 60%. Models heavily fine-tuned on conversational or safety data are especially impacted. Crucially, models remain misaligned even when we increasingly constrain prompts, i.e., force them to start with an option letter or example template. Our findings i) underscore the importance of inspecting the text output as well and ii) caution against relying solely on first-token evaluation.
Can ChatGPT Assess Human Personalities? A General Evaluation Framework
Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and InstructGPT. Our experiments reveal ChatGPT's ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.
CAPTURE: Context-Aware Prompt Injection Testing and Robustness Enhancement
Prompt injection remains a major security risk for large language models. However, the efficacy of existing guardrail models in context-aware settings remains underexplored, as they often rely on static attack benchmarks. Additionally, they have over-defense tendencies. We introduce CAPTURE, a novel context-aware benchmark assessing both attack detection and over-defense tendencies with minimal in-domain examples. Our experiments reveal that current prompt injection guardrail models suffer from high false negatives in adversarial cases and excessive false positives in benign scenarios, highlighting critical limitations. To demonstrate our framework's utility, we train CaptureGuard on our generated data. This new model drastically reduces both false negative and false positive rates on our context-aware datasets while also generalizing effectively to external benchmarks, establishing a path toward more robust and practical prompt injection defenses.
Robustness-aware Automatic Prompt Optimization
The performance of Large Language Models (LLMs) is based on the quality of the prompts and the semantic and structural integrity information of the input data. However, current prompt generation methods primarily focus on generating prompts for clean input data, often overlooking the impact of perturbed inputs on prompt performance. To address this limitation, we propose BATprompt (By Adversarial Training prompt), a novel method for prompt generation designed to withstand input perturbations (such as typos in the input). Inspired by adversarial training techniques, BATprompt demonstrates strong performance on a variety of perturbed tasks through a two-step process: adversarial perturbation and iterative optimization on unperturbed input via LLM. Unlike conventional adversarial attack methods, BATprompt avoids reliance on real gradients or model parameters. Instead, it leverages the advanced reasoning, language understanding and self reflection capabilities of LLMs to simulate gradients, guiding the generation of adversarial perturbations and optimizing prompt performance. In our experiments, we evaluate BATprompt on multiple datasets across both language understanding and generation tasks. The results indicate that BATprompt outperforms existing prompt generation methods, delivering superior robustness and performance under diverse perturbation scenarios.
Evaluating the Instruction-Following Robustness of Large Language Models to Prompt Injection
Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following, becoming increasingly crucial across various applications. However, this capability brings with it the risk of prompt injection attacks, where attackers inject instructions into LLMs' input to elicit undesirable actions or content. Understanding the robustness of LLMs against such attacks is vital for their safe implementation. In this work, we establish a benchmark to evaluate the robustness of instruction-following LLMs against prompt injection attacks. Our objective is to determine the extent to which LLMs can be influenced by injected instructions and their ability to differentiate between these injected and original target instructions. Through extensive experiments with leading instruction-following LLMs, we uncover significant vulnerabilities in their robustness to such attacks. Our results indicate that some models are overly tuned to follow any embedded instructions in the prompt, overly focusing on the latter parts of the prompt without fully grasping the entire context. By contrast, models with a better grasp of the context and instruction-following capabilities will potentially be more susceptible to compromise by injected instructions. This underscores the need to shift the focus from merely enhancing LLMs' instruction-following capabilities to improving their overall comprehension of prompts and discernment of instructions that are appropriate to follow. We hope our in-depth analysis offers insights into the underlying causes of these vulnerabilities, aiding in the development of future solutions. Code and data are available at https://github.com/Leezekun/instruction-following-robustness-eval
On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-based Method
Most works on modeling the conversation history in Conversational Question Answering (CQA) report a single main result on a common CQA benchmark. While existing models show impressive results on CQA leaderboards, it remains unclear whether they are robust to shifts in setting (sometimes to more realistic ones), training data size (e.g. from large to small sets) and domain. In this work, we design and conduct the first large-scale robustness study of history modeling approaches for CQA. We find that high benchmark scores do not necessarily translate to strong robustness, and that various methods can perform extremely differently under different settings. Equipped with the insights from our study, we design a novel prompt-based history modeling approach, and demonstrate its strong robustness across various settings. Our approach is inspired by existing methods that highlight historic answers in the passage. However, instead of highlighting by modifying the passage token embeddings, we add textual prompts directly in the passage text. Our approach is simple, easy-to-plug into practically any model, and highly effective, thus we recommend it as a starting point for future model developers. We also hope that our study and insights will raise awareness to the importance of robustness-focused evaluation, in addition to obtaining high leaderboard scores, leading to better CQA systems.
Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning
Multimodal learning with incomplete modality is practical and challenging. Recently, researchers have focused on enhancing the robustness of pre-trained MultiModal Transformers (MMTs) under missing modality conditions by applying learnable prompts. However, these prompt-based methods face several limitations: (1) incomplete modalities provide restricted modal cues for task-specific inference, (2) dummy imputation for missing content causes information loss and introduces noise, and (3) static prompts are instance-agnostic, offering limited knowledge for instances with various missing conditions. To address these issues, we propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework. RAGPT comprises three modules: (I) the multi-channel retriever, which identifies similar instances through a within-modality retrieval strategy, (II) the missing modality generator, which recovers missing information using retrieved contexts, and (III) the context-aware prompter, which captures contextual knowledge from relevant instances and generates dynamic prompts to largely enhance the MMT's robustness. Extensive experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems. The code of our work and prompt-based baselines is available at https://github.com/Jian-Lang/RAGPT.
Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
Robust Prompt Optimization for Defending Language Models Against Jailbreaking Attacks
Despite advances in AI alignment, language models (LM) remain vulnerable to adversarial attacks or jailbreaking, in which adversaries modify input prompts to induce harmful behavior. While some defenses have been proposed, they focus on narrow threat models and fall short of a strong defense, which we posit should be effective, universal, and practical. To achieve this, we propose the first adversarial objective for defending LMs against jailbreaking attacks and an algorithm, robust prompt optimization (RPO), that uses gradient-based token optimization to enforce harmless outputs. This results in an easily accessible suffix that significantly improves robustness to both jailbreaks seen during optimization and unknown, held-out jailbreaks, reducing the attack success rate on Starling-7B from 84% to 8.66% across 20 jailbreaks. In addition, we find that RPO has a minor effect on normal LM use, is successful under adaptive attacks, and can transfer to black-box models, reducing the success rate of the strongest attack on GPT-4 from 92% to 6%.
Robust Prompt Optimization for Large Language Models Against Distribution Shifts
Large Language Model (LLM) has demonstrated significant ability in various Natural Language Processing tasks. However, their effectiveness is highly dependent on the phrasing of the task prompt, leading to research on automatic prompt optimization using labeled task data. We reveal that these prompt optimization techniques are vulnerable to distribution shifts such as subpopulation shifts, which are common for LLMs in real-world scenarios such as customer reviews analysis. In this light, we propose a new problem of robust prompt optimization for LLMs against distribution shifts, which requires the prompt optimized over the labeled source group can simultaneously generalize to an unlabeled target group. To solve this problem, we propose Generalized Prompt Optimization framework, which incorporates the unlabeled data from the target group into prompt optimization. Extensive experimental results demonstrate the effectiveness of the proposed framework with significant performance improvement on the target group and comparable performance on the source group.
On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
Attention Tracker: Detecting Prompt Injection Attacks in LLMs
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Pretrained large-scale vision-language models like CLIP have exhibited strong generalization over unseen tasks. Yet imperceptible adversarial perturbations can significantly reduce CLIP's performance on new tasks. In this work, we identify and explore the problem of adapting large-scale models for zero-shot adversarial robustness. We first identify two key factors during model adaption -- training losses and adaptation methods -- that affect the model's zero-shot adversarial robustness. We then propose a text-guided contrastive adversarial training loss, which aligns the text embeddings and the adversarial visual features with contrastive learning on a small set of training data. We apply this training loss to two adaption methods, model finetuning and visual prompt tuning. We find that visual prompt tuning is more effective in the absence of texts, while finetuning wins in the existence of text guidance. Overall, our approach significantly improves the zero-shot adversarial robustness over CLIP, seeing an average improvement of over 31 points over ImageNet and 15 zero-shot datasets. We hope this work can shed light on understanding the zero-shot adversarial robustness of large-scale models.
Lessons from Defending Gemini Against Indirect Prompt Injections
Gemini is increasingly used to perform tasks on behalf of users, where function-calling and tool-use capabilities enable the model to access user data. Some tools, however, require access to untrusted data introducing risk. Adversaries can embed malicious instructions in untrusted data which cause the model to deviate from the user's expectations and mishandle their data or permissions. In this report, we set out Google DeepMind's approach to evaluating the adversarial robustness of Gemini models and describe the main lessons learned from the process. We test how Gemini performs against a sophisticated adversary through an adversarial evaluation framework, which deploys a suite of adaptive attack techniques to run continuously against past, current, and future versions of Gemini. We describe how these ongoing evaluations directly help make Gemini more resilient against manipulation.
Exploring LLM Reasoning Through Controlled Prompt Variations
This study investigates the reasoning robustness of large language models (LLMs) on mathematical problem-solving tasks under systematically introduced input perturbations. Using the GSM8K dataset as a controlled testbed, we evaluate how well state-of-the-art models maintain logical consistency and correctness when confronted with four categories of prompt perturbations: irrelevant context, pathological instructions, factually relevant but non-essential context, and a combination of the latter two. Our experiments, conducted on thirteen open-source and closed-source LLMs, reveal that introducing irrelevant context within the model's context window significantly degrades performance, suggesting that distinguishing essential from extraneous details remains a pressing challenge. Surprisingly, performance regressions are relatively insensitive to the complexity of the reasoning task, as measured by the number of steps required, and are not strictly correlated with model size. Moreover, we observe that certain perturbations inadvertently trigger chain-of-thought-like reasoning behaviors, even without explicit prompting. Our findings highlight critical vulnerabilities in current LLMs and underscore the need for improved robustness against noisy, misleading, and contextually dense inputs, paving the way for more resilient and reliable reasoning in real-world applications.
DPL: Decoupled Prompt Learning for Vision-Language Models
Prompt learning has emerged as an efficient and effective approach for transferring foundational Vision-Language Models (e.g., CLIP) to downstream tasks. However, current methods tend to overfit to seen categories, thereby limiting their generalization ability for unseen classes. In this paper, we propose a new method, Decoupled Prompt Learning (DPL), which reformulates the attention in prompt learning to alleviate this problem. Specifically, we theoretically investigate the collaborative process between prompts and instances (i.e., image patches/text tokens) by reformulating the original self-attention into four separate sub-processes. Through detailed analysis, we observe that certain sub-processes can be strengthened to bolster robustness and generalizability by some approximation techniques. Furthermore, we introduce language-conditioned textual prompting based on decoupled attention to naturally preserve the generalization of text input. Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning. By combining the proposed techniques, our approach achieves state-of-the-art performance on three representative benchmarks encompassing 15 image recognition datasets, while maintaining parameter-efficient. Moreover, our DPL does not rely on any auxiliary regularization task or extra training data, further demonstrating its remarkable generalization ability.
VPTracker: Global Vision-Language Tracking via Visual Prompt and MLLM
Vision-Language Tracking aims to continuously localize objects described by a visual template and a language description. Existing methods, however, are typically limited to local search, making them prone to failures under viewpoint changes, occlusions, and rapid target movements. In this work, we introduce the first global tracking framework based on Multimodal Large Language Models (VPTracker), exploiting their powerful semantic reasoning to locate targets across the entire image space. While global search improves robustness and reduces drift, it also introduces distractions from visually or semantically similar objects. To address this, we propose a location-aware visual prompting mechanism that incorporates spatial priors into the MLLM. Specifically, we construct a region-level prompt based on the target's previous location, enabling the model to prioritize region-level recognition and resort to global inference only when necessary. This design retains the advantages of global tracking while effectively suppressing interference from distracting visual content. Extensive experiments show that our approach significantly enhances tracking stability and target disambiguation under challenging scenarios, opening a new avenue for integrating MLLMs into visual tracking. Code is available at https://github.com/jcwang0602/VPTracker.
Multi-Prompt Progressive Alignment for Multi-Source Unsupervised Domain Adaptation
Large Vision-Language Models like CLIP have become a powerful foundation for Unsupervised Domain Adaptation due to their strong zero-shot generalization. State-of-the-art methods typically leverage CLIP to generate pseudo-labels for the target domain, then fine-tune the model to learn domain-invariant features. However, these methods attempt to align source and target domains using all pseudo-labeled data simultaneously. This one-shot alignment struggles with noisy, hard-to-classify samples, leading to error propagation and suboptimal feature learning. The problem is even more amplified in the multi-source scenario, where diverse domain gaps and varying noise levels across multiple source domains further destabilize the alignment process. To address this issue, in this work, we propose a progressive alignment strategy for adapting CLIP to unlabeled downstream task. Our method begins by training the model on a high-confidence subset of target samples, allowing it to first learn a well-aligned representation from the most reliable data. As training progresses, it gradually incorporates more challenging samples, guiding the model to refine its understanding without being overwhelmed by initial label noise. This progressive approach effectively mitigates confirmation bias and promotes a more robust convergence, allowing for the learning of genuinely domain-invariant features. We name our approach MP^2A and test it on three popular UDA benchmarks, namely ImageCLEF, Office-Home, and the most challenging DomainNet. Experiments showcase that MP^2A achieves state-of-the-art performance when compared with most recent CLIP-based MS-UDA approaches, demonstrating the effectiveness of our approach.
Adversarial Prompt Evaluation: Systematic Benchmarking of Guardrails Against Prompt Input Attacks on LLMs
As large language models (LLMs) become integrated into everyday applications, ensuring their robustness and security is increasingly critical. In particular, LLMs can be manipulated into unsafe behaviour by prompts known as jailbreaks. The variety of jailbreak styles is growing, necessitating the use of external defences known as guardrails. While many jailbreak defences have been proposed, not all defences are able to handle new out-of-distribution attacks due to the narrow segment of jailbreaks used to align them. Moreover, the lack of systematisation around defences has created significant gaps in their practical application. In this work, we perform systematic benchmarking across 15 different defences, considering a broad swathe of malicious and benign datasets. We find that there is significant performance variation depending on the style of jailbreak a defence is subject to. Additionally, we show that based on current datasets available for evaluation, simple baselines can display competitive out-of-distribution performance compared to many state-of-the-art defences. Code is available at https://github.com/IBM/Adversarial-Prompt-Evaluation.
Multimodal Prompt Learning with Missing Modalities for Sentiment Analysis and Emotion Recognition
The development of multimodal models has significantly advanced multimodal sentiment analysis and emotion recognition. However, in real-world applications, the presence of various missing modality cases often leads to a degradation in the model's performance. In this work, we propose a novel multimodal Transformer framework using prompt learning to address the issue of missing modalities. Our method introduces three types of prompts: generative prompts, missing-signal prompts, and missing-type prompts. These prompts enable the generation of missing modality features and facilitate the learning of intra- and inter-modality information. Through prompt learning, we achieve a substantial reduction in the number of trainable parameters. Our proposed method outperforms other methods significantly across all evaluation metrics. Extensive experiments and ablation studies are conducted to demonstrate the effectiveness and robustness of our method, showcasing its ability to effectively handle missing modalities.
Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting
In this paper, we investigate the adversarial robustness of vision transformers that are equipped with BERT pretraining (e.g., BEiT, MAE). A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods. This observation drives us to rethink the basic differences between these BERT pretraining methods and how these differences affect the robustness against adversarial perturbations. Our empirical analysis reveals that the adversarial robustness of BERT pretraining is highly related to the reconstruction target, i.e., predicting the raw pixels of masked image patches will degrade more adversarial robustness of the model than predicting the semantic context, since it guides the model to concentrate more on medium-/high-frequency components of images. Based on our analysis, we provide a simple yet effective way to boost the adversarial robustness of MAE. The basic idea is using the dataset-extracted domain knowledge to occupy the medium-/high-frequency of images, thus narrowing the optimization space of adversarial perturbations. Specifically, we group the distribution of pretraining data and optimize a set of cluster-specific visual prompts on frequency domain. These prompts are incorporated with input images through prototype-based prompt selection during test period. Extensive evaluation shows that our method clearly boost MAE's adversarial robustness while maintaining its clean performance on ImageNet-1k classification. Our code is available at: https://github.com/shikiw/RobustMAE.
DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
State of What Art? A Call for Multi-Prompt LLM Evaluation
Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
Vision-Driven Prompt Optimization for Large Language Models in Multimodal Generative Tasks
Vision generation remains a challenging frontier in artificial intelligence, requiring seamless integration of visual understanding and generative capabilities. In this paper, we propose a novel framework, Vision-Driven Prompt Optimization (VDPO), that leverages Large Language Models (LLMs) to dynamically generate textual prompts from visual inputs, guiding high-fidelity image synthesis. VDPO combines a visual embedding prompt tuner, a textual instruction generator, and a vision generation module to achieve state-of-the-art performance in diverse vision generation tasks. Extensive experiments on benchmarks such as COCO and Sketchy demonstrate that VDPO consistently outperforms existing methods, achieving significant improvements in FID, LPIPS, and BLEU/CIDEr scores. Additional analyses reveal the scalability, robustness, and generalization capabilities of VDPO, making it a versatile solution for in-domain and out-of-domain tasks. Human evaluations further validate the practical superiority of VDPO in generating visually appealing and semantically coherent outputs.
Asking Again and Again: Exploring LLM Robustness to Repeated Questions
This study investigates whether repeating questions within prompts influences the performance of large language models (LLMs). We hypothesize that reiterating a question within a single prompt might enhance the model's focus on key elements of the query. We evaluate five recent LLMs -- including GPT-4o-mini, DeepSeek-V3, and smaller open-source models -- on three reading comprehension datasets under different prompt settings, varying question repetition levels (1, 3, or 5 times per prompt). Our results demonstrate that question repetition can increase models' accuracy by up to 6%. However, across all models, settings, and datasets, we do not find the result statistically significant. These findings provide insights into prompt design and LLM behavior, suggesting that repetition alone does not significantly impact output quality.
ReCode: Robustness Evaluation of Code Generation Models
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
IPAD: Inverse Prompt for AI Detection -- A Robust and Explainable LLM-Generated Text Detector
Large Language Models (LLMs) have attained human-level fluency in text generation, which complicates the distinguishing between human-written and LLM-generated texts. This increases the risk of misuse and highlights the need for reliable detectors. Yet, existing detectors exhibit poor robustness on out-of-distribution (OOD) data and attacked data, which is critical for real-world scenarios. Also, they struggle to provide explainable evidence to support their decisions, thus undermining the reliability. In light of these challenges, we propose IPAD (Inverse Prompt for AI Detection), a novel framework consisting of a Prompt Inverter that identifies predicted prompts that could have generated the input text, and a Distinguisher that examines how well the input texts align with the predicted prompts. We develop and examine two versions of Distinguishers. Empirical evaluations demonstrate that both Distinguishers perform significantly better than the baseline methods, with version2 outperforming baselines by 9.73% on in-distribution data (F1-score) and 12.65% on OOD data (AUROC). Furthermore, a user study is conducted to illustrate that IPAD enhances the AI detection trustworthiness by allowing users to directly examine the decision-making evidence, which provides interpretable support for its state-of-the-art detection results.
POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning
Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.
Why Is Prompt Tuning for Vision-Language Models Robust to Noisy Labels?
Vision-language models such as CLIP learn a generic text-image embedding from large-scale training data. A vision-language model can be adapted to a new classification task through few-shot prompt tuning. We find that such a prompt tuning process is highly robust to label noises. This intrigues us to study the key reasons contributing to the robustness of the prompt tuning paradigm. We conducted extensive experiments to explore this property and find the key factors are: 1) the fixed classname tokens provide a strong regularization to the optimization of the model, reducing gradients induced by the noisy samples; 2) the powerful pre-trained image-text embedding that is learned from diverse and generic web data provides strong prior knowledge for image classification. Further, we demonstrate that noisy zero-shot predictions from CLIP can be used to tune its own prompt, significantly enhancing prediction accuracy in the unsupervised setting. The code is available at https://github.com/CEWu/PTNL.
Rethinking the Event Coding Pipeline with Prompt Entailment
For monitoring crises, political events are extracted from the news. The large amount of unstructured full-text event descriptions makes a case-by-case analysis unmanageable, particularly for low-resource humanitarian aid organizations. This creates a demand to classify events into event types, a task referred to as event coding. Typically, domain experts craft an event type ontology, annotators label a large dataset and technical experts develop a supervised coding system. In this work, we propose PR-ENT, a new event coding approach that is more flexible and resource-efficient, while maintaining competitive accuracy: first, we extend an event description such as "Military injured two civilians'' by a template, e.g. "People were [Z]" and prompt a pre-trained (cloze) language model to fill the slot Z. Second, we select answer candidates Z* = {"injured'', "hurt"...} by treating the event description as premise and the filled templates as hypothesis in a textual entailment task. This allows domain experts to draft the codebook directly as labeled prompts and interpretable answer candidates. This human-in-the-loop process is guided by our interactive codebook design tool. We evaluate PR-ENT in several robustness checks: perturbing the event description and prompt template, restricting the vocabulary and removing contextual information.
Prompt Tuning for Generative Multimodal Pretrained Models
Prompt tuning has become a new paradigm for model tuning and it has demonstrated success in natural language pretraining and even vision pretraining. In this work, we explore the transfer of prompt tuning to multimodal pretraining, with a focus on generative multimodal pretrained models, instead of contrastive ones. Specifically, we implement prompt tuning on the unified sequence-to-sequence pretrained model adaptive to both understanding and generation tasks. Experimental results demonstrate that the light-weight prompt tuning can achieve comparable performance with finetuning and surpass other light-weight tuning methods. Besides, in comparison with finetuned models, the prompt-tuned models demonstrate improved robustness against adversarial attacks. We further figure out that experimental factors, including the prompt length, prompt depth, and reparameteratization, have great impacts on the model performance, and thus we empirically provide a recommendation for the setups of prompt tuning. Despite the observed advantages, we still find some limitations in prompt tuning, and we correspondingly point out the directions for future studies. Codes are available at https://github.com/OFA-Sys/OFA
The Attacker Moves Second: Stronger Adaptive Attacks Bypass Defenses Against Llm Jailbreaks and Prompt Injections
How should we evaluate the robustness of language model defenses? Current defenses against jailbreaks and prompt injections (which aim to prevent an attacker from eliciting harmful knowledge or remotely triggering malicious actions, respectively) are typically evaluated either against a static set of harmful attack strings, or against computationally weak optimization methods that were not designed with the defense in mind. We argue that this evaluation process is flawed. Instead, we should evaluate defenses against adaptive attackers who explicitly modify their attack strategy to counter a defense's design while spending considerable resources to optimize their objective. By systematically tuning and scaling general optimization techniques-gradient descent, reinforcement learning, random search, and human-guided exploration-we bypass 12 recent defenses (based on a diverse set of techniques) with attack success rate above 90% for most; importantly, the majority of defenses originally reported near-zero attack success rates. We believe that future defense work must consider stronger attacks, such as the ones we describe, in order to make reliable and convincing claims of robustness.
VPA: Fully Test-Time Visual Prompt Adaptation
Textual prompt tuning has demonstrated significant performance improvements in adapting natural language processing models to a variety of downstream tasks by treating hand-engineered prompts as trainable parameters. Inspired by the success of textual prompting, several studies have investigated the efficacy of visual prompt tuning. In this work, we present Visual Prompt Adaptation (VPA), the first framework that generalizes visual prompting with test-time adaptation. VPA introduces a small number of learnable tokens, enabling fully test-time and storage-efficient adaptation without necessitating source-domain information. We examine our VPA design under diverse adaptation settings, encompassing single-image, batched-image, and pseudo-label adaptation. We evaluate VPA on multiple tasks, including out-of-distribution (OOD) generalization, corruption robustness, and domain adaptation. Experimental results reveal that VPA effectively enhances OOD generalization by 3.3% across various models, surpassing previous test-time approaches. Furthermore, we show that VPA improves corruption robustness by 6.5% compared to strong baselines. Finally, we demonstrate that VPA also boosts domain adaptation performance by relatively 5.2%. Our VPA also exhibits marked effectiveness in improving the robustness of zero-shot recognition for vision-language models.
Adversarial Prompt Tuning for Vision-Language Models
With the rapid advancement of multimodal learning, pre-trained Vision-Language Models (VLMs) such as CLIP have demonstrated remarkable capacities in bridging the gap between visual and language modalities. However, these models remain vulnerable to adversarial attacks, particularly in the image modality, presenting considerable security risks. This paper introduces Adversarial Prompt Tuning (AdvPT), a novel technique to enhance the adversarial robustness of image encoders in VLMs. AdvPT innovatively leverages learnable text prompts and aligns them with adversarial image embeddings, to address the vulnerabilities inherent in VLMs without the need for extensive parameter training or modification of the model architecture. We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques, further boosting defensive capabilities. Comprehensive experimental analyses provide insights into adversarial prompt tuning, a novel paradigm devoted to improving resistance to adversarial images through textual input modifications, paving the way for future robust multimodal learning research. These findings open up new possibilities for enhancing the security of VLMs. Our code is available at https://github.com/jiamingzhang94/Adversarial-Prompt-Tuning.
PromptSuite: A Task-Agnostic Framework for Multi-Prompt Generation
Evaluating LLMs with a single prompt has proven unreliable, with small changes leading to significant performance differences. However, generating the prompt variations needed for a more robust multi-prompt evaluation is challenging, limiting its adoption in practice. To address this, we introduce PromptSuite, a framework that enables the automatic generation of various prompts. PromptSuite is flexible - working out of the box on a wide range of tasks and benchmarks. It follows a modular prompt design, allowing controlled perturbations to each component, and is extensible, supporting the addition of new components and perturbation types. Through a series of case studies, we show that PromptSuite provides meaningful variations to support strong evaluation practices. It is available through both a Python API: https://github.com/eliyahabba/PromptSuite, and a user-friendly web interface: https://promptsuite.streamlit.app/
Enhancing LLM Robustness to Perturbed Instructions: An Empirical Study
Large Language Models (LLMs) are highly vulnerable to input perturbations, as even a small prompt change may result in a substantially different output. Existing methods to enhance LLM robustness are primarily focused on perturbed data samples, whereas improving resiliency to perturbations of task-level instructions has remained relatively underexplored. In this work, we focus on character- and word-level edits of task-specific instructions, which substantially degrade downstream performance. We experiment with a variety of techniques to enhance the robustness of LLMs, including self-denoising and representation alignment, testing different models (Llama 3 and Flan-T5), datasets (CoLA, QNLI, SST-2) and instructions (both task-oriented and role-oriented). We find that, on average, self-denoising -- whether performed by a frozen LLM or a fine-tuned model -- achieves substantially higher performance gains than alternative strategies, including more complex baselines such as ensembling and supervised methods.
Distilled Prompt Learning for Incomplete Multimodal Survival Prediction
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks
Safety, security, and compliance are essential requirements when aligning large language models (LLMs). However, many seemingly aligned LLMs are soon shown to be susceptible to jailbreak attacks. These attacks aim to circumvent the models' safety guardrails and security mechanisms by introducing jailbreak prompts into malicious queries. In response to these challenges, this paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism specifically designed to protect LLMs against such sophisticated jailbreak strategies. Unlike previous approaches, which have often compromised the utility of the model for the sake of safety, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs. Our method uses strategically designed interpretable suffix prompts that effectively thwart a wide range of standard and adaptive jailbreak techniques. Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP, showing significant reductions in ASR with negligible impact on utility. Our approach not only outperforms existing defense strategies in balancing safety and functionality, but also provides a scalable and interpretable solution applicable to various LLM platforms.
Using Natural Language Explanations to Improve Robustness of In-context Learning for Natural Language Inference
Recent studies have demonstrated that large language models (LLMs) excel in diverse tasks through in-context learning (ICL) facilitated by task-specific prompts and examples. However, the existing literature shows that ICL encounters performance deterioration when exposed to adversarial inputs. Enhanced performance has been observed when ICL is augmented with natural language explanations (NLEs) (we refer to it as X-ICL). Thus, this work investigates whether X-ICL can improve the robustness of LLMs on a suite of seven adversarial and challenging natural language inference datasets. Moreover, we introduce a new approach to X-ICL by prompting an LLM (ChatGPT in our case) with few human-generated NLEs to produce further NLEs (we call it ChatGPT few-shot), which we show superior to both ChatGPT zero-shot and human-generated NLEs alone. We evaluate five popular LLMs (GPT3.5-turbo, LLaMa2, Vicuna, Zephyr, Mistral) and show that X-ICL with ChatGPT few-shot yields over 6% improvement over ICL. Furthermore, while prompt selection strategies were previously shown to significantly improve ICL on in-distribution test sets, we show that these strategies do not match the efficacy of the X-ICL paradigm in robustness-oriented evaluations.
An LLM can Fool Itself: A Prompt-Based Adversarial Attack
The wide-ranging applications of large language models (LLMs), especially in safety-critical domains, necessitate the proper evaluation of the LLM's adversarial robustness. This paper proposes an efficient tool to audit the LLM's adversarial robustness via a prompt-based adversarial attack (PromptAttack). PromptAttack converts adversarial textual attacks into an attack prompt that can cause the victim LLM to output the adversarial sample to fool itself. The attack prompt is composed of three important components: (1) original input (OI) including the original sample and its ground-truth label, (2) attack objective (AO) illustrating a task description of generating a new sample that can fool itself without changing the semantic meaning, and (3) attack guidance (AG) containing the perturbation instructions to guide the LLM on how to complete the task by perturbing the original sample at character, word, and sentence levels, respectively. Besides, we use a fidelity filter to ensure that PromptAttack maintains the original semantic meanings of the adversarial examples. Further, we enhance the attack power of PromptAttack by ensembling adversarial examples at different perturbation levels. Comprehensive empirical results using Llama2 and GPT-3.5 validate that PromptAttack consistently yields a much higher attack success rate compared to AdvGLUE and AdvGLUE++. Interesting findings include that a simple emoji can easily mislead GPT-3.5 to make wrong predictions.
Evaluating the Zero-shot Robustness of Instruction-tuned Language Models
Instruction fine-tuning has recently emerged as a promising approach for improving the zero-shot capabilities of Large Language Models (LLMs) on new tasks. This technique has shown particular strength in improving the performance of modestly sized LLMs, sometimes inducing performance competitive with much larger model variants. In this paper we ask two questions: (1) How sensitive are instruction-tuned models to the particular phrasings of instructions, and, (2) How can we make them more robust to such natural language variation? To answer the former, we collect a set of 319 instructions manually written by NLP practitioners for over 80 unique tasks included in widely used benchmarks, and we evaluate the variance and average performance of these instructions as compared to instruction phrasings observed during instruction fine-tuning. We find that using novel (unobserved) but appropriate instruction phrasings consistently degrades model performance, sometimes substantially so. Further, such natural instructions yield a wide variance in downstream performance, despite their semantic equivalence. Put another way, instruction-tuned models are not especially robust to instruction re-phrasings. We propose a simple method to mitigate this issue by introducing ``soft prompt'' embedding parameters and optimizing these to maximize the similarity between representations of semantically equivalent instructions. We show that this method consistently improves the robustness of instruction-tuned models.
Flatness-Aware Prompt Selection Improves Accuracy and Sample Efficiency
With growing capabilities of large language models, prompting them has become the dominant way to access them. This has motivated the development of strategies for automatically selecting effective language prompts. In this paper, we introduce prompt flatness, a new metric to quantify the expected utility of a language prompt. This metric is inspired by flatness regularization in statistical learning that quantifies the robustness of the model towards its parameter perturbations. We provide theoretical foundations for this metric and its relationship with other prompt selection metrics, providing a comprehensive understanding of existing methods. Empirically, we show that combining prompt flatness with existing metrics improves both performance and sample efficiency. Our metric outperforms the previous prompt selection metrics with an average increase of 5% in accuracy and 10% in Pearson correlation across 6 classification benchmarks.
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
Pre-trained point cloud models have found extensive applications in 3D understanding tasks like object classification and part segmentation. However, the prevailing strategy of full fine-tuning in downstream tasks leads to large per-task storage overhead for model parameters, which limits the efficiency when applying large-scale pre-trained models. Inspired by the recent success of visual prompt tuning (VPT), this paper attempts to explore prompt tuning on pre-trained point cloud models, to pursue an elegant balance between performance and parameter efficiency. We find while instance-agnostic static prompting, e.g. VPT, shows some efficacy in downstream transfer, it is vulnerable to the distribution diversity caused by various types of noises in real-world point cloud data. To conquer this limitation, we propose a novel Instance-aware Dynamic Prompt Tuning (IDPT) strategy for pre-trained point cloud models. The essence of IDPT is to develop a dynamic prompt generation module to perceive semantic prior features of each point cloud instance and generate adaptive prompt tokens to enhance the model's robustness. Notably, extensive experiments demonstrate that IDPT outperforms full fine-tuning in most tasks with a mere 7% of the trainable parameters, providing a promising solution to parameter-efficient learning for pre-trained point cloud models. Code is available at https://github.com/zyh16143998882/ICCV23-IDPT.
CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automatic prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p in accuracy. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
Enhancing Automated Paper Reproduction via Prompt-Free Collaborative Agents
Automated paper reproduction has emerged as a promising approach to accelerate scientific research, employing multi-step workflow frameworks to systematically convert academic papers into executable code. However, existing frameworks often lack mechanisms to verify and refine the outputs at each generation step, or rely heavily on manually designed prompts for self-refinement, which limits their adaptability and scalability. To address these limitations, we propose a prompt-free collaborative agent framework that automatically enhances the quality of paper-to-code generation. Our approach employs two collaborative agents: a verification agent that examines whether the outputs at each step satisfy the requirements specified in the corresponding system prompt, and a refinement agent that revises the outputs based on the identified issues. Unlike previous methods that require human experts to craft specific refinement prompts for each step, our framework achieves automatic verification and improvement by leveraging only the original system prompts. We integrate our collaborative agents into the Paper2Code framework and conduct comprehensive experiments on PaperBench Code-Dev and Paper2CodeBench datasets. Experimental results demonstrate that our approach significantly improves the accuracy and completeness of reproduced code, achieving performance gains of approximately 15\% and 13\%, respectively, compared to the baseline without our agents. Furthermore, comparative experiments against Self-Refine validate the robustness and consistency of our prompt-free approach across different datasets.
ConsPrompt: Easily Exploiting Contrastive Samples for Few-shot Prompt Learning
Prompt learning recently become an effective linguistic tool to motivate the PLMs' knowledge on few-shot-setting tasks. However, studies have shown the lack of robustness still exists in prompt learning, since suitable initialization of continuous prompt and expert-first manual prompt are essential in fine-tuning process. What is more, human also utilize their comparative ability to motivate their existing knowledge for distinguishing different examples. Motivated by this, we explore how to use contrastive samples to strengthen prompt learning. In detail, we first propose our model ConsPrompt combining with prompt encoding network, contrastive sampling module, and contrastive scoring module. Subsequently, two sampling strategies, similarity-based and label-based strategies, are introduced to realize differential contrastive learning. The effectiveness of proposed ConsPrompt is demonstrated in five different few-shot learning tasks and shown the similarity-based sampling strategy is more effective than label-based in combining contrastive learning. Our results also exhibits the state-of-the-art performance and robustness in different few-shot settings, which proves that the ConsPrompt could be assumed as a better knowledge probe to motivate PLMs.
RAP-SM: Robust Adversarial Prompt via Shadow Models for Copyright Verification of Large Language Models
Recent advances in large language models (LLMs) have underscored the importance of safeguarding intellectual property rights through robust fingerprinting techniques. Traditional fingerprint verification approaches typically focus on a single model, seeking to improve the robustness of its fingerprint.However, these single-model methods often struggle to capture intrinsic commonalities across multiple related models. In this paper, we propose RAP-SM (Robust Adversarial Prompt via Shadow Models), a novel framework that extracts a public fingerprint for an entire series of LLMs. Experimental results demonstrate that RAP-SM effectively captures the intrinsic commonalities among different models while exhibiting strong adversarial robustness. Our findings suggest that RAP-SM presents a valuable avenue for scalable fingerprint verification, offering enhanced protection against potential model breaches in the era of increasingly prevalent LLMs.
Fast Prompt Alignment for Text-to-Image Generation
Text-to-image generation has advanced rapidly, yet aligning complex textual prompts with generated visuals remains challenging, especially with intricate object relationships and fine-grained details. This paper introduces Fast Prompt Alignment (FPA), a prompt optimization framework that leverages a one-pass approach, enhancing text-to-image alignment efficiency without the iterative overhead typical of current methods like OPT2I. FPA uses large language models (LLMs) for single-iteration prompt paraphrasing, followed by fine-tuning or in-context learning with optimized prompts to enable real-time inference, reducing computational demands while preserving alignment fidelity. Extensive evaluations on the COCO Captions and PartiPrompts datasets demonstrate that FPA achieves competitive text-image alignment scores at a fraction of the processing time, as validated through both automated metrics (TIFA, VQA) and human evaluation. A human study with expert annotators further reveals a strong correlation between human alignment judgments and automated scores, underscoring the robustness of FPA's improvements. The proposed method showcases a scalable, efficient alternative to iterative prompt optimization, enabling broader applicability in real-time, high-demand settings. The codebase is provided to facilitate further research: https://github.com/tiktok/fast_prompt_alignment
Visual Prompting for Adversarial Robustness
In this work, we leverage visual prompting (VP) to improve adversarial robustness of a fixed, pre-trained model at testing time. Compared to conventional adversarial defenses, VP allows us to design universal (i.e., data-agnostic) input prompting templates, which have plug-and-play capabilities at testing time to achieve desired model performance without introducing much computation overhead. Although VP has been successfully applied to improving model generalization, it remains elusive whether and how it can be used to defend against adversarial attacks. We investigate this problem and show that the vanilla VP approach is not effective in adversarial defense since a universal input prompt lacks the capacity for robust learning against sample-specific adversarial perturbations. To circumvent it, we propose a new VP method, termed Class-wise Adversarial Visual Prompting (C-AVP), to generate class-wise visual prompts so as to not only leverage the strengths of ensemble prompts but also optimize their interrelations to improve model robustness. Our experiments show that C-AVP outperforms the conventional VP method, with 2.1X standard accuracy gain and 2X robust accuracy gain. Compared to classical test-time defenses, C-AVP also yields a 42X inference time speedup.
Read-only Prompt Optimization for Vision-Language Few-shot Learning
In recent years, prompt tuning has proven effective in adapting pre-trained vision-language models to downstream tasks. These methods aim to adapt the pre-trained models by introducing learnable prompts while keeping pre-trained weights frozen. However, learnable prompts can affect the internal representation within the self-attention module, which may negatively impact performance variance and generalization, especially in data-deficient settings. To address these issues, we propose a novel approach, Read-only Prompt Optimization (RPO). RPO leverages masked attention to prevent the internal representation shift in the pre-trained model. Further, to facilitate the optimization of RPO, the read-only prompts are initialized based on special tokens of the pre-trained model. Our extensive experiments demonstrate that RPO outperforms CLIP and CoCoOp in base-to-new generalization and domain generalization while displaying better robustness. Also, the proposed method achieves better generalization on extremely data-deficient settings, while improving parameter efficiency and computational overhead. Code is available at https://github.com/mlvlab/RPO.
The Power of Scale for Parameter-Efficient Prompt Tuning
In this work, we explore "prompt tuning", a simple yet effective mechanism for learning "soft prompts" to condition frozen language models to perform specific downstream tasks. Unlike the discrete text prompts used by GPT-3, soft prompts are learned through backpropagation and can be tuned to incorporate signal from any number of labeled examples. Our end-to-end learned approach outperforms GPT-3's "few-shot" learning by a large margin. More remarkably, through ablations on model size using T5, we show that prompt tuning becomes more competitive with scale: as models exceed billions of parameters, our method "closes the gap" and matches the strong performance of model tuning (where all model weights are tuned). This finding is especially relevant in that large models are costly to share and serve, and the ability to reuse one frozen model for multiple downstream tasks can ease this burden. Our method can be seen as a simplification of the recently proposed "prefix tuning" of Li and Liang (2021), and we provide a comparison to this and other similar approaches. Finally, we show that conditioning a frozen model with soft prompts confers benefits in robustness to domain transfer, as compared to full model tuning.
TAPT: Test-Time Adversarial Prompt Tuning for Robust Inference in Vision-Language Models
Large pre-trained Vision-Language Models (VLMs) such as CLIP have demonstrated excellent zero-shot generalizability across various downstream tasks. However, recent studies have shown that the inference performance of CLIP can be greatly degraded by small adversarial perturbations, especially its visual modality, posing significant safety threats. To mitigate this vulnerability, in this paper, we propose a novel defense method called Test-Time Adversarial Prompt Tuning (TAPT) to enhance the inference robustness of CLIP against visual adversarial attacks. TAPT is a test-time defense method that learns defensive bimodal (textual and visual) prompts to robustify the inference process of CLIP. Specifically, it is an unsupervised method that optimizes the defensive prompts for each test sample by minimizing a multi-view entropy and aligning adversarial-clean distributions. We evaluate the effectiveness of TAPT on 11 benchmark datasets, including ImageNet and 10 other zero-shot datasets, demonstrating that it enhances the zero-shot adversarial robustness of the original CLIP by at least 48.9% against AutoAttack (AA), while largely maintaining performance on clean examples. Moreover, TAPT outperforms existing adversarial prompt tuning methods across various backbones, achieving an average robustness improvement of at least 36.6%.
Small Edits, Big Consequences: Telling Good from Bad Robustness in Large Language Models
Large language models (LLMs) now write code in settings where misreading a single word can break safety or cost money, yet we still expect them to overlook stray typos. To probe where useful robustness ends and harmful insensitivity begins, we compile 50 LeetCode problems and craft three minimal prompt perturbations that should vary in importance: (i) progressive underspecification deleting 10 % of words per step; (ii) lexical flip swapping a pivotal quantifier ("max" to "min"); and (iii) jargon inflation replacing a common noun with an obscure technical synonym. Six frontier models, including three "reasoning-tuned" versions, solve each mutated prompt, and their Python outputs are checked against the original test suites to reveal whether they reused the baseline solution or adapted. Among 11 853 generations we observe a sharp double asymmetry. Models remain correct in 85 % of cases even after 90 % of the prompt is missing, showing over-robustness to underspecification, yet only 54 % react to a single quantifier flip that reverses the task, with reasoning-tuned variants even less sensitive than their bases. Jargon edits lie in between, passing through 56 %. Current LLMs thus blur the line between harmless noise and meaning - changing edits, often treating both as ignorable. Masking salient anchors such as function names can force re - evaluation. We advocate evaluation and training protocols that reward differential sensitivity: stay steady under benign noise but adapt - or refuse - when semantics truly change.
Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems
This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs). While LLMs demonstrate remarkable natural language understanding capabilities, engineering them to reliably execute complex business workflows remains challenging. The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications, embedding task-oriented logic within LLM prompts. This approach provides a systematic methodology for designing and implementing complex conversational workflows while maintaining behavioral consistency. We demonstrate the framework's effectiveness through two proof-of-concept implementations: a Train Ticket Booking System and an Interactive Troubleshooting Copilot. These case studies validate CR's capability to encode sophisticated behavioral patterns and decision logic while preserving natural conversational flexibility. Results show that CR enables domain experts to design conversational workflows in natural language while leveraging custom functions (tools) developed by software engineers, creating an efficient division of responsibilities where developers focus on core API implementation and domain experts handle conversation design. While the framework shows promise in accessibility and adaptability, we identify key challenges including computational overhead, non-deterministic behavior, and domain-specific logic optimization. Future research directions include CR evaluation methods based on prompt engineering frameworks driven by goal-oriented grading criteria, improving scalability for complex multi-agent interactions, and enhancing system robustness to address the identified limitations across diverse business applications.
LAPT: Label-driven Automated Prompt Tuning for OOD Detection with Vision-Language Models
Out-of-distribution (OOD) detection is crucial for model reliability, as it identifies samples from unknown classes and reduces errors due to unexpected inputs. Vision-Language Models (VLMs) such as CLIP are emerging as powerful tools for OOD detection by integrating multi-modal information. However, the practical application of such systems is challenged by manual prompt engineering, which demands domain expertise and is sensitive to linguistic nuances. In this paper, we introduce Label-driven Automated Prompt Tuning (LAPT), a novel approach to OOD detection that reduces the need for manual prompt engineering. We develop distribution-aware prompts with in-distribution (ID) class names and negative labels mined automatically. Training samples linked to these class labels are collected autonomously via image synthesis and retrieval methods, allowing for prompt learning without manual effort. We utilize a simple cross-entropy loss for prompt optimization, with cross-modal and cross-distribution mixing strategies to reduce image noise and explore the intermediate space between distributions, respectively. The LAPT framework operates autonomously, requiring only ID class names as input and eliminating the need for manual intervention. With extensive experiments, LAPT consistently outperforms manually crafted prompts, setting a new standard for OOD detection. Moreover, LAPT not only enhances the distinction between ID and OOD samples, but also improves the ID classification accuracy and strengthens the generalization robustness to covariate shifts, resulting in outstanding performance in challenging full-spectrum OOD detection tasks. Codes are available at https://github.com/YBZh/LAPT.
Are Large Language Models Really Bias-Free? Jailbreak Prompts for Assessing Adversarial Robustness to Bias Elicitation
Large Language Models (LLMs) have revolutionized artificial intelligence, demonstrating remarkable computational power and linguistic capabilities. However, these models are inherently prone to various biases stemming from their training data. These include selection, linguistic, and confirmation biases, along with common stereotypes related to gender, ethnicity, sexual orientation, religion, socioeconomic status, disability, and age. This study explores the presence of these biases within the responses given by the most recent LLMs, analyzing the impact on their fairness and reliability. We also investigate how known prompt engineering techniques can be exploited to effectively reveal hidden biases of LLMs, testing their adversarial robustness against jailbreak prompts specially crafted for bias elicitation. Extensive experiments are conducted using the most widespread LLMs at different scales, confirming that LLMs can still be manipulated to produce biased or inappropriate responses, despite their advanced capabilities and sophisticated alignment processes. Our findings underscore the importance of enhancing mitigation techniques to address these safety issues, toward a more sustainable and inclusive artificial intelligence.
PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification
Large language models (LLMs) have witnessed a meteoric rise in popularity among the general public users over the past few months, facilitating diverse downstream tasks with human-level accuracy and proficiency. Prompts play an essential role in this success, which efficiently adapt pre-trained LLMs to task-specific applications by simply prepending a sequence of tokens to the query texts. However, designing and selecting an optimal prompt can be both expensive and demanding, leading to the emergence of Prompt-as-a-Service providers who profit by providing well-designed prompts for authorized use. With the growing popularity of prompts and their indispensable role in LLM-based services, there is an urgent need to protect the copyright of prompts against unauthorized use. In this paper, we propose PromptCARE, the first framework for prompt copyright protection through watermark injection and verification. Prompt watermarking presents unique challenges that render existing watermarking techniques developed for model and dataset copyright verification ineffective. PromptCARE overcomes these hurdles by proposing watermark injection and verification schemes tailor-made for prompts and NLP characteristics. Extensive experiments on six well-known benchmark datasets, using three prevalent pre-trained LLMs (BERT, RoBERTa, and Facebook OPT-1.3b), demonstrate the effectiveness, harmlessness, robustness, and stealthiness of PromptCARE.
Exploring The Landscape of Distributional Robustness for Question Answering Models
We conduct a large empirical evaluation to investigate the landscape of distributional robustness in question answering. Our investigation spans over 350 models and 16 question answering datasets, including a diverse set of architectures, model sizes, and adaptation methods (e.g., fine-tuning, adapter tuning, in-context learning, etc.). We find that, in many cases, model variations do not affect robustness and in-distribution performance alone determines out-of-distribution performance. Moreover, our findings indicate that i) zero-shot and in-context learning methods are more robust to distribution shifts than fully fine-tuned models; ii) few-shot prompt fine-tuned models exhibit better robustness than few-shot fine-tuned span prediction models; iii) parameter-efficient and robustness enhancing training methods provide no significant robustness improvements. In addition, we publicly release all evaluations to encourage researchers to further analyze robustness trends for question answering models.
Chain-of-Defensive-Thought: Structured Reasoning Elicits Robustness in Large Language Models against Reference Corruption
Chain-of-thought prompting has demonstrated great success in facilitating the reasoning abilities of large language models. In this work, we explore how these enhanced reasoning abilities can be exploited to improve the robustness of large language models in tasks that are not necessarily reasoning-focused. In particular, we show how a wide range of large language models exhibit significantly improved robustness against reference corruption using a simple method called chain-of-defensive-thought, where only a few exemplars with structured and defensive reasoning are provided as demonstrations. Empirically, the improvements can be astounding, especially given the simplicity and applicability of the method. For example, in the Natural Questions task, the accuracy of GPT-4o degrades from 60% to as low as 3% with standard prompting when 1 out of 10 references provided is corrupted with prompt injection attacks. In contrast, GPT-4o using chain-of-defensive-thought prompting maintains an accuracy of 50%.
Revisit Input Perturbation Problems for LLMs: A Unified Robustness Evaluation Framework for Noisy Slot Filling Task
With the increasing capabilities of large language models (LLMs), these high-performance models have achieved state-of-the-art results on a wide range of natural language processing (NLP) tasks. However, the models' performance on commonly-used benchmark datasets often fails to accurately reflect their reliability and robustness when applied to real-world noisy data. To address these challenges, we propose a unified robustness evaluation framework based on the slot-filling task to systematically evaluate the dialogue understanding capability of LLMs in diverse input perturbation scenarios. Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data. Furthermore, we utilize a multi-level data augmentation method (character, word, and sentence levels) to construct a candidate data pool, and carefully design two ways of automatic task demonstration construction strategies (instance-level and entity-level) with various prompt templates. Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios. The experiments have demonstrated that the current open-source LLMs generally achieve limited perturbation robustness performance. Based on these experimental observations, we make some forward-looking suggestions to fuel the research in this direction.
Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking
Recently, stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing, with a range of photorealistic and unprecedented images being successfully generated. As a result, widespread interest has been ignited to develop and use various SD-based tools for visual content creation. However, the exposure of AI-created content on public platforms could raise both legal and ethical risks. In this regard, the traditional methods of adding watermarks to the already generated images (i.e. post-processing) may face a dilemma (e.g., being erased or modified) in terms of copyright protection and content monitoring, since the powerful image inversion and text-to-image editing techniques have been widely explored in SD-based methods. In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely Safe-SD) to adaptively implant the graphical watermarks (e.g., QR code) into the imperceptible structure-related pixels during the generative diffusion process for supporting text-driven invisible watermarking and detection. Different from the previous high-cost injection-then-detection training framework, we design a simple and unified architecture, which makes it possible to simultaneously train watermark injection and detection in a single network, greatly improving the efficiency and convenience of use. Moreover, to further support text-driven generative watermarking and deeply explore its robustness and high-traceability, we elaborately design lambda sampling and encryption algorithm to fine-tune a latent diffuser wrapped by a VAE for balancing high-fidelity image synthesis and high-traceable watermark detection. We present our quantitative and qualitative results on two representative datasets LSUN, COCO and FFHQ, demonstrating state-of-the-art performance of Safe-SD and showing it significantly outperforms the previous approaches.
The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance
Multimodal Large Language Models (MLLMs) are set to transform how machines process and generate human-like responses by integrating diverse modalities such as text, images, and code. Yet, effectively harnessing their capabilities hinges on optimal prompt engineering. We present a comprehensive experimental evaluation of seven prompt engineering methods applied to 13 open-source MLLMs over 24 tasks spanning Reasoning and Compositionality, Multimodal Understanding and Alignment, Complex Code Generation and Execution, and Knowledge Retrieval and Integration. Our approach stratifies models by parameter count into Small (<4B), Medium (4B-10B), and Large (>10B) categories and compares prompting techniques including Zero-Shot, One-Shot, Few-Shot, Chain-of-Thought, Analogical, Generated Knowledge, and Tree-of-Thought. While Large MLLMs excel in structured tasks such as code generation, achieving accuracies up to 96.88% under Few-Shot prompting, all models struggle with complex reasoning and abstract understanding, often yielding accuracies below 60% and high hallucination rates. Structured reasoning prompts frequently increased hallucination up to 75% in small models and led to longer response times (over 20 seconds in Large MLLMs), while simpler prompting methods provided more concise and efficient outputs. No single prompting method uniformly optimises all task types. Instead, adaptive strategies combining example-based guidance with selective structured reasoning are essential to enhance robustness, efficiency, and factual accuracy. Our findings offer practical recommendations for prompt engineering and support more reliable deployment of MLLMs across applications including AI-assisted coding, knowledge retrieval, and multimodal content understanding.
Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting
Reinforcement learning (RL) is a promising approach for aligning large language models (LLMs) knowledge with sequential decision-making tasks. However, few studies have thoroughly investigated the impact on LLM agents capabilities of fine-tuning them with RL in a specific environment. In this paper, we propose a novel framework to analyze the sensitivity of LLMs to prompt formulations following RL training in a textual environment. Our findings reveal that the performance of LLMs degrades when faced with prompt formulations different from those used during the RL training phase. Besides, we analyze the source of this sensitivity by examining the model's internal representations and salient tokens. Finally, we propose to use a contrastive loss to mitigate this sensitivity and improve the robustness and generalization capabilities of LLMs.
SAM 2 in Robotic Surgery: An Empirical Evaluation for Robustness and Generalization in Surgical Video Segmentation
The recent Segment Anything Model (SAM) 2 has demonstrated remarkable foundational competence in semantic segmentation, with its memory mechanism and mask decoder further addressing challenges in video tracking and object occlusion, thereby achieving superior results in interactive segmentation for both images and videos. Building upon our previous empirical studies, we further explore the zero-shot segmentation performance of SAM 2 in robot-assisted surgery based on prompts, alongside its robustness against real-world corruption. For static images, we employ two forms of prompts: 1-point and bounding box, while for video sequences, the 1-point prompt is applied to the initial frame. Through extensive experimentation on the MICCAI EndoVis 2017 and EndoVis 2018 benchmarks, SAM 2, when utilizing bounding box prompts, outperforms state-of-the-art (SOTA) methods in comparative evaluations. The results with point prompts also exhibit a substantial enhancement over SAM's capabilities, nearing or even surpassing existing unprompted SOTA methodologies. Besides, SAM 2 demonstrates improved inference speed and less performance degradation against various image corruption. Although slightly unsatisfactory results remain in specific edges or regions, SAM 2's robust adaptability to 1-point prompts underscores its potential for downstream surgical tasks with limited prompt requirements.
What Did I Do Wrong? Quantifying LLMs' Sensitivity and Consistency to Prompt Engineering
Large Language Models (LLMs) changed the way we design and interact with software systems. Their ability to process and extract information from text has drastically improved productivity in a number of routine tasks. Developers that want to include these models in their software stack, however, face a dreadful challenge: debugging LLMs' inconsistent behavior across minor variations of the prompt. We therefore introduce two metrics for classification tasks, namely sensitivity and consistency, which are complementary to task performance. First, sensitivity measures changes of predictions across rephrasings of the prompt, and does not require access to ground truth labels. Instead, consistency measures how predictions vary across rephrasings for elements of the same class. We perform an empirical comparison of these metrics on text classification tasks, using them as guideline for understanding failure modes of the LLM. Our hope is that sensitivity and consistency will be helpful to guide prompt engineering and obtain LLMs that balance robustness with performance.
TIIF-Bench: How Does Your T2I Model Follow Your Instructions?
The rapid advancements of Text-to-Image (T2I) models have ushered in a new phase of AI-generated content, marked by their growing ability to interpret and follow user instructions. However, existing T2I model evaluation benchmarks fall short in limited prompt diversity and complexity, as well as coarse evaluation metrics, making it difficult to evaluate the fine-grained alignment performance between textual instructions and generated images. In this paper, we present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions. TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities. To rigorously evaluate model robustness to varying prompt lengths, we provide a short and a long version for each prompt with identical core semantics. Two critical attributes, i.e., text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models. In addition, we collect 100 high-quality designer level prompts that encompass various scenarios to comprehensively assess model performance. Leveraging the world knowledge encoded in large vision language models, we propose a novel computable framework to discern subtle variations in T2I model outputs. Through meticulous benchmarking of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current T2I models and reveal the limitations of current T2I benchmarks. Project Page: https://a113n-w3i.github.io/TIIF_Bench/.
UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation
Recent progress in text-to-image (T2I) generation underscores the importance of reliable benchmarks in evaluating how accurately generated images reflect the semantics of their textual prompt. However, (1) existing benchmarks lack the diversity of prompt scenarios and multilingual support, both essential for real-world applicability; (2) they offer only coarse evaluations across primary dimensions, covering a narrow range of sub-dimensions, and fall short in fine-grained sub-dimension assessment. To address these limitations, we introduce UniGenBench++, a unified semantic assessment benchmark for T2I generation. Specifically, it comprises 600 prompts organized hierarchically to ensure both coverage and efficiency: (1) spans across diverse real-world scenarios, i.e., 5 main prompt themes and 20 subthemes; (2) comprehensively probes T2I models' semantic consistency over 10 primary and 27 sub evaluation criteria, with each prompt assessing multiple testpoints. To rigorously assess model robustness to variations in language and prompt length, we provide both English and Chinese versions of each prompt in short and long forms. Leveraging the general world knowledge and fine-grained image understanding capabilities of a closed-source Multi-modal Large Language Model (MLLM), i.e., Gemini-2.5-Pro, an effective pipeline is developed for reliable benchmark construction and streamlined model assessment. Moreover, to further facilitate community use, we train a robust evaluation model that enables offline assessment of T2I model outputs. Through comprehensive benchmarking of both open- and closed-sourced T2I models, we systematically reveal their strengths and weaknesses across various aspects.
Unleashing the Reasoning Potential of Pre-trained LLMs by Critique Fine-Tuning on One Problem
We have witnessed that strong LLMs like Qwen-Math, MiMo, and Phi-4 possess immense reasoning potential inherited from the pre-training stage. With reinforcement learning (RL), these models can improve dramatically on reasoning tasks. Recent studies have shown that even RL on a single problem can unleash these models' reasoning capabilities. However, RL is not only expensive but also unstable. Even one-shot RL requires hundreds of GPU hours. This raises a critical question: Is there a more efficient way to unleash the reasoning potential of these powerful base LLMs? In this work, we demonstrate that Critique Fine-Tuning (CFT) on only one problem can effectively unleash the reasoning potential of LLMs. Our method constructs critique data by collecting diverse model-generated solutions to a single problem and using teacher LLMs to provide detailed critiques. We fine-tune Qwen and Llama family models, ranging from 1.5B to 14B parameters, on the CFT data and observe significant performance gains across diverse reasoning tasks. For example, with just 5 GPU hours of training, Qwen-Math-7B-CFT show an average improvement of 15% on six math benchmarks and 16% on three logic reasoning benchmarks. These results are comparable to or even surpass the results from RL with 20x less compute. Ablation studies reveal the robustness of one-shot CFT across different prompt problems. These results highlight one-shot CFT as a simple, general, and compute-efficient approach to unleashing the reasoning capabilities of modern LLMs.
AprielGuard
Safeguarding large language models (LLMs) against unsafe or adversarial behavior is critical as they are increasingly deployed in conversational and agentic settings. Existing moderation tools often treat safety risks (e.g. toxicity, bias) and adversarial threats (e.g. prompt injections, jailbreaks) as separate problems, limiting their robustness and generalizability. We introduce AprielGuard, an 8B parameter safeguard model that unify these dimensions within a single taxonomy and learning framework. AprielGuard is trained on a diverse mix of open and synthetic data covering standalone prompts, multi-turn conversations, and agentic workflows, augmented with structured reasoning traces to improve interpretability. Across multiple public and proprietary benchmarks, AprielGuard achieves strong performance in detecting harmful content and adversarial manipulations, outperforming existing opensource guardrails such as Llama-Guard and Granite Guardian, particularly in multi-step and reasoning intensive scenarios. By releasing the model, we aim to advance transparent and reproducible research on reliable safeguards for LLMs.
Multimodal Prompting with Missing Modalities for Visual Recognition
In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.
Labels or Input? Rethinking Augmentation in Multimodal Hate Detection
The modern web is saturated with multimodal content, intensifying the challenge of detecting hateful memes, where harmful intent is often conveyed through subtle interactions between text and image under the guise of humor or satire. While recent advances in Vision-Language Models (VLMs) show promise, these models lack support for fine-grained supervision and remain susceptible to implicit hate speech. In this paper, we present a dual-pronged approach to improve multimodal hate detection. First, we propose a prompt optimization framework that systematically varies prompt structure, supervision granularity, and training modality. We show that prompt design and label scaling both influence performance, with structured prompts improving robustness even in small models, and InternVL2 achieving the best F1-scores across binary and scaled settings. Second, we introduce a multimodal data augmentation pipeline that generates 2,479 counterfactually neutral memes by isolating and rewriting the hateful modality. This pipeline, powered by a multi-agent LLM-VLM setup, successfully reduces spurious correlations and improves classifier generalization. Our approaches inspire new directions for building synthetic data to train robust and fair vision-language models. Our findings demonstrate that prompt structure and data composition are as critical as model size, and that targeted augmentation can support more trustworthy and context-sensitive hate detection.
"What is the value of {templates}?" Rethinking Document Information Extraction Datasets for LLMs
The rise of large language models (LLMs) for visually rich document understanding (VRDU) has kindled a need for prompt-response, document-based datasets. As annotating new datasets from scratch is labor-intensive, the existing literature has generated prompt-response datasets from available resources using simple templates. For the case of key information extraction (KIE), one of the most common VRDU tasks, past work has typically employed the template "What is the value for the {key}?". However, given the variety of questions encountered in the wild, simple and uniform templates are insufficient for creating robust models in research and industrial contexts. In this work, we present K2Q, a diverse collection of five datasets converted from KIE to a prompt-response format using a plethora of bespoke templates. The questions in K2Q can span multiple entities and be extractive or boolean. We empirically compare the performance of seven baseline generative models on K2Q with zero-shot prompting. We further compare three of these models when training on K2Q versus training on simpler templates to motivate the need of our work. We find that creating diverse and intricate KIE questions enhances the performance and robustness of VRDU models. We hope this work encourages future studies on data quality for generative model training.
Interactive Task Planning with Language Models
An interactive robot framework accomplishes long-horizon task planning and can easily generalize to new goals or distinct tasks, even during execution. However, most traditional methods require predefined module design, which makes it hard to generalize to different goals. Recent large language model based approaches can allow for more open-ended planning but often require heavy prompt engineering or domain-specific pretrained models. To tackle this, we propose a simple framework that achieves interactive task planning with language models. Our system incorporates both high-level planning and low-level function execution via language. We verify the robustness of our system in generating novel high-level instructions for unseen objectives and its ease of adaptation to different tasks by merely substituting the task guidelines, without the need for additional complex prompt engineering. Furthermore, when the user sends a new request, our system is able to replan accordingly with precision based on the new request, task guidelines and previously executed steps. Please check more details on our https://wuphilipp.github.io/itp_site and https://youtu.be/TrKLuyv26_g.
Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models
Diffusion models (DMs) have achieved remarkable success in text-to-image generation, but they also pose safety risks, such as the potential generation of harmful content and copyright violations. The techniques of machine unlearning, also known as concept erasing, have been developed to address these risks. However, these techniques remain vulnerable to adversarial prompt attacks, which can prompt DMs post-unlearning to regenerate undesired images containing concepts (such as nudity) meant to be erased. This work aims to enhance the robustness of concept erasing by integrating the principle of adversarial training (AT) into machine unlearning, resulting in the robust unlearning framework referred to as AdvUnlearn. However, achieving this effectively and efficiently is highly nontrivial. First, we find that a straightforward implementation of AT compromises DMs' image generation quality post-unlearning. To address this, we develop a utility-retaining regularization on an additional retain set, optimizing the trade-off between concept erasure robustness and model utility in AdvUnlearn. Moreover, we identify the text encoder as a more suitable module for robustification compared to UNet, ensuring unlearning effectiveness. And the acquired text encoder can serve as a plug-and-play robust unlearner for various DM types. Empirically, we perform extensive experiments to demonstrate the robustness advantage of AdvUnlearn across various DM unlearning scenarios, including the erasure of nudity, objects, and style concepts. In addition to robustness, AdvUnlearn also achieves a balanced tradeoff with model utility. To our knowledge, this is the first work to systematically explore robust DM unlearning through AT, setting it apart from existing methods that overlook robustness in concept erasing. Codes are available at: https://github.com/OPTML-Group/AdvUnlearn
Stop When Enough: Adaptive Early-Stopping for Chain-of-Thought Reasoning
Chain-of-Thought (CoT) reasoning has driven recent gains of large language models (LLMs) on reasoning-intensive tasks by externalizing intermediate steps. However, excessive or redundant reasoning -- so-called overthinking -- can increase inference costs and lead LLMs toward incorrect conclusions. In this paper, we present REFRAIN (REFlective-Redundancy for Adaptive INference), a training-free framework that adaptively determines when to stop reasoning to mitigate overthinking. REFRAIN integrates a two-stage stop discriminator to identify reflective yet redundant reasoning and a sliding-window Upper Confidence Bound (SW-UCB) multi-armed bandit controller to dynamically adjust stopping thresholds according to problem difficulty without supervision or fine-tuning. Across four representative benchmarks and two model families, REFRAIN reduces token usage by 20-55% while maintaining or improving accuracy compared to standard CoT prompting. Extensive ablation and robustness analyses demonstrate its stability across models, scorers, and prompt variations. In summary, our findings highlight when-to-stop as a new and practical axis of test-time scaling -- enabling models to reason not just more, but just enough.
MrGuard: A Multilingual Reasoning Guardrail for Universal LLM Safety
Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking, which can elicit harmful or unsafe behaviors. This vulnerability is exacerbated in multilingual settings, where multilingual safety-aligned data is often limited. Thus, developing a guardrail capable of detecting and filtering unsafe content across diverse languages is critical for deploying LLMs in real-world applications. In this work, we introduce a multilingual guardrail with reasoning for prompt classification. Our method consists of: (1) synthetic multilingual data generation incorporating culturally and linguistically nuanced variants, (2) supervised fine-tuning, and (3) a curriculum-based Group Relative Policy Optimization (GRPO) framework that further improves performance. Experimental results demonstrate that our multilingual guardrail, MrGuard, consistently outperforms recent baselines across both in-domain and out-of-domain languages by more than 15%. We also evaluate MrGuard's robustness to multilingual variations, such as code-switching and low-resource language distractors in the prompt, and demonstrate that it preserves safety judgments under these challenging conditions. The multilingual reasoning capability of our guardrail enables it to generate explanations, which are particularly useful for understanding language-specific risks and ambiguities in multilingual content moderation.
Is it Possible to Edit Large Language Models Robustly?
Large language models (LLMs) have played a pivotal role in building communicative AI to imitate human behaviors but face the challenge of efficient customization. To tackle this challenge, recent studies have delved into the realm of model editing, which manipulates specific memories of language models and changes the related language generation. However, the robustness of model editing remains an open question. This work seeks to understand the strengths and limitations of editing methods, thus facilitating robust, realistic applications of communicative AI. Concretely, we conduct extensive analysis to address the three key research questions. Q1: Can edited LLMs behave consistently resembling communicative AI in realistic situations? Q2: To what extent does the rephrasing of prompts lead LLMs to deviate from the edited knowledge memory? Q3: Which knowledge features are correlated with the performance and robustness of editing? Our experimental results uncover a substantial disparity between existing editing methods and the practical application of LLMs. On rephrased prompts that are complex and flexible but common in realistic applications, the performance of editing experiences a significant decline. Further analysis shows that more popular knowledge is memorized better, easier to recall, and more challenging to edit effectively.
Towards Robust Prompts on Vision-Language Models
With the advent of vision-language models (VLMs) that can perform in-context and prompt-based learning, how can we design prompting approaches that robustly generalize to distribution shift and can be used on novel classes outside the support set of the prompts? In this work, we first define two types of robustness to distribution shift on VLMs, namely, robustness on base classes (the classes included in the support set of prompts) and robustness on novel classes. Then, we study the robustness of existing in-context learning and prompt learning approaches, where we find that prompt learning performs robustly on test images from base classes, while it does not generalize well on images from novel classes. We propose robust prompt learning by integrating multiple-scale image features into the prompt, which improves both types of robustness. Comprehensive experiments are conducted to study the defined robustness on six benchmarks and show the effectiveness of our proposal.
Reasoning with LLMs for Zero-Shot Vulnerability Detection
Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the context-aware robustness necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present VulnSage, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git
VALL-T: Decoder-Only Generative Transducer for Robust and Decoding-Controllable Text-to-Speech
Recent TTS models with decoder-only Transformer architecture, such as SPEAR-TTS and VALL-E, achieve impressive naturalness and demonstrate the ability for zero-shot adaptation given a speech prompt. However, such decoder-only TTS models lack monotonic alignment constraints, sometimes leading to hallucination issues such as mispronunciation, word skipping and repeating. To address this limitation, we propose VALL-T, a generative Transducer model that introduces shifting relative position embeddings for input phoneme sequence, explicitly indicating the monotonic generation process while maintaining the architecture of decoder-only Transformer. Consequently, VALL-T retains the capability of prompt-based zero-shot adaptation and demonstrates better robustness against hallucinations with a relative reduction of 28.3% in the word error rate. Furthermore, the controllability of alignment in VALL-T during decoding facilitates the use of untranscribed speech prompts, even in unknown languages. It also enables the synthesis of lengthy speech by utilizing an aligned context window.
FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation
Recently, open-vocabulary learning has emerged to accomplish segmentation for arbitrary categories of text-based descriptions, which popularizes the segmentation system to more general-purpose application scenarios. However, existing methods devote to designing specialized architectures or parameters for specific segmentation tasks. These customized design paradigms lead to fragmentation between various segmentation tasks, thus hindering the uniformity of segmentation models. Hence in this paper, we propose FreeSeg, a generic framework to accomplish Unified, Universal and Open-Vocabulary Image Segmentation. FreeSeg optimizes an all-in-one network via one-shot training and employs the same architecture and parameters to handle diverse segmentation tasks seamlessly in the inference procedure. Additionally, adaptive prompt learning facilitates the unified model to capture task-aware and category-sensitive concepts, improving model robustness in multi-task and varied scenarios. Extensive experimental results demonstrate that FreeSeg establishes new state-of-the-art results in performance and generalization on three segmentation tasks, which outperforms the best task-specific architectures by a large margin: 5.5% mIoU on semantic segmentation, 17.6% mAP on instance segmentation, 20.1% PQ on panoptic segmentation for the unseen class on COCO.
GenMix: Effective Data Augmentation with Generative Diffusion Model Image Editing
Data augmentation is widely used to enhance generalization in visual classification tasks. However, traditional methods struggle when source and target domains differ, as in domain adaptation, due to their inability to address domain gaps. This paper introduces GenMix, a generalizable prompt-guided generative data augmentation approach that enhances both in-domain and cross-domain image classification. Our technique leverages image editing to generate augmented images based on custom conditional prompts, designed specifically for each problem type. By blending portions of the input image with its edited generative counterpart and incorporating fractal patterns, our approach mitigates unrealistic images and label ambiguity, improving the performance and adversarial robustness of the resulting models. Efficacy of our method is established with extensive experiments on eight public datasets for general and fine-grained classification, in both in-domain and cross-domain settings. Additionally, we demonstrate performance improvements for self-supervised learning, learning with data scarcity, and adversarial robustness. As compared to the existing state-of-the-art methods, our technique achieves stronger performance across the board.
Exploring Language Model's Code Generation Ability with Auxiliary Functions
Auxiliary function is a helpful component to improve language model's code generation ability. However, a systematic exploration of how they affect has yet to be done. In this work, we comprehensively evaluate the ability to utilize auxiliary functions encoded in recent code-pretrained language models. First, we construct a human-crafted evaluation set, called HumanExtension, which contains examples of two functions where one function assists the other. With HumanExtension, we design several experiments to examine their ability in a multifaceted way. Our evaluation processes enable a comprehensive understanding of including auxiliary functions in the prompt in terms of effectiveness and robustness. An additional implementation style analysis captures the models' various implementation patterns when they access the auxiliary function. Through this analysis, we discover the models' promising ability to utilize auxiliary functions including their self-improving behavior by implementing the two functions step-by-step. However, our analysis also reveals the model's underutilized behavior to call the auxiliary function, suggesting the future direction to enhance their implementation by eliciting the auxiliary function call ability encoded in the models. We release our code and dataset to facilitate this research direction.
Small Language Models Improve Giants by Rewriting Their Outputs
Large language models (LLMs) have demonstrated impressive few-shot learning capabilities, but they often underperform compared to fine-tuned models on challenging tasks. Furthermore, their large size and restricted access only through APIs make task-specific fine-tuning impractical. Moreover, LLMs are sensitive to different aspects of prompts (e.g., the selection and order of demonstrations) and can thus require time-consuming prompt engineering. In this light, we propose a method to correct LLM outputs without relying on their weights. First, we generate a pool of candidates by few-shot prompting an LLM. Second, we refine the LLM-generated outputs using a smaller model, the LM-corrector (LMCor), which is trained to rank, combine and rewrite the candidates to produce the final target output. Our experiments demonstrate that even a small LMCor model (250M) substantially improves the few-shot performance of LLMs (62B) across diverse tasks. Moreover, we illustrate that the LMCor exhibits robustness against different prompts, thereby minimizing the need for extensive prompt engineering. Finally, we showcase that the LMCor can be seamlessly integrated with different LLMs at inference time, serving as a plug-and-play module to improve their performance.
ALERT: Adapting Language Models to Reasoning Tasks
Current large language models can perform reasonably well on complex tasks that require step-by-step reasoning with few-shot learning. Are these models applying reasoning skills they have learnt during pre-training and reason outside of their training context, or are they simply memorizing their training corpus at finer granularity and have learnt to better understand their context? To tease apart these possibilities, we introduce ALERT, a benchmark and suite of analyses for assessing language models' reasoning ability comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. ALERT provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. We leverage ALERT to further investigate the role of finetuning. With extensive empirical analysis we find that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during finetuning stage compared to pretraining state. We also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.
Explaining Large Language Models Decisions Using Shapley Values
The emergence of large language models (LLMs) has opened up exciting possibilities for simulating human behavior and cognitive processes, with potential applications in various domains, including marketing research and consumer behavior analysis. However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain due to glaring divergences that suggest fundamentally different underlying processes at play and the sensitivity of LLM responses to prompt variations. This paper presents a novel approach based on Shapley values from cooperative game theory to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output. Through two applications - a discrete choice experiment and an investigation of cognitive biases - we demonstrate how the Shapley value method can uncover what we term "token noise" effects, a phenomenon where LLM decisions are disproportionately influenced by tokens providing minimal informative content. This phenomenon raises concerns about the robustness and generalizability of insights obtained from LLMs in the context of human behavior simulation. Our model-agnostic approach extends its utility to proprietary LLMs, providing a valuable tool for practitioners and researchers to strategically optimize prompts and mitigate apparent cognitive biases. Our findings underscore the need for a more nuanced understanding of the factors driving LLM responses before relying on them as substitutes for human subjects in survey settings. We emphasize the importance of researchers reporting results conditioned on specific prompt templates and exercising caution when drawing parallels between human behavior and LLMs.
Text Style Transfer Evaluation Using Large Language Models
Evaluating Text Style Transfer (TST) is a complex task due to its multifaceted nature. The quality of the generated text is measured based on challenging factors, such as style transfer accuracy, content preservation, and overall fluency. While human evaluation is considered to be the gold standard in TST assessment, it is costly and often hard to reproduce. Therefore, automated metrics are prevalent in these domains. Nevertheless, it remains unclear whether these automated metrics correlate with human evaluations. Recent strides in Large Language Models (LLMs) have showcased their capacity to match and even exceed average human performance across diverse, unseen tasks. This suggests that LLMs could be a feasible alternative to human evaluation and other automated metrics in TST evaluation. We compare the results of different LLMs in TST using multiple input prompts. Our findings highlight a strong correlation between (even zero-shot) prompting and human evaluation, showing that LLMs often outperform traditional automated metrics. Furthermore, we introduce the concept of prompt ensembling, demonstrating its ability to enhance the robustness of TST evaluation. This research contributes to the ongoing evaluation of LLMs in diverse tasks, offering insights into successful outcomes and areas of limitation.
MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control
Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications. To clearly evaluate safety apart from general capabilities, we design separate tasks measuring safety and tasks evaluating helpfulness. The safety tasks challenge agents with managing potential risks prevalent in daily life and include tests to evaluate robustness against indirect prompt injections. Our experiments demonstrate that while baseline agents, based on state-of-the-art LLMs, perform well in executing helpful tasks, they show poor performance in safety tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments. We open-source our benchmark at: https://mobilesafetybench.github.io/.
Confidential Prompting: Protecting User Prompts from Cloud LLM Providers
Our work tackles the challenge of securing user inputs in cloud-hosted large language model (LLM) serving while ensuring output invariance, model confidentiality, and compute efficiency. We introduce secure multi-party decoding (SMD), which leverages confidential computing to confine user prompts to a trusted execution environment (TEE), namely a confidential virtual machine (CVM), while allowing service providers to generate tokens efficiently. We also introduce a novel cryptographic method, prompt obfuscation (PO), to ensure robustness against reconstruction attacks on SMD. We demonstrate that our approach preserves both prompt confidentiality and LLM serving efficiency. Our solution can enable privacy-preserving cloud LLM serving that handles sensitive prompts, such as clinical records, financial data, and personal information.
Beyond One-Size-Fits-All: Inversion Learning for Highly Effective NLG Evaluation Prompts
Evaluating natural language generation (NLG) systems is challenging due to the diversity of valid outputs. While human evaluation is the gold standard, it suffers from inconsistencies, lack of standardisation, and demographic biases, limiting reproducibility. LLM-based evaluation offers a scalable alternative but is highly sensitive to prompt design, where small variations can lead to significant discrepancies. In this work, we propose an inversion learning method that learns effective reverse mappings from model outputs back to their input instructions, enabling the automatic generation of highly effective, model-specific evaluation prompts. Our method requires only a single evaluation sample and eliminates the need for time-consuming manual prompt engineering, thereby improving both efficiency and robustness. Our work contributes toward a new direction for more robust and efficient LLM-based evaluation.
Revisiting Pre-trained Language Models for Vulnerability Detection
The rapid advancement of pre-trained language models (PLMs) has demonstrated promising results for various code-related tasks. However, their effectiveness in detecting real-world vulnerabilities remains a critical challenge. % for the security community. While existing empirical studies evaluate PLMs for vulnerability detection (VD), their inadequate consideration in data preparation, evaluation setups, and experimental settings undermines the accuracy and comprehensiveness of evaluations. This paper introduces RevisitVD, an extensive evaluation of 17 PLMs spanning smaller code-specific PLMs and large-scale PLMs using newly constructed datasets. Specifically, we compare the performance of PLMs under both fine-tuning and prompt engineering, assess their effectiveness and generalizability across various training and testing settings, and analyze their robustness against code normalization, abstraction, and semantic-preserving transformations. Our findings reveal that, for VD tasks, PLMs incorporating pre-training tasks designed to capture the syntactic and semantic patterns of code outperform both general-purpose PLMs and those solely pre-trained or fine-tuned on large code corpora. However, these models face notable challenges in real-world scenarios, such as difficulties in detecting vulnerabilities with complex dependencies, handling perturbations introduced by code normalization and abstraction, and identifying semantic-preserving vulnerable code transformations. Also, the truncation caused by the limited context windows of PLMs can lead to a non-negligible amount of labeling errors. This study underscores the importance of thorough evaluations of model performance in practical scenarios and outlines future directions to help enhance the effectiveness of PLMs for realistic VD applications.
A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
PersonalVideo: High ID-Fidelity Video Customization without Dynamic and Semantic Degradation
The current text-to-video (T2V) generation has made significant progress in synthesizing realistic general videos, but it is still under-explored in identity-specific human video generation with customized ID images. The key challenge lies in maintaining high ID fidelity consistently while preserving the original motion dynamic and semantic following after the identity injection. Current video identity customization methods mainly rely on reconstructing given identity images on text-to-image models, which have a divergent distribution with the T2V model. This process introduces a tuning-inference gap, leading to dynamic and semantic degradation. To tackle this problem, we propose a novel framework, dubbed PersonalVideo, that applies direct supervision on videos synthesized by the T2V model to bridge the gap. Specifically, we introduce a learnable Isolated Identity Adapter to customize the specific identity non-intrusively, which does not comprise the original T2V model's abilities (e.g., motion dynamic and semantic following). With the non-reconstructive identity loss, we further employ simulated prompt augmentation to reduce overfitting by supervising generated results in more semantic scenarios, gaining good robustness even with only a single reference image available. Extensive experiments demonstrate our method's superiority in delivering high identity faithfulness while preserving the inherent video generation qualities of the original T2V model, outshining prior approaches. Notably, our PersonalVideo seamlessly integrates with pre-trained SD components, such as ControlNet and style LoRA, requiring no extra tuning overhead.
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now
The recent advances in diffusion models (DMs) have revolutionized the generation of realistic and complex images. However, these models also introduce potential safety hazards, such as producing harmful content and infringing data copyrights. Despite the development of safety-driven unlearning techniques to counteract these challenges, doubts about their efficacy persist. To tackle this issue, we introduce an evaluation framework that leverages adversarial prompts to discern the trustworthiness of these safety-driven DMs after they have undergone the process of unlearning harmful concepts. Specifically, we investigated the adversarial robustness of DMs, assessed by adversarial prompts, when eliminating unwanted concepts, styles, and objects. We develop an effective and efficient adversarial prompt generation approach for DMs, termed UnlearnDiffAtk. This method capitalizes on the intrinsic classification abilities of DMs to simplify the creation of adversarial prompts, thereby eliminating the need for auxiliary classification or diffusion models.Through extensive benchmarking, we evaluate the robustness of five widely-used safety-driven unlearned DMs (i.e., DMs after unlearning undesirable concepts, styles, or objects) across a variety of tasks. Our results demonstrate the effectiveness and efficiency merits of UnlearnDiffAtk over the state-of-the-art adversarial prompt generation method and reveal the lack of robustness of current safety-driven unlearning techniques when applied to DMs. Codes are available at https://github.com/OPTML-Group/Diffusion-MU-Attack. WARNING: This paper contains model outputs that may be offensive in nature.
Model-tuning Via Prompts Makes NLP Models Adversarially Robust
In recent years, NLP practitioners have converged on the following practice: (i) import an off-the-shelf pretrained (masked) language model; (ii) append a multilayer perceptron atop the CLS token's hidden representation (with randomly initialized weights); and (iii) fine-tune the entire model on a downstream task (MLP-FT). This procedure has produced massive gains on standard NLP benchmarks, but these models remain brittle, even to mild adversarial perturbations. In this work, we demonstrate surprising gains in adversarial robustness enjoyed by Model-tuning Via Prompts (MVP), an alternative method of adapting to downstream tasks. Rather than appending an MLP head to make output prediction, MVP appends a prompt template to the input, and makes prediction via text infilling/completion. Across 5 NLP datasets, 4 adversarial attacks, and 3 different models, MVP improves performance against adversarial substitutions by an average of 8% over standard methods and even outperforms adversarial training-based state-of-art defenses by 3.5%. By combining MVP with adversarial training, we achieve further improvements in adversarial robustness while maintaining performance on unperturbed examples. Finally, we conduct ablations to investigate the mechanism underlying these gains. Notably, we find that the main causes of vulnerability of MLP-FT can be attributed to the misalignment between pre-training and fine-tuning tasks, and the randomly initialized MLP parameters.
DOVE: A Large-Scale Multi-Dimensional Predictions Dataset Towards Meaningful LLM Evaluation
Recent work found that LLMs are sensitive to a wide range of arbitrary prompt dimensions, including the type of delimiters, answer enumerators, instruction wording, and more. This throws into question popular single-prompt evaluation practices. We present DOVE (Dataset Of Variation Evaluation) a large-scale dataset containing prompt perturbations of various evaluation benchmarks. In contrast to previous work, we examine LLM sensitivity from an holistic perspective, and assess the joint effects of perturbations along various dimensions, resulting in thousands of perturbations per instance. We evaluate several model families against DOVE, leading to several findings, including efficient methods for choosing well-performing prompts, observing that few-shot examples reduce sensitivity, and identifying instances which are inherently hard across all perturbations. DOVE consists of more than 250M prompt perturbations and model outputs, which we make publicly available to spur a community-wide effort toward meaningful, robust, and efficient evaluation. Browse the data, contribute, and more: https://slab-nlp.github.io/DOVE/
Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine
This report provides a preliminary evaluation of ChatGPT for machine translation, including translation prompt, multilingual translation, and translation robustness. We adopt the prompts advised by ChatGPT to trigger its translation ability and find that the candidate prompts generally work well and show minor performance differences. By evaluating on a number of benchmark test sets, we find that ChatGPT performs competitively with commercial translation products (e.g., Google Translate) on high-resource European languages but lags behind significantly on low-resource or distant languages. For distant languages, we explore an interesting strategy named pivot~prompting that asks ChatGPT to translate the source sentence into a high-resource pivot language before into the target language, which improves the translation performance significantly. As for the translation robustness, ChatGPT does not perform as well as the commercial systems on biomedical abstracts or Reddit comments but exhibits good results on spoken language. With the launch of the GPT-4 engine, the translation performance of ChatGPT is significantly boosted, becoming comparable to commercial translation products, even for distant languages. In other words, ChatGPT~has~already~become~a~good~translator! Scripts and data: https://github.com/wxjiao/Is-ChatGPT-A-Good-Translator
CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1
The rapid development of large reasoning models, such as OpenAI-o3 and DeepSeek-R1, has led to significant improvements in complex reasoning over non-reasoning large language models~(LLMs). However, their enhanced capabilities, combined with the open-source access of models like DeepSeek-R1, raise serious safety concerns, particularly regarding their potential for misuse. In this work, we present a comprehensive safety assessment of these reasoning models, leveraging established safety benchmarks to evaluate their compliance with safety regulations. Furthermore, we investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications. Through our multi-faceted analysis, we uncover four key findings: (1) There is a significant safety gap between the open-source R1 models and the o3-mini model, on both safety benchmark and attack, suggesting more safety effort on R1 is needed. (2) The distilled reasoning model shows poorer safety performance compared to its safety-aligned base models. (3) The stronger the model's reasoning ability, the greater the potential harm it may cause when answering unsafe questions. (4) The thinking process in R1 models pose greater safety concerns than their final answers. Our study provides insights into the security implications of reasoning models and highlights the need for further advancements in R1 models' safety to close the gap.
Benchmarking Mental State Representations in Language Models
While numerous works have assessed the generative performance of language models (LMs) on tasks requiring Theory of Mind reasoning, research into the models' internal representation of mental states remains limited. Recent work has used probing to demonstrate that LMs can represent beliefs of themselves and others. However, these claims are accompanied by limited evaluation, making it difficult to assess how mental state representations are affected by model design and training choices. We report an extensive benchmark with various LM types with different model sizes, fine-tuning approaches, and prompt designs to study the robustness of mental state representations and memorisation issues within the probes. Our results show that the quality of models' internal representations of the beliefs of others increases with model size and, more crucially, with fine-tuning. We are the first to study how prompt variations impact probing performance on theory of mind tasks. We demonstrate that models' representations are sensitive to prompt variations, even when such variations should be beneficial. Finally, we complement previous activation editing experiments on Theory of Mind tasks and show that it is possible to improve models' reasoning performance by steering their activations without the need to train any probe.
CodeS: Towards Building Open-source Language Models for Text-to-SQL
Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.
Part-aware Prompted Segment Anything Model for Adaptive Segmentation
Precision medicine, such as patient-adaptive treatments assisted by medical image analysis, poses new challenges for segmentation algorithms in adapting to new patients, due to the large variability across different patients and the limited availability of annotated data for each patient. In this work, we propose a data-efficient segmentation algorithm, namely Part-aware Prompted Segment Anything Model (P^2SAM). Without any model fine-tuning, P^2SAM enables seamless adaptation to any new patients relying only on one-shot patient-specific data. We introduce a novel part-aware prompt mechanism to select multiple-point prompts based on the part-level features of the one-shot data, which can be extensively integrated into different promptable segmentation models, such as SAM and SAM 2. Moreover, to determine the optimal number of parts for each specific case, we propose a distribution-guided retrieval approach that further enhances the robustness of the part-aware prompt mechanism. P^2SAM improves the performance by +8.0% and +2.0% mean Dice score for two different patient-adaptive segmentation applications, respectively. In addition, P^2SAM also exhibits impressive generalizability in other adaptive segmentation tasks in the natural image domain, e.g., +6.4% mIoU within personalized object segmentation task. The code is available at: https://github.com/Zch0414/p2sam
FACTS: Table Summarization via Offline Template Generation with Agentic Workflows
Query-focused table summarization requires generating natural language summaries of tabular data conditioned on a user query, enabling users to access insights beyond fact retrieval. Existing approaches face key limitations: table-to-text models require costly fine-tuning and struggle with complex reasoning, prompt-based LLM methods suffer from token-limit and efficiency issues while exposing sensitive data, and prior agentic pipelines often rely on decomposition, planning, or manual templates that lack robustness and scalability. To mitigate these issues, we introduce an agentic workflow, FACTS, a Fast, Accurate, and Privacy-Compliant Table Summarization approach via Offline Template Generation. FACTS produces offline templates, consisting of SQL queries and Jinja2 templates, which can be rendered into natural language summaries and are reusable across multiple tables sharing the same schema. It enables fast summarization through reusable offline templates, accurate outputs with executable SQL queries, and privacy compliance by sending only table schemas to LLMs. Evaluations on widely-used benchmarks show that FACTS consistently outperforms baseline methods, establishing it as a practical solution for real-world query-focused table summarization.
Can Tool-Integrated Reinforcement Learning Generalize Across Diverse Domains?
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in reasoning and tool utilization. However, the generalization of tool-augmented reinforcement learning (RL) across diverse domains remains underexplored. In this work, we investigate the cross-domain generalization of an LLM agent equipped with a code interpreter tool, which is exclusively trained on mathematical problem-solving tasks. Despite the restricted training domain, we evaluate the agent's performance across several distinct reasoning domains. The results reveal that RL-based tool usage learned from mathematical tasks can be effectively transferred to complex tasks in other domains, enabling great task performance and high token efficiency. To facilitate this cross-domain transfer, we propose a Tool Generalization Reinforcement Learning (TGRL) framework designed to promote domain-agnostic learning and skill migration, encompassing: (i) a standardized tool interface that abstracts domain-specific nuances through consistent formatting and explicit termination, fostering transferable invocation patterns; (ii) a dual-component reward system that decomposes rewards to incentivize generalizable behaviors like tool efficiency and reasoning abstraction, ensuring alignment and robustness across domain shifts; and (iii) an XML-based prompt template that separates thinking, tool calls, and responses to encourage modular, domain-invariant planning and coherent multi-turn interactions. Extensive experiments across diverse benchmarks validate our approach, achieving state-of-the-art performance and highlighting the cross-domain potential of Tool RL for LLM reasoning.
Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations
Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models(LLMs) in systematically accessing richer factual context. However, the integration of RAG mechanisms brings its inherent challenges, as LLMs need to deal with potentially noisy contexts. Recent studies have shown that LLMs still struggle to critically analyse RAG-based in-context information, a limitation that may lead to incorrect inferences and hallucinations. In this paper, we investigate how to elicit critical reasoning in RAG via contrastive explanations. In particular, we propose Contrastive-RAG (C-RAG), a framework that (i) retrieves relevant documents given a query, (ii) selects and exemplifies relevant passages, and (iii) generates explanations that explicitly contrast the relevance of the passages to (iv) support the final answer. We show the impact of C-RAG building contrastive reasoning demonstrations from LLMs to instruct smaller models for retrieval-augmented tasks. Extensive experiments demonstrate that C-RAG improves state-of-the-art RAG models while (a) requiring significantly fewer prompts and demonstrations and (b) being robust to perturbations in the retrieved documents.
ASSERT: Automated Safety Scenario Red Teaming for Evaluating the Robustness of Large Language Models
As large language models are integrated into society, robustness toward a suite of prompts is increasingly important to maintain reliability in a high-variance environment.Robustness evaluations must comprehensively encapsulate the various settings in which a user may invoke an intelligent system. This paper proposes ASSERT, Automated Safety Scenario Red Teaming, consisting of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection. For robust safety evaluation, we apply these methods in the critical domain of AI safety to algorithmically generate a test suite of prompts covering diverse robustness settings -- semantic equivalence, related scenarios, and adversarial. We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance. Despite dedicated safeguards in existing state-of-the-art models, we find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings, raising concerns for users' physical safety.
