Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLearn from the Past: Language-conditioned Object Rearrangement with Large Language Models
Object rearrangement is a significant task for collaborative robots, where they are directed to manipulate objects into a specified goal state. Determining the placement of objects is a major challenge that influences the efficiency of the rearrangement process. Most current methods heavily rely on pre-collected datasets to train the model for predicting the goal position and are restricted to specific instructions, which limits their broader applicability and effectiveness.In this paper, we propose a framework of language-conditioned object rearrangement based on the Large Language Model (LLM). Particularly, our approach mimics human reasoning by using past successful experiences as a reference to infer the desired goal position. Based on LLM's strong natural language comprehension and inference ability, our method can generalise to handle various everyday objects and free-form language instructions in a zero-shot manner. Experimental results demonstrate that our methods can effectively execute the robotic rearrangement tasks, even those involving long sequential orders.
MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning
Recently, the astonishing performance of large language models (LLMs) in natural language comprehension and generation tasks triggered lots of exploration of using them as central controllers to build agent systems. Multiple studies focus on bridging the LLMs to external tools to extend the application scenarios. However, the current LLMs' perceiving tool-use ability is limited to a single text query, which may result in ambiguity in understanding the users' real intentions. LLMs are expected to eliminate that by perceiving the visual- or auditory-grounded instructions' information. Therefore, in this paper, we propose MLLM-Tool, a system incorporating open-source LLMs and multi-modal encoders so that the learnt LLMs can be conscious of multi-modal input instruction and then select the function-matched tool correctly. To facilitate the evaluation of the model's capability, we collect a dataset featured by consisting of multi-modal input tools from HuggingFace. Another important feature of our dataset is that our dataset also contains multiple potential choices for the same instruction due to the existence of identical functions and synonymous functions, which provides more potential solutions for the same query. The experiments reveal that our MLLM-Tool is capable of recommending appropriate tools for multi-modal instructions. Codes and data are available at https://github.com/MLLM-Tool/MLLM-Tool.
Large Language Models for Robotics: Opportunities, Challenges, and Perspectives
Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains. Notably, in the realm of robot task planning, LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions. However, for embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception. This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks. Additionally, we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions. Our results, based on diverse datasets, indicate that GPT-4V effectively enhances robot performance in embodied tasks. This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights toward bridging the gap in Human-Robot-Environment interaction.
REAL: Resilience and Adaptation using Large Language Models on Autonomous Aerial Robots
Large Language Models (LLMs) pre-trained on internet-scale datasets have shown impressive capabilities in code understanding, synthesis, and general purpose question-and-answering. Key to their performance is the substantial prior knowledge acquired during training and their ability to reason over extended sequences of symbols, often presented in natural language. In this work, we aim to harness the extensive long-term reasoning, natural language comprehension, and the available prior knowledge of LLMs for increased resilience and adaptation in autonomous mobile robots. We introduce REAL, an approach for REsilience and Adaptation using LLMs. REAL provides a strategy to employ LLMs as a part of the mission planning and control framework of an autonomous robot. The LLM employed by REAL provides (i) a source of prior knowledge to increase resilience for challenging scenarios that the system had not been explicitly designed for; (ii) a way to interpret natural-language and other log/diagnostic information available in the autonomy stack, for mission planning; (iii) a way to adapt the control inputs using minimal user-provided prior knowledge about the dynamics/kinematics of the robot. We integrate REAL in the autonomy stack of a real multirotor, querying onboard an offboard LLM at 0.1-1.0 Hz as part the robot's mission planning and control feedback loops. We demonstrate in real-world experiments the ability of the LLM to reduce the position tracking errors of a multirotor under the presence of (i) errors in the parameters of the controller and (ii) unmodeled dynamics. We also show (iii) decision making to avoid potentially dangerous scenarios (e.g., robot oscillates) that had not been explicitly accounted for in the initial prompt design.
EPIE Dataset: A Corpus For Possible Idiomatic Expressions
Idiomatic expressions have always been a bottleneck for language comprehension and natural language understanding, specifically for tasks like Machine Translation(MT). MT systems predominantly produce literal translations of idiomatic expressions as they do not exhibit generic and linguistically deterministic patterns which can be exploited for comprehension of the non-compositional meaning of the expressions. These expressions occur in parallel corpora used for training, but due to the comparatively high occurrences of the constituent words of idiomatic expressions in literal context, the idiomatic meaning gets overpowered by the compositional meaning of the expression. State of the art Metaphor Detection Systems are able to detect non-compositional usage at word level but miss out on idiosyncratic phrasal idiomatic expressions. This creates a dire need for a dataset with a wider coverage and higher occurrence of commonly occurring idiomatic expressions, the spans of which can be used for Metaphor Detection. With this in mind, we present our English Possible Idiomatic Expressions(EPIE) corpus containing 25206 sentences labelled with lexical instances of 717 idiomatic expressions. These spans also cover literal usages for the given set of idiomatic expressions. We also present the utility of our dataset by using it to train a sequence labelling module and testing on three independent datasets with high accuracy, precision and recall scores.
All-in-one: Understanding and Generation in Multimodal Reasoning with the MAIA Benchmark
We introduce MAIA (Multimodal AI Assessment), a native-Italian benchmark designed for fine-grained investigation of the reasoning abilities of visual language models on videos. MAIA differs from other available video benchmarks for its design, its reasoning categories, the metric it uses and the language and culture of the videos. It evaluates Vision Language Models (VLMs) on two aligned tasks: a visual statement verification task, and an open-ended visual question-answering task, both on the same set of video-related questions. It considers twelve reasoning categories that aim to disentangle language and vision relations by highlight when one of two alone encodes sufficient information to solve the tasks, when they are both needed and when the full richness of the short video is essential instead of just a part of it. Thanks to its carefully taught design, it evaluates VLMs' consistency and visually grounded natural language comprehension and generation simultaneously through an aggregated metric. Last but not least, the video collection has been carefully selected to reflect the Italian culture and the language data are produced by native-speakers.
Neural Comprehension: Language Models with Compiled Neural Networks
Language models have achieved impressive results in natural language processing tasks, but their ability to perform symbolic operations and arithmetic operations, remains limited, which attribute to their learn the rules implicitly from data. We explore how to incorporate compiled neural networks (CoNNs) which weight is specially designed, into the architecture of language models to enable the language model trained by gradient to obtain fully rule comprehension ability. The incorporation of compiled neural networks offers a promising direction for improving the performance of language models on compound tasks, particularly in areas that require a deeper comprehension of abstract rules beyond recognizing patterns in training data. Our method, which call "Neural Comprehension", helps language models achieve absolute accuracy in symbolic operations, thereby enhancing their ability for rule reasoning, symbolic reasoning, and arithmetic reasoning. Our code is publicly available at: https://github.com/WENGSYX/Neural-Comprehension.
ChatEDA: A Large Language Model Powered Autonomous Agent for EDA
The integration of a complex set of Electronic Design Automation (EDA) tools to enhance interoperability is a critical concern for circuit designers. Recent advancements in large language models (LLMs) have showcased their exceptional capabilities in natural language processing and comprehension, offering a novel approach to interfacing with EDA tools. This research paper introduces ChatEDA, an autonomous agent for EDA empowered by a large language model, AutoMage, complemented by EDA tools serving as executors. ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task planning, script generation, and task execution. Through comprehensive experimental evaluations, ChatEDA has demonstrated its proficiency in handling diverse requirements, and our fine-tuned AutoMage model has exhibited superior performance compared to GPT-4 and other similar LLMs.
Pragmatic Reasoning Unlocks Quantifier Semantics for Foundation Models
Generalized quantifiers (e.g., few, most) are used to indicate the proportions predicates are satisfied (for example, some apples are red). One way to interpret quantifier semantics is to explicitly bind these satisfactions with percentage scopes (e.g., 30%-40% of apples are red). This approach can be helpful for tasks like logic formalization and surface-form quantitative reasoning (Gordon and Schubert, 2010; Roy et al., 2015). However, it remains unclear if recent foundation models possess this ability, as they lack direct training signals. To explore this, we introduce QuRe, a crowd-sourced dataset of human-annotated generalized quantifiers in Wikipedia sentences featuring percentage-equipped predicates. We explore quantifier comprehension in language models using PRESQUE, a framework that combines natural language inference and the Rational Speech Acts framework. Experimental results on the HVD dataset and QuRe illustrate that PRESQUE, employing pragmatic reasoning, performs 20% better than a literal reasoning baseline when predicting quantifier percentage scopes, with no additional training required.
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and many other more recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of the original sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also report ablation experiments that replicate other pretraining schemes within the BART framework, to better measure which factors most influence end-task performance.
Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs
Natural language is a powerful complementary modality of communication for data visualizations, such as bar and line charts. To facilitate chart-based reasoning using natural language, various downstream tasks have been introduced recently such as chart question answering, chart summarization, and fact-checking with charts. These tasks pose a unique challenge, demanding both vision-language reasoning and a nuanced understanding of chart data tables, visual encodings, and natural language prompts. Despite the recent success of Large Language Models (LLMs) across diverse NLP tasks, their abilities and limitations in the realm of data visualization remain under-explored, possibly due to their lack of multi-modal capabilities. To bridge the gap, this paper presents the first comprehensive evaluation of the recently developed large vision language models (LVLMs) for chart understanding and reasoning tasks. Our evaluation includes a comprehensive assessment of LVLMs, including GPT-4V and Gemini, across four major chart reasoning tasks. Furthermore, we perform a qualitative evaluation of LVLMs' performance on a diverse range of charts, aiming to provide a thorough analysis of their strengths and weaknesses. Our findings reveal that LVLMs demonstrate impressive abilities in generating fluent texts covering high-level data insights while also encountering common problems like hallucinations, factual errors, and data bias. We highlight the key strengths and limitations of chart comprehension tasks, offering insights for future research.
The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants
We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the Flores-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and find that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. We also observe that larger vocabulary size and conscious vocabulary construction correlate with better performance on low-resource languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems.
AmadeusGPT: a natural language interface for interactive animal behavioral analysis
The process of quantifying and analyzing animal behavior involves translating the naturally occurring descriptive language of their actions into machine-readable code. Yet, codifying behavior analysis is often challenging without deep understanding of animal behavior and technical machine learning knowledge. To limit this gap, we introduce AmadeusGPT: a natural language interface that turns natural language descriptions of behaviors into machine-executable code. Large-language models (LLMs) such as GPT3.5 and GPT4 allow for interactive language-based queries that are potentially well suited for making interactive behavior analysis. However, the comprehension capability of these LLMs is limited by the context window size, which prevents it from remembering distant conversations. To overcome the context window limitation, we implement a novel dual-memory mechanism to allow communication between short-term and long-term memory using symbols as context pointers for retrieval and saving. Concretely, users directly use language-based definitions of behavior and our augmented GPT develops code based on the core AmadeusGPT API, which contains machine learning, computer vision, spatio-temporal reasoning, and visualization modules. Users then can interactively refine results, and seamlessly add new behavioral modules as needed. We benchmark AmadeusGPT and show we can produce state-of-the-art performance on the MABE 2022 behavior challenge tasks. Note, an end-user would not need to write any code to achieve this. Thus, collectively AmadeusGPT presents a novel way to merge deep biological knowledge, large-language models, and core computer vision modules into a more naturally intelligent system. Code and demos can be found at: https://github.com/AdaptiveMotorControlLab/AmadeusGPT.
Enhancing Pre-Trained Generative Language Models with Question Attended Span Extraction on Machine Reading Comprehension
Machine Reading Comprehension (MRC) poses a significant challenge in the field of Natural Language Processing (NLP). While mainstream MRC methods predominantly leverage extractive strategies using encoder-only models such as BERT, generative approaches face the issue of out-of-control generation -- a critical problem where answers generated are often incorrect, irrelevant, or unfaithful to the source text. To address these limitations in generative models for MRC, we introduce the Question-Attended Span Extraction (QASE) module. Integrated during the fine-tuning phase of pre-trained generative language models (PLMs), QASE significantly enhances their performance, allowing them to surpass the extractive capabilities of advanced Large Language Models (LLMs) such as GPT-4. Notably, these gains in performance do not come with an increase in computational demands. The efficacy of the QASE module has been rigorously tested across various datasets, consistently achieving or even surpassing state-of-the-art (SOTA) results.
MenatQA: A New Dataset for Testing the Temporal Comprehension and Reasoning Abilities of Large Language Models
Large language models (LLMs) have shown nearly saturated performance on many natural language processing (NLP) tasks. As a result, it is natural for people to believe that LLMs have also mastered abilities such as time understanding and reasoning. However, research on the temporal sensitivity of LLMs has been insufficiently emphasized. To fill this gap, this paper constructs Multiple Sensitive Factors Time QA (MenatQA), which encompasses three temporal factors (scope factor, order factor, counterfactual factor) with total 2,853 samples for evaluating the time comprehension and reasoning abilities of LLMs. This paper tests current mainstream LLMs with different parameter sizes, ranging from billions to hundreds of billions. The results show most LLMs fall behind smaller temporal reasoning models with different degree on these factors. In specific, LLMs show a significant vulnerability to temporal biases and depend heavily on the temporal information provided in questions. Furthermore, this paper undertakes a preliminary investigation into potential improvement strategies by devising specific prompts and leveraging external tools. These approaches serve as valuable baselines or references for future research endeavors.
Natural Language-conditioned Reinforcement Learning with Inside-out Task Language Development and Translation
Natural Language-conditioned reinforcement learning (RL) enables the agents to follow human instructions. Previous approaches generally implemented language-conditioned RL by providing human instructions in natural language (NL) and training a following policy. In this outside-in approach, the policy needs to comprehend the NL and manage the task simultaneously. However, the unbounded NL examples often bring much extra complexity for solving concrete RL tasks, which can distract policy learning from completing the task. To ease the learning burden of the policy, we investigate an inside-out scheme for natural language-conditioned RL by developing a task language (TL) that is task-related and unique. The TL is used in RL to achieve highly efficient and effective policy training. Besides, a translator is trained to translate NL into TL. We implement this scheme as TALAR (TAsk Language with predicAte Representation) that learns multiple predicates to model object relationships as the TL. Experiments indicate that TALAR not only better comprehends NL instructions but also leads to a better instruction-following policy that improves 13.4% success rate and adapts to unseen expressions of NL instruction. The TL can also be an effective task abstraction, naturally compatible with hierarchical RL.
Improving Natural Language Understanding for LLMs via Large-Scale Instruction Synthesis
High-quality, large-scale instructions are crucial for aligning large language models (LLMs), however, there is a severe shortage of instruction in the field of natural language understanding (NLU). Previous works on constructing NLU instructions mainly focus on information extraction (IE), neglecting tasks such as machine reading comprehension, question answering, and text classification. Furthermore, the lack of diversity in the data has led to a decreased generalization ability of trained LLMs in other NLU tasks and a noticeable decline in the fundamental model's general capabilities. To address this issue, we propose Hum, a large-scale, high-quality synthetic instruction corpus for NLU tasks, designed to enhance the NLU capabilities of LLMs. Specifically, Hum includes IE (either close IE or open IE), machine reading comprehension, text classification, and instruction generalist tasks, thereby enriching task diversity. Additionally, we introduce a human-LLMs collaborative mechanism to synthesize instructions, which enriches instruction diversity by incorporating guidelines, preference rules, and format variants. We conduct extensive experiments on 5 NLU tasks and 28 general capability evaluation datasets for LLMs. Experimental results show that Hum enhances the NLU capabilities of six LLMs by an average of 3.1\%, with no significant decline observed in other general capabilities.
UniChart: A Universal Vision-language Pretrained Model for Chart Comprehension and Reasoning
Charts are very popular for analyzing data, visualizing key insights and answering complex reasoning questions about data. To facilitate chart-based data analysis using natural language, several downstream tasks have been introduced recently such as chart question answering and chart summarization. However, most of the methods that solve these tasks use pretraining on language or vision-language tasks that do not attempt to explicitly model the structure of the charts (e.g., how data is visually encoded and how chart elements are related to each other). To address this, we first build a large corpus of charts covering a wide variety of topics and visual styles. We then present UniChart, a pretrained model for chart comprehension and reasoning. UniChart encodes the relevant text, data, and visual elements of charts and then uses a chart-grounded text decoder to generate the expected output in natural language. We propose several chart-specific pretraining tasks that include: (i) low-level tasks to extract the visual elements (e.g., bars, lines) and data from charts, and (ii) high-level tasks to acquire chart understanding and reasoning skills. We find that pretraining the model on a large corpus with chart-specific low- and high-level tasks followed by finetuning on three down-streaming tasks results in state-of-the-art performance on three downstream tasks.
HKCanto-Eval: A Benchmark for Evaluating Cantonese Language Understanding and Cultural Comprehension in LLMs
The ability of language models to comprehend and interact in diverse linguistic and cultural landscapes is crucial. The Cantonese language used in Hong Kong presents unique challenges for natural language processing due to its rich cultural nuances and lack of dedicated evaluation datasets. The HKCanto-Eval benchmark addresses this gap by evaluating the performance of large language models (LLMs) on Cantonese language understanding tasks, extending to English and Written Chinese for cross-lingual evaluation. HKCanto-Eval integrates cultural and linguistic nuances intrinsic to Hong Kong, providing a robust framework for assessing language models in realistic scenarios. Additionally, the benchmark includes questions designed to tap into the underlying linguistic metaknowledge of the models. Our findings indicate that while proprietary models generally outperform open-weight models, significant limitations remain in handling Cantonese-specific linguistic and cultural knowledge, highlighting the need for more targeted training data and evaluation methods. The code can be accessed at https://github.com/hon9kon9ize/hkeval2025
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
Benchmarking the Abilities of Large Language Models for RDF Knowledge Graph Creation and Comprehension: How Well Do LLMs Speak Turtle?
Large Language Models (LLMs) are advancing at a rapid pace, with significant improvements at natural language processing and coding tasks. Yet, their ability to work with formal languages representing data, specifically within the realm of knowledge graph engineering, remains under-investigated. To evaluate the proficiency of various LLMs, we created a set of five tasks that probe their ability to parse, understand, analyze, and create knowledge graphs serialized in Turtle syntax. These tasks, each embodying distinct degrees of complexity and being able to scale with the size of the problem, have been integrated into our automated evaluation system, the LLM-KG-Bench. The evaluation encompassed four commercially available LLMs - GPT-3.5, GPT-4, Claude 1.3, and Claude 2.0, as well as two freely accessible offline models, GPT4All Vicuna and GPT4All Falcon 13B. This analysis offers an in-depth understanding of the strengths and shortcomings of LLMs in relation to their application within RDF knowledge graph engineering workflows utilizing Turtle representation. While our findings show that the latest commercial models outperform their forerunners in terms of proficiency with the Turtle language, they also reveal an apparent weakness. These models fall short when it comes to adhering strictly to the output formatting constraints, a crucial requirement in this context.
Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.
LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs
Long non-coding RNAs (lncRNAs) serve as crucial regulators in numerous biological processes. Although they share sequence similarities with messenger RNAs (mRNAs), lncRNAs perform entirely different roles, providing new avenues for biological research. The emergence of next-generation sequencing technologies has greatly advanced the detection and identification of lncRNA transcripts and deep learning-based approaches have been introduced to classify long non-coding RNAs (lncRNAs). These advanced methods have significantly enhanced the efficiency of identifying lncRNAs. However, many of these methods are devoid of robustness and accuracy due to the extended length of the sequences involved. To tackle this issue, we have introduced a novel pre-trained bidirectional encoder representation called LoRA-BERT. LoRA-BERT is designed to capture the importance of nucleotide-level information during sequence classification, leading to more robust and satisfactory outcomes. In a comprehensive comparison with commonly used sequence prediction tools, we have demonstrated that LoRA-BERT outperforms them in terms of accuracy and efficiency. Our results indicate that, when utilizing the transformer model, LoRA-BERT achieves state-of-the-art performance in predicting both lncRNAs and mRNAs for human and mouse species. Through the utilization of LoRA-BERT, we acquire valuable insights into the traits of lncRNAs and mRNAs, offering the potential to aid in the comprehension and detection of diseases linked to lncRNAs in humans.
Identifying Well-formed Natural Language Questions
Understanding search queries is a hard problem as it involves dealing with "word salad" text ubiquitously issued by users. However, if a query resembles a well-formed question, a natural language processing pipeline is able to perform more accurate interpretation, thus reducing downstream compounding errors. Hence, identifying whether or not a query is well formed can enhance query understanding. Here, we introduce a new task of identifying a well-formed natural language question. We construct and release a dataset of 25,100 publicly available questions classified into well-formed and non-wellformed categories and report an accuracy of 70.7% on the test set. We also show that our classifier can be used to improve the performance of neural sequence-to-sequence models for generating questions for reading comprehension.
Controlled Generation with Prompt Insertion for Natural Language Explanations in Grammatical Error Correction
In Grammatical Error Correction (GEC), it is crucial to ensure the user's comprehension of a reason for correction. Existing studies present tokens, examples, and hints as to the basis for correction but do not directly explain the reasons for corrections. Although methods that use Large Language Models (LLMs) to provide direct explanations in natural language have been proposed for various tasks, no such method exists for GEC. Generating explanations for GEC corrections involves aligning input and output tokens, identifying correction points, and presenting corresponding explanations consistently. However, it is not straightforward to specify a complex format to generate explanations, because explicit control of generation is difficult with prompts. This study introduces a method called controlled generation with Prompt Insertion (PI) so that LLMs can explain the reasons for corrections in natural language. In PI, LLMs first correct the input text, and then we automatically extract the correction points based on the rules. The extracted correction points are sequentially inserted into the LLM's explanation output as prompts, guiding the LLMs to generate explanations for the correction points. We also create an Explainable GEC (XGEC) dataset of correction reasons by annotating NUCLE, CoNLL2013, and CoNLL2014. Although generations from GPT-3 and ChatGPT using original prompts miss some correction points, the generation control using PI can explicitly guide to describe explanations for all correction points, contributing to improved performance in generating correction reasons.
SpeechCraft: A Fine-grained Expressive Speech Dataset with Natural Language Description
Speech-language multi-modal learning presents a significant challenge due to the fine nuanced information inherent in speech styles. Therefore, a large-scale dataset providing elaborate comprehension of speech style is urgently needed to facilitate insightful interplay between speech audio and natural language. However, constructing such datasets presents a major trade-off between large-scale data collection and high-quality annotation. To tackle this challenge, we propose an automatic speech annotation system for expressiveness interpretation that annotates in-the-wild speech clips with expressive and vivid human language descriptions. Initially, speech audios are processed by a series of expert classifiers and captioning models to capture diverse speech characteristics, followed by a fine-tuned LLaMA for customized annotation generation. Unlike previous tag/templet-based annotation frameworks with limited information and diversity, our system provides in-depth understandings of speech style through tailored natural language descriptions, thereby enabling accurate and voluminous data generation for large model training. With this system, we create SpeechCraft, a fine-grained bilingual expressive speech dataset. It is distinguished by highly descriptive natural language style prompts, containing approximately 2,000 hours of audio data and encompassing over two million speech clips. Extensive experiments demonstrate that the proposed dataset significantly boosts speech-language task performance in stylist speech synthesis and speech style understanding.
Animation Needs Attention: A Holistic Approach to Slides Animation Comprehension with Visual-Language Models
Slide animations, such as fade-in, fly-in, and wipe, are critical for audience engagement, efficient information delivery, and vivid visual expression. However, most AI-driven slide-generation tools still lack native animation support, and existing vision-language models (VLMs) struggle with animation tasks due to the absence of public datasets and limited temporal-reasoning capabilities. To address this gap, we release the first public dataset for slide-animation modeling: 12,000 triplets of natural-language descriptions, animation JSON files, and rendered videos, collectively covering every built-in PowerPoint effect. Using this resource, we fine-tune Qwen-2.5-VL-7B with Low-Rank Adaptation (LoRA) and achieve consistent improvements over GPT-4.1 and Gemini-2.5-Pro in BLEU-4, ROUGE-L, SPICE, and our Coverage-Order-Detail Assessment (CODA) metric, which evaluates action coverage, temporal order, and detail fidelity. On a manually created test set of slides, the LoRA model increases BLEU-4 by around 60%, ROUGE-L by 30%, and shows significant improvements in CODA-detail. This demonstrates that low-rank adaptation enables reliable temporal reasoning and generalization beyond synthetic data. Overall, our dataset, LoRA-enhanced model, and CODA metric provide a rigorous benchmark and foundation for future research on VLM-based dynamic slide generation.
InteracSPARQL: An Interactive System for SPARQL Query Refinement Using Natural Language Explanations
In recent years, querying semantic web data using SPARQL has remained challenging, especially for non-expert users, due to the language's complex syntax and the prerequisite of understanding intricate data structures. To address these challenges, we propose InteracSPARQL, an interactive SPARQL query generation and refinement system that leverages natural language explanations (NLEs) to enhance user comprehension and facilitate iterative query refinement. InteracSPARQL integrates LLMs with a rule-based approach to first produce structured explanations directly from SPARQL abstract syntax trees (ASTs), followed by LLM-based linguistic refinements. Users can interactively refine queries through direct feedback or LLM-driven self-refinement, enabling the correction of ambiguous or incorrect query components in real time. We evaluate InteracSPARQL on standard benchmarks, demonstrating significant improvements in query accuracy, explanation clarity, and overall user satisfaction compared to baseline approaches. Our experiments further highlight the effectiveness of combining rule-based methods with LLM-driven refinements to create more accessible and robust SPARQL interfaces.
CPTQuant - A Novel Mixed Precision Post-Training Quantization Techniques for Large Language Models
Large language models have transformed the comprehension and generation of natural language tasks, but they come with substantial memory and computational requirements. Quantization techniques have emerged as a promising avenue for addressing these challenges while preserving accuracy and making energy efficient. We propose CPTQuant, a comprehensive strategy that introduces correlation-based (CMPQ), pruning-based (PMPQ), and Taylor decomposition-based (TDMPQ) mixed precision techniques. CMPQ adapts the precision level based on canonical correlation analysis of different layers. PMPQ optimizes precision layer-wise based on their sensitivity to sparsity. TDMPQ modifies precision using Taylor decomposition to assess each layer's sensitivity to input perturbation. These strategies allocate higher precision to more sensitive layers while diminishing precision to robust layers. CPTQuant assesses the performance across BERT, OPT-125M, OPT-350M, OPT-1.3B, and OPT-2.7B. We demonstrate up to 4x compression and a 2x-fold increase in efficiency with minimal accuracy drop compared to Hugging Face FP16. PMPQ stands out for achieving a considerably higher model compression. Sensitivity analyses across various LLMs show that the initial and final 30% of layers exhibit higher sensitivities than the remaining layers. PMPQ demonstrates an 11% higher compression ratio than other methods for classification tasks, while TDMPQ achieves a 30% greater compression ratio for language modeling tasks.
Sentence Extraction-Based Machine Reading Comprehension for Vietnamese
The development of natural language processing (NLP) in general and machine reading comprehension in particular has attracted the great attention of the research community. In recent years, there are a few datasets for machine reading comprehension tasks in Vietnamese with large sizes, such as UIT-ViQuAD and UIT-ViNewsQA. However, the datasets are not diverse in answers to serve the research. In this paper, we introduce UIT-ViWikiQA, the first dataset for evaluating sentence extraction-based machine reading comprehension in the Vietnamese language. The UIT-ViWikiQA dataset is converted from the UIT-ViQuAD dataset, consisting of comprises 23.074 question-answers based on 5.109 passages of 174 Wikipedia Vietnamese articles. We propose a conversion algorithm to create the dataset for sentence extraction-based machine reading comprehension and three types of approaches for sentence extraction-based machine reading comprehension in Vietnamese. Our experiments show that the best machine model is XLM-R_Large, which achieves an exact match (EM) of 85.97% and an F1-score of 88.77% on our dataset. Besides, we analyze experimental results in terms of the question type in Vietnamese and the effect of context on the performance of the MRC models, thereby showing the challenges from the UIT-ViWikiQA dataset that we propose to the language processing community.
Beyond Surface Structure: A Causal Assessment of LLMs' Comprehension Ability
Large language models (LLMs) have shown remarkable capability in natural language tasks, yet debate persists on whether they truly comprehend deep structure (i.e., core semantics) or merely rely on surface structure (e.g., presentation format). Prior studies observe that LLMs' performance declines when intervening on surface structure, arguing their success relies on surface structure recognition. However, surface structure sensitivity does not prevent deep structure comprehension. Rigorously evaluating LLMs' capability requires analyzing both, yet deep structure is often overlooked. To this end, we assess LLMs' comprehension ability using causal mediation analysis, aiming to fully discover the capability of using both deep and surface structures. Specifically, we formulate the comprehension of deep structure as direct causal effect (DCE) and that of surface structure as indirect causal effect (ICE), respectively. To address the non-estimability of original DCE and ICE -- stemming from the infeasibility of isolating mutual influences of deep and surface structures, we develop the corresponding quantifiable surrogates, including approximated DCE (ADCE) and approximated ICE (AICE). We further apply the ADCE to evaluate a series of mainstream LLMs, showing that most of them exhibit deep structure comprehension ability, which grows along with the prediction accuracy. Comparing ADCE and AICE demonstrates closed-source LLMs rely more on deep structure, while open-source LLMs are more surface-sensitive, which decreases with model scale. Theoretically, ADCE is a bidirectional evaluation, which measures both the sufficiency and necessity of deep structure changes in causing output variations, thus offering a more comprehensive assessment than accuracy, a common evaluation in LLMs. Our work provides new insights into LLMs' deep structure comprehension and offers novel methods for LLMs evaluation.
Automated Assessment of Students' Code Comprehension using LLMs
Assessing student's answers and in particular natural language answers is a crucial challenge in the field of education. Advances in machine learning, including transformer-based models such as Large Language Models(LLMs), have led to significant progress in various natural language tasks. Nevertheless, amidst the growing trend of evaluating LLMs across diverse tasks, evaluating LLMs in the realm of automated answer assesment has not received much attention. To address this gap, we explore the potential of using LLMs for automated assessment of student's short and open-ended answer. Particularly, we use LLMs to compare students' explanations with expert explanations in the context of line-by-line explanations of computer programs. For comparison purposes, we assess both Large Language Models (LLMs) and encoder-based Semantic Textual Similarity (STS) models in the context of assessing the correctness of students' explanation of computer code. Our findings indicate that LLMs, when prompted in few-shot and chain-of-thought setting perform comparable to fine-tuned encoder-based models in evaluating students' short answers in programming domain.
Conversational Machine Reading Comprehension for Vietnamese Healthcare Texts
Machine reading comprehension (MRC) is a sub-field in natural language processing that aims to assist computers understand unstructured texts and then answer questions related to them. In practice, the conversation is an essential way to communicate and transfer information. To help machines understand conversation texts, we present UIT-ViCoQA, a new corpus for conversational machine reading comprehension in the Vietnamese language. This corpus consists of 10,000 questions with answers over 2,000 conversations about health news articles. Then, we evaluate several baseline approaches for conversational machine comprehension on the UIT-ViCoQA corpus. The best model obtains an F1 score of 45.27%, which is 30.91 points behind human performance (76.18%), indicating that there is ample room for improvement. Our dataset is available at our website: http://nlp.uit.edu.vn/datasets/ for research purposes.
Comprehension-guided referring expressions
We consider generation and comprehension of natural language referring expression for objects in an image. Unlike generic "image captioning" which lacks natural standard evaluation criteria, quality of a referring expression may be measured by the receiver's ability to correctly infer which object is being described. Following this intuition, we propose two approaches to utilize models trained for comprehension task to generate better expressions. First, we use a comprehension module trained on human-generated expressions, as a "critic" of referring expression generator. The comprehension module serves as a differentiable proxy of human evaluation, providing training signal to the generation module. Second, we use the comprehension module in a generate-and-rerank pipeline, which chooses from candidate expressions generated by a model according to their performance on the comprehension task. We show that both approaches lead to improved referring expression generation on multiple benchmark datasets.
Large Language Models are Few-Shot Summarizers: Multi-Intent Comment Generation via In-Context Learning
Code comment generation aims at generating natural language descriptions for a code snippet to facilitate developers' program comprehension activities. Despite being studied for a long time, a bottleneck for existing approaches is that given a code snippet, they can only generate one comment while developers usually need to know information from diverse perspectives such as what is the functionality of this code snippet and how to use it. To tackle this limitation, this study empirically investigates the feasibility of utilizing large language models (LLMs) to generate comments that can fulfill developers' diverse intents. Our intuition is based on the facts that (1) the code and its pairwise comment are used during the pre-training process of LLMs to build the semantic connection between the natural language and programming language, and (2) comments in the real-world projects, which are collected for the pre-training, usually contain different developers' intents. We thus postulate that the LLMs can already understand the code from different perspectives after the pre-training. Indeed, experiments on two large-scale datasets demonstrate the rationale of our insights: by adopting the in-context learning paradigm and giving adequate prompts to the LLM (e.g., providing it with ten or more examples), the LLM can significantly outperform a state-of-the-art supervised learning approach on generating comments with multiple intents. Results also show that customized strategies for constructing the prompts and post-processing strategies for reranking the results can both boost the LLM's performances, which shed light on future research directions for using LLMs to achieve comment generation.
VLSP 2021 - ViMRC Challenge: Vietnamese Machine Reading Comprehension
One of the emerging research trends in natural language understanding is machine reading comprehension (MRC) which is the task to find answers to human questions based on textual data. Existing Vietnamese datasets for MRC research concentrate solely on answerable questions. However, in reality, questions can be unanswerable for which the correct answer is not stated in the given textual data. To address the weakness, we provide the research community with a benchmark dataset named UIT-ViQuAD 2.0 for evaluating the MRC task and question answering systems for the Vietnamese language. We use UIT-ViQuAD 2.0 as a benchmark dataset for the challenge on Vietnamese MRC at the Eighth Workshop on Vietnamese Language and Speech Processing (VLSP 2021). This task attracted 77 participant teams from 34 universities and other organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 77.24% in F1-score and 67.43% in Exact Match on the private test set. The Vietnamese MRC systems proposed by the top 3 teams use XLM-RoBERTa, a powerful pre-trained language model based on the transformer architecture. The UIT-ViQuAD 2.0 dataset motivates researchers to further explore the Vietnamese machine reading comprehension task and related tasks such as question answering, question generation, and natural language inference.
Embracing data abundance: BookTest Dataset for Reading Comprehension
There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement.
When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications, such as semantic matching, clustering, and information retrieval, continue to rely on text embeddings for their efficiency and effectiveness. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, utilizing their innate capabilities for embedding generation; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing these efforts based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
Large Language Models are Complex Table Parsers
With the Generative Pre-trained Transformer 3.5 (GPT-3.5) exhibiting remarkable reasoning and comprehension abilities in Natural Language Processing (NLP), most Question Answering (QA) research has primarily centered around general QA tasks based on GPT, neglecting the specific challenges posed by Complex Table QA. In this paper, we propose to incorporate GPT-3.5 to address such challenges, in which complex tables are reconstructed into tuples and specific prompt designs are employed for dialogues. Specifically, we encode each cell's hierarchical structure, position information, and content as a tuple. By enhancing the prompt template with an explanatory description of the meaning of each tuple and the logical reasoning process of the task, we effectively improve the hierarchical structure awareness capability of GPT-3.5 to better parse the complex tables. Extensive experiments and results on Complex Table QA datasets, i.e., the open-domain dataset HiTAB and the aviation domain dataset AIT-QA show that our approach significantly outperforms previous work on both datasets, leading to state-of-the-art (SOTA) performance.
ViMMRC 2.0 -- Enhancing Machine Reading Comprehension on Vietnamese Literature Text
Machine reading comprehension has been an interesting and challenging task in recent years, with the purpose of extracting useful information from texts. To attain the computer ability to understand the reading text and answer relevant information, we introduce ViMMRC 2.0 - an extension of the previous ViMMRC for the task of multiple-choice reading comprehension in Vietnamese Textbooks which contain the reading articles for students from Grade 1 to Grade 12. This dataset has 699 reading passages which are prose and poems, and 5,273 questions. The questions in the new dataset are not fixed with four options as in the previous version. Moreover, the difficulty of questions is increased, which challenges the models to find the correct choice. The computer must understand the whole context of the reading passage, the question, and the content of each choice to extract the right answers. Hence, we propose a multi-stage approach that combines the multi-step attention network (MAN) with the natural language inference (NLI) task to enhance the performance of the reading comprehension model. Then, we compare the proposed methodology with the baseline BERTology models on the new dataset and the ViMMRC 1.0. From the results of the error analysis, we found that the challenge of the reading comprehension models is understanding the implicit context in texts and linking them together in order to find the correct answers. Finally, we hope our new dataset will motivate further research to enhance the ability of computers to understand the Vietnamese language.
CONDAQA: A Contrastive Reading Comprehension Dataset for Reasoning about Negation
The full power of human language-based communication cannot be realized without negation. All human languages have some form of negation. Despite this, negation remains a challenging phenomenon for current natural language understanding systems. To facilitate the future development of models that can process negation effectively, we present CONDAQA, the first English reading comprehension dataset which requires reasoning about the implications of negated statements in paragraphs. We collect paragraphs with diverse negation cues, then have crowdworkers ask questions about the implications of the negated statement in the passage. We also have workers make three kinds of edits to the passage -- paraphrasing the negated statement, changing the scope of the negation, and reversing the negation -- resulting in clusters of question-answer pairs that are difficult for models to answer with spurious shortcuts. CONDAQA features 14,182 question-answer pairs with over 200 unique negation cues and is challenging for current state-of-the-art models. The best performing model on CONDAQA (UnifiedQA-v2-3b) achieves only 42% on our consistency metric, well below human performance which is 81%. We release our dataset, along with fully-finetuned, few-shot, and zero-shot evaluations, to facilitate the development of future NLP methods that work on negated language.
IDK-MRC: Unanswerable Questions for Indonesian Machine Reading Comprehension
Machine Reading Comprehension (MRC) has become one of the essential tasks in Natural Language Understanding (NLU) as it is often included in several NLU benchmarks (Liang et al., 2020; Wilie et al., 2020). However, most MRC datasets only have answerable question type, overlooking the importance of unanswerable questions. MRC models trained only on answerable questions will select the span that is most likely to be the answer, even when the answer does not actually exist in the given passage (Rajpurkar et al., 2018). This problem especially remains in medium- to low-resource languages like Indonesian. Existing Indonesian MRC datasets (Purwarianti et al., 2007; Clark et al., 2020) are still inadequate because of the small size and limited question types, i.e., they only cover answerable questions. To fill this gap, we build a new Indonesian MRC dataset called I(n)don'tKnow- MRC (IDK-MRC) by combining the automatic and manual unanswerable question generation to minimize the cost of manual dataset construction while maintaining the dataset quality. Combined with the existing answerable questions, IDK-MRC consists of more than 10K questions in total. Our analysis shows that our dataset significantly improves the performance of Indonesian MRC models, showing a large improvement for unanswerable questions.
Referring Expression Comprehension: A Survey of Methods and Datasets
Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object labels have been pre-defined, the REC problem only can observe the queries during the test. It thus more challenging than a conventional computer vision problem. This task has attracted a lot of attention from both computer vision and natural language processing community, and several lines of work have been proposed, from CNN-RNN model, modular network to complex graph-based model. In this survey, we first examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to encode the visual and textual modalities. In particular, we examine the common approach of joint embedding images and expressions to a common feature space. We also discuss modular architectures and graph-based models that interface with structured graph representation. In the second part of this survey, we review the datasets available for training and evaluating REC systems. We then group results according to the datasets, backbone models, settings so that they can be fairly compared. Finally, we discuss promising future directions for the field, in particular the compositional referring expression comprehension that requires longer reasoning chain to address.
A Real-Time Cross-modality Correlation Filtering Method for Referring Expression Comprehension
Referring expression comprehension aims to localize the object instance described by a natural language expression. Current referring expression methods have achieved good performance. However, none of them is able to achieve real-time inference without accuracy drop. The reason for the relatively slow inference speed is that these methods artificially split the referring expression comprehension into two sequential stages including proposal generation and proposal ranking. It does not exactly conform to the habit of human cognition. To this end, we propose a novel Realtime Cross-modality Correlation Filtering method (RCCF). RCCF reformulates the referring expression comprehension as a correlation filtering process. The expression is first mapped from the language domain to the visual domain and then treated as a template (kernel) to perform correlation filtering on the image feature map. The peak value in the correlation heatmap indicates the center points of the target box. In addition, RCCF also regresses a 2-D object size and 2-D offset. The center point coordinates, object size and center point offset together to form the target bounding box. Our method runs at 40 FPS while achieving leading performance in RefClef, RefCOCO, RefCOCO+ and RefCOCOg benchmarks. In the challenging RefClef dataset, our methods almost double the state-of-the-art performance (34.70% increased to 63.79%). We hope this work can arouse more attention and studies to the new cross-modality correlation filtering framework as well as the one-stage framework for referring expression comprehension.
KorQuAD1.0: Korean QA Dataset for Machine Reading Comprehension
Machine Reading Comprehension (MRC) is a task that requires machine to understand natural language and answer questions by reading a document. It is the core of automatic response technology such as chatbots and automatized customer supporting systems. We present Korean Question Answering Dataset(KorQuAD), a large-scale Korean dataset for extractive machine reading comprehension task. It consists of 70,000+ human generated question-answer pairs on Korean Wikipedia articles. We release KorQuAD1.0 and launch a challenge at https://KorQuAD.github.io to encourage the development of multilingual natural language processing research.
KLUE: Korean Language Understanding Evaluation
We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. We build all of the tasks from scratch from diverse source corpora while respecting copyrights, to ensure accessibility for anyone without any restrictions. With ethical considerations in mind, we carefully design annotation protocols. Along with the benchmark tasks and data, we provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task. We furthermore release the pretrained language models (PLM), KLUE-BERT and KLUE-RoBERTa, to help reproducing baseline models on KLUE and thereby facilitate future research. We make a few interesting observations from the preliminary experiments using the proposed KLUE benchmark suite, already demonstrating the usefulness of this new benchmark suite. First, we find KLUE-RoBERTa-large outperforms other baselines, including multilingual PLMs and existing open-source Korean PLMs. Second, we see minimal degradation in performance even when we replace personally identifiable information from the pretraining corpus, suggesting that privacy and NLU capability are not at odds with each other. Lastly, we find that using BPE tokenization in combination with morpheme-level pre-tokenization is effective in tasks involving morpheme-level tagging, detection and generation. In addition to accelerating Korean NLP research, our comprehensive documentation on creating KLUE will facilitate creating similar resources for other languages in the future. KLUE is available at https://klue-benchmark.com.
Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion
Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a filter-then-generate paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at https://github.com/LB0828/FtG.
LTNER: Large Language Model Tagging for Named Entity Recognition with Contextualized Entity Marking
The use of LLMs for natural language processing has become a popular trend in the past two years, driven by their formidable capacity for context comprehension and learning, which has inspired a wave of research from academics and industry professionals. However, for certain NLP tasks, such as NER, the performance of LLMs still falls short when compared to supervised learning methods. In our research, we developed a NER processing framework called LTNER that incorporates a revolutionary Contextualized Entity Marking Gen Method. By leveraging the cost-effective GPT-3.5 coupled with context learning that does not require additional training, we significantly improved the accuracy of LLMs in handling NER tasks. The F1 score on the CoNLL03 dataset increased from the initial 85.9% to 91.9%, approaching the performance of supervised fine-tuning. This outcome has led to a deeper understanding of the potential of LLMs.
KenSwQuAD -- A Question Answering Dataset for Swahili Low Resource Language
The need for Question Answering datasets in low resource languages is the motivation of this research, leading to the development of Kencorpus Swahili Question Answering Dataset, KenSwQuAD. This dataset is annotated from raw story texts of Swahili low resource language, which is a predominantly spoken in Eastern African and in other parts of the world. Question Answering (QA) datasets are important for machine comprehension of natural language for tasks such as internet search and dialog systems. Machine learning systems need training data such as the gold standard Question Answering set developed in this research. The research engaged annotators to formulate QA pairs from Swahili texts collected by the Kencorpus project, a Kenyan languages corpus. The project annotated 1,445 texts from the total 2,585 texts with at least 5 QA pairs each, resulting into a final dataset of 7,526 QA pairs. A quality assurance set of 12.5% of the annotated texts confirmed that the QA pairs were all correctly annotated. A proof of concept on applying the set to the QA task confirmed that the dataset can be usable for such tasks. KenSwQuAD has also contributed to resourcing of the Swahili language.
LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning
Machine reading is a fundamental task for testing the capability of natural language understanding, which is closely related to human cognition in many aspects. With the rising of deep learning techniques, algorithmic models rival human performances on simple QA, and thus increasingly challenging machine reading datasets have been proposed. Though various challenges such as evidence integration and commonsense knowledge have been integrated, one of the fundamental capabilities in human reading, namely logical reasoning, is not fully investigated. We build a comprehensive dataset, named LogiQA, which is sourced from expert-written questions for testing human Logical reasoning. It consists of 8,678 QA instances, covering multiple types of deductive reasoning. Results show that state-of-the-art neural models perform by far worse than human ceiling. Our dataset can also serve as a benchmark for reinvestigating logical AI under the deep learning NLP setting. The dataset is freely available at https://github.com/lgw863/LogiQA-dataset
MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens
Large Language Models (LLMs) have garnered significant attention for their advancements in natural language processing, demonstrating unparalleled prowess in text comprehension and generation. Yet, the simultaneous generation of images with coherent textual narratives remains an evolving frontier. In response, we introduce an innovative interleaved vision-and-language generation technique anchored by the concept of "generative vokens," acting as the bridge for harmonized image-text outputs. Our approach is characterized by a distinctive two-staged training strategy focusing on description-free multimodal generation, where the training requires no comprehensive descriptions of images. To bolster model integrity, classifier-free guidance is incorporated, enhancing the effectiveness of vokens on image generation. Our model, MiniGPT-5, exhibits substantial improvement over the baseline Divter model on the MMDialog dataset and consistently delivers superior or comparable multimodal outputs in human evaluations on the VIST dataset, highlighting its efficacy across diverse benchmarks.
Unveiling Cultural Blind Spots: Analyzing the Limitations of mLLMs in Procedural Text Comprehension
Despite the impressive performance of multilingual large language models (mLLMs) in various natural language processing tasks, their ability to understand procedural texts, particularly those with culture-specific content, remains largely unexplored. Texts describing cultural procedures, including rituals, traditional craftsmanship, and social etiquette, require an inherent understanding of cultural context, presenting a significant challenge for mLLMs. In this work, we introduce CAPTex, a benchmark designed to evaluate mLLMs' ability to process and reason about culturally diverse procedural texts across multiple languages using various methodologies to assess their performance. Our findings indicate that (1) mLLMs face difficulties with culturally contextualized procedural texts, showing notable performance declines in low-resource languages, (2) model performance fluctuates across cultural domains, with some areas presenting greater difficulties, and (3) language models exhibit better performance on multiple-choice tasks within conversational frameworks compared to direct questioning. These results underscore the current limitations of mLLMs in handling culturally nuanced procedural texts and highlight the need for culturally aware benchmarks like CAPTex to enhance their adaptability and comprehension across diverse linguistic and cultural landscapes.
Are Large Language Models Geospatially Knowledgeable?
Despite the impressive performance of Large Language Models (LLM) for various natural language processing tasks, little is known about their comprehension of geographic data and related ability to facilitate informed geospatial decision-making. This paper investigates the extent of geospatial knowledge, awareness, and reasoning abilities encoded within such pretrained LLMs. With a focus on autoregressive language models, we devise experimental approaches related to (i) probing LLMs for geo-coordinates to assess geospatial knowledge, (ii) using geospatial and non-geospatial prepositions to gauge their geospatial awareness, and (iii) utilizing a multidimensional scaling (MDS) experiment to assess the models' geospatial reasoning capabilities and to determine locations of cities based on prompting. Our results confirm that it does not only take larger, but also more sophisticated LLMs to synthesize geospatial knowledge from textual information. As such, this research contributes to understanding the potential and limitations of LLMs in dealing with geospatial information.
Large Language Models Are Not Strong Abstract Reasoners
Large Language Models have shown tremendous performance on a large variety of natural language processing tasks, ranging from text comprehension to common sense reasoning. However, the mechanisms responsible for this success remain opaque, and it is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed. Abstract reasoning is a fundamental task for cognition, consisting of finding and applying a general pattern from few data. Evaluating deep neural architectures on this task could give insight into their potential limitations regarding reasoning and their broad generalisation abilities, yet this is currently an under-explored area. In this paper, we introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks. We perform extensive evaluations of state-of-the-art LLMs, showing that they currently achieve very limited performance in contrast with other natural language tasks, and we examine the reasons for this difference. We apply techniques that have been shown to improve performance on other NLP tasks and show that their impact on abstract reasoning is limited.
VisualMRC: Machine Reading Comprehension on Document Images
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a machine reads and comprehends texts in the image to answer the question in natural language. Compared with existing visual question answering (VQA) datasets that contain texts in images, VisualMRC focuses more on developing natural language understanding and generation abilities. It contains 30,000+ pairs of a question and an abstractive answer for 10,000+ document images sourced from multiple domains of webpages. We also introduce a new model that extends existing sequence-to-sequence models, pre-trained with large-scale text corpora, to take into account the visual layout and content of documents. Experiments with VisualMRC show that this model outperformed the base sequence-to-sequence models and a state-of-the-art VQA model. However, its performance is still below that of humans on most automatic evaluation metrics. The dataset will facilitate research aimed at connecting vision and language understanding.
The What, Why, and How of Context Length Extension Techniques in Large Language Models -- A Detailed Survey
The advent of Large Language Models (LLMs) represents a notable breakthrough in Natural Language Processing (NLP), contributing to substantial progress in both text comprehension and generation. However, amidst these advancements, it is noteworthy that LLMs often face a limitation in terms of context length extrapolation. Understanding and extending the context length for LLMs is crucial in enhancing their performance across various NLP applications. In this survey paper, we delve into the multifaceted aspects of exploring why it is essential, and the potential transformations that superior techniques could bring to NLP applications. We study the inherent challenges associated with extending context length and present an organized overview of the existing strategies employed by researchers. Additionally, we discuss the intricacies of evaluating context extension techniques and highlight the open challenges that researchers face in this domain. Furthermore, we explore whether there is a consensus within the research community regarding evaluation standards and identify areas where further agreement is needed. This comprehensive survey aims to serve as a valuable resource for researchers, guiding them through the nuances of context length extension techniques and fostering discussions on future advancements in this evolving field.
ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images
Visual Question Answering (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. Initially, this task was researched, focusing on methods to help machines understand objects and scene contexts in images. However, some text appearing in the image that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. As a developing country, conditions are still limited, and this task is still open in Vietnam. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand text appearing in images, we call it ViTextVQA (Vietnamese Text-based Visual Question Answering dataset) which contains over 16,000 images and over 50,000 questions with answers. Through meticulous experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available at this https://github.com/minhquan6203/ViTextVQA-Dataset{link} for research purposes.
Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language
The paper introduces methods of adaptation of multilingual masked language models for a specific language. Pre-trained bidirectional language models show state-of-the-art performance on a wide range of tasks including reading comprehension, natural language inference, and sentiment analysis. At the moment there are two alternative approaches to train such models: monolingual and multilingual. While language specific models show superior performance, multilingual models allow to perform a transfer from one language to another and solve tasks for different languages simultaneously. This work shows that transfer learning from a multilingual model to monolingual model results in significant growth of performance on such tasks as reading comprehension, paraphrase detection, and sentiment analysis. Furthermore, multilingual initialization of monolingual model substantially reduces training time. Pre-trained models for the Russian language are open sourced.
CK-Transformer: Commonsense Knowledge Enhanced Transformers for Referring Expression Comprehension
The task of multimodal referring expression comprehension (REC), aiming at localizing an image region described by a natural language expression, has recently received increasing attention within the research comminity. In this paper, we specifically focus on referring expression comprehension with commonsense knowledge (KB-Ref), a task which typically requires reasoning beyond spatial, visual or semantic information. We propose a novel framework for Commonsense Knowledge Enhanced Transformers (CK-Transformer) which effectively integrates commonsense knowledge into the representations of objects in an image, facilitating identification of the target objects referred to by the expressions. We conduct extensive experiments on several benchmarks for the task of KB-Ref. Our results show that the proposed CK-Transformer achieves a new state of the art, with an absolute improvement of 3.14% accuracy over the existing state of the art.
Testing the Depth of ChatGPT's Comprehension via Cross-Modal Tasks Based on ASCII-Art: GPT3.5's Abilities in Regard to Recognizing and Generating ASCII-Art Are Not Totally Lacking
Over the eight months since its release, ChatGPT and its underlying model, GPT3.5, have garnered massive attention, due to their potent mix of capability and accessibility. While a niche-industry of papers have emerged examining the scope of capabilities these models possess, the information fed to and extracted from these networks has been either natural language text or stylized, code-like language. Drawing inspiration from the prowess we expect a truly human-level intelligent agent to have across multiple signal modalities, in this work we examine GPT3.5's aptitude for visual tasks, where the inputs feature content provided as ASCII-art without overt distillation into a lingual summary. We conduct experiments analyzing the model's performance on image recognition tasks after various transforms typical in visual settings, trials investigating knowledge of image parts, and tasks covering image generation.
Semantics-aware BERT for Language Understanding
The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural language inference tasks. However, the existing language representation models including ELMo, GPT and BERT only exploit plain context-sensitive features such as character or word embeddings. They rarely consider incorporating structured semantic information which can provide rich semantics for language representation. To promote natural language understanding, we propose to incorporate explicit contextual semantics from pre-trained semantic role labeling, and introduce an improved language representation model, Semantics-aware BERT (SemBERT), which is capable of explicitly absorbing contextual semantics over a BERT backbone. SemBERT keeps the convenient usability of its BERT precursor in a light fine-tuning way without substantial task-specific modifications. Compared with BERT, semantics-aware BERT is as simple in concept but more powerful. It obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks.
Zero-Shot Relation Extraction via Reading Comprehension
We show that relation extraction can be reduced to answering simple reading comprehension questions, by associating one or more natural-language questions with each relation slot. This reduction has several advantages: we can (1) learn relation-extraction models by extending recent neural reading-comprehension techniques, (2) build very large training sets for those models by combining relation-specific crowd-sourced questions with distant supervision, and even (3) do zero-shot learning by extracting new relation types that are only specified at test-time, for which we have no labeled training examples. Experiments on a Wikipedia slot-filling task demonstrate that the approach can generalize to new questions for known relation types with high accuracy, and that zero-shot generalization to unseen relation types is possible, at lower accuracy levels, setting the bar for future work on this task.
PromptBench: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts
The increasing reliance on Large Language Models (LLMs) across academia and industry necessitates a comprehensive understanding of their robustness to prompts. In response to this vital need, we introduce PromptBench, a robustness benchmark designed to measure LLMs' resilience to adversarial prompts. This study uses a plethora of adversarial textual attacks targeting prompts across multiple levels: character, word, sentence, and semantic. These prompts are then employed in diverse tasks, such as sentiment analysis, natural language inference, reading comprehension, machine translation, and math problem-solving. Our study generates 4,032 adversarial prompts, meticulously evaluated over 8 tasks and 13 datasets, with 567,084 test samples in total. Our findings demonstrate that contemporary LLMs are vulnerable to adversarial prompts. Furthermore, we present comprehensive analysis to understand the mystery behind prompt robustness and its transferability. We then offer insightful robustness analysis and pragmatic recommendations for prompt composition, beneficial to both researchers and everyday users. We make our code, prompts, and methodologies to generate adversarial prompts publicly accessible, thereby enabling and encouraging collaborative exploration in this pivotal field: https://github.com/microsoft/promptbench.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
Towards Efficient Methods in Medical Question Answering using Knowledge Graph Embeddings
In Natural Language Processing (NLP), Machine Reading Comprehension (MRC) is the task of answering a question based on a given context. To handle questions in the medical domain, modern language models such as BioBERT, SciBERT and even ChatGPT are trained on vast amounts of in-domain medical corpora. However, in-domain pre-training is expensive in terms of time and resources. In this paper, we propose a resource-efficient approach for injecting domain knowledge into a model without relying on such domain-specific pre-training. Knowledge graphs are powerful resources for accessing medical information. Building on existing work, we introduce a method using Multi-Layer Perceptrons (MLPs) for aligning and integrating embeddings extracted from medical knowledge graphs with the embedding spaces of pre-trained language models (LMs). The aligned embeddings are fused with open-domain LMs BERT and RoBERTa that are fine-tuned for two MRC tasks, span detection (COVID-QA) and multiple-choice questions (PubMedQA). We compare our method to prior techniques that rely on a vocabulary overlap for embedding alignment and show how our method circumvents this requirement to deliver better performance. On both datasets, our method allows BERT/RoBERTa to either perform on par (occasionally exceeding) with stronger domain-specific models or show improvements in general over prior techniques. With the proposed approach, we signal an alternative method to in-domain pre-training to achieve domain proficiency.
Beyond Object Categories: Multi-Attribute Reference Understanding for Visual Grounding
Referring expression comprehension (REC) aims at achieving object localization based on natural language descriptions. However, existing REC approaches are constrained by object category descriptions and single-attribute intention descriptions, hindering their application in real-world scenarios. In natural human-robot interactions, users often express their desires through individual states and intentions, accompanied by guiding gestures, rather than detailed object descriptions. To address this challenge, we propose Multi-ref EC, a novel task framework that integrates state descriptions, derived intentions, and embodied gestures to locate target objects. We introduce the State-Intention-Gesture Attributes Reference (SIGAR) dataset, which combines state and intention expressions with embodied references. Through extensive experiments with various baseline models on SIGAR, we demonstrate that properly ordered multi-attribute references contribute to improved localization performance, revealing that single-attribute reference is insufficient for natural human-robot interaction scenarios. Our findings underscore the importance of multi-attribute reference expressions in advancing visual-language understanding.
Red teaming ChatGPT via Jailbreaking: Bias, Robustness, Reliability and Toxicity
Recent breakthroughs in natural language processing (NLP) have permitted the synthesis and comprehension of coherent text in an open-ended way, therefore translating the theoretical algorithms into practical applications. The large language models (LLMs) have significantly impacted businesses such as report summarization software and copywriters. Observations indicate, however, that LLMs may exhibit social prejudice and toxicity, posing ethical and societal dangers of consequences resulting from irresponsibility. Large-scale benchmarks for accountable LLMs should consequently be developed. Although several empirical investigations reveal the existence of a few ethical difficulties in advanced LLMs, there is little systematic examination and user study of the risks and harmful behaviors of current LLM usage. To further educate future efforts on constructing ethical LLMs responsibly, we perform a qualitative research method called ``red teaming'' on OpenAI's ChatGPTIn this paper, ChatGPT refers to the version released on Dec 15th. to better understand the practical features of ethical dangers in recent LLMs. We analyze ChatGPT comprehensively from four perspectives: 1) Bias 2) Reliability 3) Robustness 4) Toxicity. In accordance with our stated viewpoints, we empirically benchmark ChatGPT on multiple sample datasets. We find that a significant number of ethical risks cannot be addressed by existing benchmarks, and hence illustrate them via additional case studies. In addition, we examine the implications of our findings on AI ethics and harmal behaviors of ChatGPT, as well as future problems and practical design considerations for responsible LLMs. We believe that our findings may give light on future efforts to determine and mitigate the ethical hazards posed by machines in LLM applications.
CodeArena: A Collective Evaluation Platform for LLM Code Generation
Large Language Models (LLMs) have reshaped code generation by synergizing their exceptional comprehension of natural language and programming syntax, thereby substantially boosting developer productivity. These advancements have prompted numerous efforts to quantitatively evaluate their coding capabilities. However, persistent challenges, such as benchmark leakage, data dissipation, and limited system accessibility, continue to impede a timely and accurate assessment. To address these limitations, we introduce CodeArena, an online evaluation framework tailored for LLM code generation. The key innovation is a collective evaluation mechanism, which dynamically recalibrates individual model scores based on the holistic performance of all participating models, mitigating score biases caused by widespread benchmark leakage. In addition, CodeArena ensures open access to all submitted solutions and test cases and provides automation-friendly APIs to streamline the code evaluation workflow. Our main contributions are: (1) a collective evaluation system for unbiased assessment, (2) a public repository of solutions and test cases, and (3) automation-ready APIs for seamless integration.
Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4
Harnessing logical reasoning ability is a comprehensive natural language understanding endeavor. With the release of Generative Pretrained Transformer 4 (GPT-4), highlighted as "advanced" at reasoning tasks, we are eager to learn the GPT-4 performance on various logical reasoning tasks. This report analyses multiple logical reasoning datasets, with popular benchmarks like LogiQA and ReClor, and newly-released datasets like AR-LSAT. We test the multi-choice reading comprehension and natural language inference tasks with benchmarks requiring logical reasoning. We further construct a logical reasoning out-of-distribution dataset to investigate the robustness of ChatGPT and GPT-4. We also make a performance comparison between ChatGPT and GPT-4. Experiment results show that ChatGPT performs significantly better than the RoBERTa fine-tuning method on most logical reasoning benchmarks. With early access to the GPT-4 API we are able to conduct intense experiments on the GPT-4 model. The results show GPT-4 yields even higher performance on most logical reasoning datasets. Among benchmarks, ChatGPT and GPT-4 do relatively well on well-known datasets like LogiQA and ReClor. However, the performance drops significantly when handling newly released and out-of-distribution datasets. Logical reasoning remains challenging for ChatGPT and GPT-4, especially on out-of-distribution and natural language inference datasets. We release the prompt-style logical reasoning datasets as a benchmark suite and name it LogiEval.
A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions
Large Language Models(LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities. However, their widespread deployment has brought to light significant concerns regarding biases embedded within these models. This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases. We systematically categorize biases into several dimensions. Our survey synthesizes current research findings and discusses the implications of biases in real-world applications. Additionally, we critically assess existing bias mitigation techniques and propose future research directions to enhance fairness and equity in LLMs. This survey serves as a foundational resource for researchers, practitioners, and policymakers concerned with addressing and understanding biases in LLMs.
Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Generating accurate SQL from natural language questions (text-to-SQL) is a long-standing challenge due to the complexities in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems, comprising human engineering and deep neural networks, have made substantial progress. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex, the corresponding user questions also grow more challenging, causing PLMs with parameter constraints to produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods, which, in turn, restricts the applications of PLM-based systems. Recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding as the model scale increases. Therefore, integrating LLM-based implementation can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the technical challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future research directions.
Thread of Thought Unraveling Chaotic Contexts
Large Language Models (LLMs) have ushered in a transformative era in the field of natural language processing, excelling in tasks related to text comprehension and generation. Nevertheless, they encounter difficulties when confronted with chaotic contexts (e.g., distractors rather than long irrelevant context), leading to the inadvertent omission of certain details within the chaotic context. In response to these challenges, we introduce the "Thread of Thought" (ThoT) strategy, which draws inspiration from human cognitive processes. ThoT systematically segments and analyzes extended contexts while adeptly selecting pertinent information. This strategy serves as a versatile "plug-and-play" module, seamlessly integrating with various LLMs and prompting techniques. In the experiments, we utilize the PopQA and EntityQ datasets, as well as a Multi-Turn Conversation Response dataset (MTCR) we collected, to illustrate that ThoT significantly improves reasoning performance compared to other prompting techniques.
A negation detection assessment of GPTs: analysis with the xNot360 dataset
Negation is a fundamental aspect of natural language, playing a critical role in communication and comprehension. Our study assesses the negation detection performance of Generative Pre-trained Transformer (GPT) models, specifically GPT-2, GPT-3, GPT-3.5, and GPT-4. We focus on the identification of negation in natural language using a zero-shot prediction approach applied to our custom xNot360 dataset. Our approach examines sentence pairs labeled to indicate whether the second sentence negates the first. Our findings expose a considerable performance disparity among the GPT models, with GPT-4 surpassing its counterparts and GPT-3.5 displaying a marked performance reduction. The overall proficiency of the GPT models in negation detection remains relatively modest, indicating that this task pushes the boundaries of their natural language understanding capabilities. We not only highlight the constraints of GPT models in handling negation but also emphasize the importance of logical reliability in high-stakes domains such as healthcare, science, and law.
Adapting LLMs for Efficient Context Processing through Soft Prompt Compression
The rapid advancement of Large Language Models (LLMs) has inaugurated a transformative epoch in natural language processing, fostering unprecedented proficiency in text generation, comprehension, and contextual scrutiny. Nevertheless, effectively handling extensive contexts, crucial for myriad applications, poses a formidable obstacle owing to the intrinsic constraints of the models' context window sizes and the computational burdens entailed by their operations. This investigation presents an innovative framework that strategically tailors LLMs for streamlined context processing by harnessing the synergies among natural language summarization, soft prompt compression, and augmented utility preservation mechanisms. Our methodology, dubbed SoftPromptComp, amalgamates natural language prompts extracted from summarization methodologies with dynamically generated soft prompts to forge a concise yet semantically robust depiction of protracted contexts. This depiction undergoes further refinement via a weighting mechanism optimizing information retention and utility for subsequent tasks. We substantiate that our framework markedly diminishes computational overhead and enhances LLMs' efficacy across various benchmarks, while upholding or even augmenting the caliber of the produced content. By amalgamating soft prompt compression with sophisticated summarization, SoftPromptComp confronts the dual challenges of managing lengthy contexts and ensuring model scalability. Our findings point towards a propitious trajectory for augmenting LLMs' applicability and efficiency, rendering them more versatile and pragmatic for real-world applications. This research enriches the ongoing discourse on optimizing language models, providing insights into the potency of soft prompts and summarization techniques as pivotal instruments for the forthcoming generation of NLP solutions.
Teaching Machines to Read and Comprehend
Teaching machines to read natural language documents remains an elusive challenge. Machine reading systems can be tested on their ability to answer questions posed on the contents of documents that they have seen, but until now large scale training and test datasets have been missing for this type of evaluation. In this work we define a new methodology that resolves this bottleneck and provides large scale supervised reading comprehension data. This allows us to develop a class of attention based deep neural networks that learn to read real documents and answer complex questions with minimal prior knowledge of language structure.
InternalInspector $I^2$: Robust Confidence Estimation in LLMs through Internal States
Despite their vast capabilities, Large Language Models (LLMs) often struggle with generating reliable outputs, frequently producing high-confidence inaccuracies known as hallucinations. Addressing this challenge, our research introduces InternalInspector, a novel framework designed to enhance confidence estimation in LLMs by leveraging contrastive learning on internal states including attention states, feed-forward states, and activation states of all layers. Unlike existing methods that primarily focus on the final activation state, InternalInspector conducts a comprehensive analysis across all internal states of every layer to accurately identify both correct and incorrect prediction processes. By benchmarking InternalInspector against existing confidence estimation methods across various natural language understanding and generation tasks, including factual question answering, commonsense reasoning, and reading comprehension, InternalInspector achieves significantly higher accuracy in aligning the estimated confidence scores with the correctness of the LLM's predictions and lower calibration error. Furthermore, InternalInspector excels at HaluEval, a hallucination detection benchmark, outperforming other internal-based confidence estimation methods in this task.
Lexical Generalization Improves with Larger Models and Longer Training
While fine-tuned language models perform well on many tasks, they were also shown to rely on superficial surface features such as lexical overlap. Excessive utilization of such heuristics can lead to failure on challenging inputs. We analyze the use of lexical overlap heuristics in natural language inference, paraphrase detection, and reading comprehension (using a novel contrastive dataset), and find that larger models are much less susceptible to adopting lexical overlap heuristics. We also find that longer training leads models to abandon lexical overlap heuristics. Finally, we provide evidence that the disparity between models size has its source in the pre-trained model
ALTER: Augmentation for Large-Table-Based Reasoning
While extensive research has explored the use of large language models (LLMs) for table-based reasoning, most approaches struggle with scalability when applied to large tables. To maintain the superior comprehension abilities of LLMs in these scenarios, we introduce ALTER(Augmentation for Large-Table-Based Reasoning)-a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions, via the query augmentor, and semi-structured tabular data, through the table augmentor. By utilizing only a small subset of relevant data from the table and supplementing it with pre-augmented schema, semantic, and literal information, ALTER achieves outstanding performance on table-based reasoning benchmarks. We also provide a detailed analysis of large-table scenarios, comparing different methods and various partitioning principles. In these scenarios, our method outperforms all other approaches and exhibits robustness and efficiency against perturbations.
MomentSeg: Moment-Centric Sampling for Enhanced Video Pixel Understanding
Referring Video Object Segmentation (RefVOS) seeks to segment target objects in videos guided by natural language descriptions, demanding both temporal reasoning and fine-grained visual comprehension. Existing sampling strategies for LLM-based approaches typically rely on either handcrafted heuristics or external keyframe models. The former often overlooks essential temporal cues, while the latter increases system complexity. To address this, we propose a unified framework that jointly optimizes Temporal Sentence Grounding (TSG) and RefVOS, naturally incorporating key moment grounding capability. During training, we introduce a novel TSG paradigm that employs a dedicated [FIND] token for key moment identification through temporal token similarity matching, thereby avoiding the need for external timestamp encodings. For inference, we design a Moment-Centric Sampling (MCS) strategy that densely samples informative moments while sparsely sampling non-essential frames, preserving both motion details and global context. To further enhance tracking stability, we develop Bidirectional Anchor-updated Propagation (BAP), which leverages the most relevant moment as start point for high-quality mask initialization and dynamically updates at sampled points to mitigate accumulated errors. Code and model will be available at: https://github.com/Dmmm1997/MomentSeg
Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL
Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.
Leveraging Distillation Techniques for Document Understanding: A Case Study with FLAN-T5
The surge of digital documents in various formats, including less standardized documents such as business reports and environmental assessments, underscores the growing importance of Document Understanding. While Large Language Models (LLMs) have showcased prowess across diverse natural language processing tasks, their direct application to Document Understanding remains a challenge. Previous research has demonstrated the utility of LLMs in this domain, yet their significant computational demands make them challenging to deploy effectively. Additionally, proprietary Blackbox LLMs often outperform their open-source counterparts, posing a barrier to widespread accessibility. In this paper, we delve into the realm of document understanding, leveraging distillation methods to harness the power of large LLMs while accommodating computational limitations. Specifically, we present a novel approach wherein we distill document understanding knowledge from the proprietary LLM ChatGPT into FLAN-T5. Our methodology integrates labeling and curriculum-learning mechanisms to facilitate efficient knowledge transfer. This work contributes to the advancement of document understanding methodologies by offering a scalable solution that bridges the gap between resource-intensive LLMs and practical applications. Our findings underscore the potential of distillation techniques in facilitating the deployment of sophisticated language models in real-world scenarios, thereby fostering advancements in natural language processing and document comprehension domains.
ArabicaQA: A Comprehensive Dataset for Arabic Question Answering
In this paper, we address the significant gap in Arabic natural language processing (NLP) resources by introducing ArabicaQA, the first large-scale dataset for machine reading comprehension and open-domain question answering in Arabic. This comprehensive dataset, consisting of 89,095 answerable and 3,701 unanswerable questions created by crowdworkers to look similar to answerable ones, along with additional labels of open-domain questions marks a crucial advancement in Arabic NLP resources. We also present AraDPR, the first dense passage retrieval model trained on the Arabic Wikipedia corpus, specifically designed to tackle the unique challenges of Arabic text retrieval. Furthermore, our study includes extensive benchmarking of large language models (LLMs) for Arabic question answering, critically evaluating their performance in the Arabic language context. In conclusion, ArabicaQA, AraDPR, and the benchmarking of LLMs in Arabic question answering offer significant advancements in the field of Arabic NLP. The dataset and code are publicly accessible for further research https://github.com/DataScienceUIBK/ArabicaQA.
What's the Meaning of Superhuman Performance in Today's NLU?
In the last five years, there has been a significant focus in Natural Language Processing (NLP) on developing larger Pretrained Language Models (PLMs) and introducing benchmarks such as SuperGLUE and SQuAD to measure their abilities in language understanding, reasoning, and reading comprehension. These PLMs have achieved impressive results on these benchmarks, even surpassing human performance in some cases. This has led to claims of superhuman capabilities and the provocative idea that certain tasks have been solved. In this position paper, we take a critical look at these claims and ask whether PLMs truly have superhuman abilities and what the current benchmarks are really evaluating. We show that these benchmarks have serious limitations affecting the comparison between humans and PLMs and provide recommendations for fairer and more transparent benchmarks.
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Recent pretraining models in Chinese neglect two important aspects specific to the Chinese language: glyph and pinyin, which carry significant syntax and semantic information for language understanding. In this work, we propose ChineseBERT, which incorporates both the {\it glyph} and {\it pinyin} information of Chinese characters into language model pretraining. The glyph embedding is obtained based on different fonts of a Chinese character, being able to capture character semantics from the visual features, and the pinyin embedding characterizes the pronunciation of Chinese characters, which handles the highly prevalent heteronym phenomenon in Chinese (the same character has different pronunciations with different meanings). Pretrained on large-scale unlabeled Chinese corpus, the proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps. The porpsoed model achieves new SOTA performances on a wide range of Chinese NLP tasks, including machine reading comprehension, natural language inference, text classification, sentence pair matching, and competitive performances in named entity recognition. Code and pretrained models are publicly available at https://github.com/ShannonAI/ChineseBert.
Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
Multimodal ArXiv: A Dataset for Improving Scientific Comprehension of Large Vision-Language Models
Large vision-language models (LVLMs), exemplified by GPT-4V, excel across diverse tasks involving concrete images from natural scenes. However, their ability to interpret abstract figures, such as geometry shapes and scientific plots, remains limited due to a scarcity of training datasets in scientific domains. To fill this gap, we introduce Multimodal ArXiv, consisting of ArXivCap and ArXivQA, for enhancing LVLMs scientific comprehension. ArXivCap is a figure-caption dataset comprising 6.4M images and 3.9M captions sourced from 572K ArXiv papers spanning various scientific domains. Drawing from ArXivCap, we introduce ArXivQA, a question-answering dataset generated by prompting GPT-4V based on scientific figures. ArXivQA greatly enhances LVLMs' mathematical reasoning capabilities, achieving a 10.4% absolute accuracy gain on a multimodal mathematical reasoning benchmark. Furthermore, employing ArXivCap, we devise four vision-to-text tasks for benchmarking LVLMs. Evaluation results with state-of-the-art LVLMs underscore their struggle with the nuanced semantics of academic figures, with domain-specific training yielding substantial performance gains. Our error analysis uncovers misinterpretations of visual context, recognition errors, and the production of overly simplified captions by current LVLMs, shedding light on future improvements.
AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension
Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as Automatic Speech Recognition (ASR), and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement. In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research.
Training A Small Emotional Vision Language Model for Visual Art Comprehension
This paper develops small vision language models to understand visual art, which, given an art work, aims to identify its emotion category and explain this prediction with natural language. While small models are computationally efficient, their capacity is much limited compared with large models. To break this trade-off, this paper builds a small emotional vision language model (SEVLM) by emotion modeling and input-output feature alignment. On the one hand, based on valence-arousal-dominance (VAD) knowledge annotated by psychology experts, we introduce and fuse emotional features derived through VAD dictionary and a VAD head to align VAD vectors of predicted emotion explanation and the ground truth. This allows the vision language model to better understand and generate emotional texts, compared with using traditional text embeddings alone. On the other hand, we design a contrastive head to pull close embeddings of the image, its emotion class, and explanation, which aligns model outputs and inputs. On two public affective explanation datasets, we show that the proposed techniques consistently improve the visual art understanding performance of baseline SEVLMs. Importantly, the proposed model can be trained and evaluated on a single RTX 2080 Ti while exhibiting very strong performance: it not only outperforms the state-of-the-art small models but is also competitive compared with LLaVA 7B after fine-tuning and GPT4(V). The code is available at https://github.com/BetterZH/SEVLM-code.
CircuitSense: A Hierarchical Circuit System Benchmark Bridging Visual Comprehension and Symbolic Reasoning in Engineering Design Process
Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present CircuitSense, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.
M3-SLU: Evaluating Speaker-Attributed Reasoning in Multimodal Large Language Models
We present M3-SLU, a new multimodal large language model (MLLM) benchmark for evaluating multi-speaker, multi-turn spoken language understanding. While recent models show strong performance in speech and text comprehension, they still struggle with speaker-attributed reasoning, the ability to understand who said what and when in natural conversations. M3-SLU is built from four open corpora (CHiME-6, MELD, MultiDialog, and AMI) and comprises over 12,000 validated instances with paired audio, transcripts, and metadata. It includes two tasks: (1) Speaker-Attributed Question Answering and (2) Speaker Attribution via Utterance Matching. We provide baseline results for both cascaded pipelines and end-to-end MLLMs, evaluated using an LLM-as-Judge and accuracy metrics. Results show that while models can capture what was said, they often fail to identify who said it, revealing a key gap in speaker-aware dialogue understanding. M3-SLU offers as a challenging benchmark to advance research in speaker-aware multimodal understanding.
SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks
As the size of large language models continue to scale, so does the computational resources required to run it. Spiking Neural Networks (SNNs) have emerged as an energy-efficient approach to deep learning that leverage sparse and event-driven activations to reduce the computational overhead associated with model inference. While they have become competitive with non-spiking models on many computer vision tasks, SNNs have also proven to be more challenging to train. As a result, their performance lags behind modern deep learning, and we are yet to see the effectiveness of SNNs in language generation. In this paper, inspired by the Receptance Weighted Key Value (RWKV) language model, we successfully implement `SpikeGPT', a generative language model with binary, event-driven spiking activation units. We train the proposed model on two model variants: 45M and 216M parameters. To the best of our knowledge, SpikeGPT is the largest backpropagation-trained SNN model to date, rendering it suitable for both the generation and comprehension of natural language. We achieve this by modifying the transformer block to replace multi-head self attention to reduce quadratic computational complexity O(N^2) to linear complexity O(N) with increasing sequence length. Input tokens are instead streamed in sequentially to our attention mechanism (as with typical SNNs). Our preliminary experiments show that SpikeGPT remains competitive with non-spiking models on tested benchmarks, while maintaining 20x fewer operations when processed on neuromorphic hardware that can leverage sparse, event-driven activations. Our code implementation is available at https://github.com/ridgerchu/SpikeGPT.
Exploring Transfer Learning in Medical Image Segmentation using Vision-Language Models
Medical image segmentation allows quantifying target structure size and shape, aiding in disease diagnosis, prognosis, surgery planning, and comprehension.Building upon recent advancements in foundation Vision-Language Models (VLMs) from natural image-text pairs, several studies have proposed adapting them to Vision-Language Segmentation Models (VLSMs) that allow using language text as an additional input to segmentation models. Introducing auxiliary information via text with human-in-the-loop prompting during inference opens up unique opportunities, such as open vocabulary segmentation and potentially more robust segmentation models against out-of-distribution data. Although transfer learning from natural to medical images has been explored for image-only segmentation models, the joint representation of vision-language in segmentation problems remains underexplored. This study introduces the first systematic study on transferring VLSMs to 2D medical images, using carefully curated 11 datasets encompassing diverse modalities and insightful language prompts and experiments. Our findings demonstrate that although VLSMs show competitive performance compared to image-only models for segmentation after finetuning in limited medical image datasets, not all VLSMs utilize the additional information from language prompts, with image features playing a dominant role. While VLSMs exhibit enhanced performance in handling pooled datasets with diverse modalities and show potential robustness to domain shifts compared to conventional segmentation models, our results suggest that novel approaches are required to enable VLSMs to leverage the various auxiliary information available through language prompts. The code and datasets are available at https://github.com/naamiinepal/medvlsm.
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task
Enabling a computer to understand a document so that it can answer comprehension questions is a central, yet unsolved goal of NLP. A key factor impeding its solution by machine learned systems is the limited availability of human-annotated data. Hermann et al. (2015) seek to solve this problem by creating over a million training examples by pairing CNN and Daily Mail news articles with their summarized bullet points, and show that a neural network can then be trained to give good performance on this task. In this paper, we conduct a thorough examination of this new reading comprehension task. Our primary aim is to understand what depth of language understanding is required to do well on this task. We approach this from one side by doing a careful hand-analysis of a small subset of the problems and from the other by showing that simple, carefully designed systems can obtain accuracies of 73.6% and 76.6% on these two datasets, exceeding current state-of-the-art results by 7-10% and approaching what we believe is the ceiling for performance on this task.
Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs
Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in many vision-language tasks. Nevertheless, most MLLMs still lack the Referential Comprehension (RC) ability to identify a specific object or area in images, limiting their application in fine-grained perception tasks. This paper proposes a novel method to enhance the RC capability for MLLMs. Our model represents the referring object in the image using the coordinates of its bounding box and converts the coordinates into texts in a specific format. This allows the model to treat the coordinates as natural language. Moreover, we construct the instruction tuning dataset with various designed RC tasks at a low cost by unleashing the potential of annotations in existing datasets. To further boost the RC ability of the model, we propose a self-consistent bootstrapping method that extends dense object annotations of a dataset into high-quality referring-expression-bounding-box pairs. The model is trained end-to-end with a parameter-efficient tuning framework that allows both modalities to benefit from multi-modal instruction tuning. This framework requires fewer trainable parameters and less training data. Experimental results on conventional vision-language and RC tasks demonstrate the superior performance of our method. For instance, our model exhibits a 12.0% absolute accuracy improvement over Instruct-BLIP on VSR and surpasses Kosmos-2 by 24.7% on RefCOCO_val under zero-shot settings. We also attain the top position on the leaderboard of MMBench. The models, datasets, and codes are publicly available at https://github.com/SY-Xuan/Pink
Natural Language Understanding with Distributed Representation
This is a lecture note for the course DS-GA 3001 <Natural Language Understanding with Distributed Representation> at the Center for Data Science , New York University in Fall, 2015. As the name of the course suggests, this lecture note introduces readers to a neural network based approach to natural language understanding/processing. In order to make it as self-contained as possible, I spend much time on describing basics of machine learning and neural networks, only after which how they are used for natural languages is introduced. On the language front, I almost solely focus on language modelling and machine translation, two of which I personally find most fascinating and most fundamental to natural language understanding.
A Survey on Measuring and Mitigating Reasoning Shortcuts in Machine Reading Comprehension
The issue of shortcut learning is widely known in NLP and has been an important research focus in recent years. Unintended correlations in the data enable models to easily solve tasks that were meant to exhibit advanced language understanding and reasoning capabilities. In this survey paper, we focus on the field of machine reading comprehension (MRC), an important task for showcasing high-level language understanding that also suffers from a range of shortcuts. We summarize the available techniques for measuring and mitigating shortcuts and conclude with suggestions for further progress in shortcut research. Importantly, we highlight two concerns for shortcut mitigation in MRC: (1) the lack of public challenge sets, a necessary component for effective and reusable evaluation, and (2) the lack of certain mitigation techniques that are prominent in other areas.
ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension
We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://nlp.jhu.edu/record.
Query Understanding for Natural Language Enterprise Search
Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more "natural" language. The engine tries to understand the meaning of the queries and to map the query words to the symbols it supports like Persons, Organizations, Time Expressions etc.. It, then, retrieves the information that satisfies the user's need in different forms like an answer, a record or a list of records. We present an NLS system we implemented as part of the Search service of a major CRM platform. The system is currently in production serving thousands of customers. Our user studies showed that creating dynamic reports with NLS saved more than 50% of our user's time compared to achieving the same result with navigational search. We describe the architecture of the system, the particularities of the CRM domain as well as how they have influenced our design decisions. Among several submodules of the system we detail the role of a Deep Learning Named Entity Recognizer. The paper concludes with discussion over the lessons learned while developing this product.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
A large annotated corpus for learning natural language inference
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
Learning Shortcuts: On the Misleading Promise of NLU in Language Models
The advent of large language models (LLMs) has enabled significant performance gains in the field of natural language processing. However, recent studies have found that LLMs often resort to shortcuts when performing tasks, creating an illusion of enhanced performance while lacking generalizability in their decision rules. This phenomenon introduces challenges in accurately assessing natural language understanding in LLMs. Our paper provides a concise survey of relevant research in this area and puts forth a perspective on the implications of shortcut learning in the evaluation of language models, specifically for NLU tasks. This paper urges more research efforts to be put towards deepening our comprehension of shortcut learning, contributing to the development of more robust language models, and raising the standards of NLU evaluation in real-world scenarios.
Joint Learning of Sentence Embeddings for Relevance and Entailment
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents
This paper contains what the Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023. Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate. Our approach uses a Generate-Retrieve-Generate method, which we've found to greatly outpace Retrieve-Then-Generate approaches for the purposes of iKAT. Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again. We leverage several purpose-built Language Models, including BERT, Chat-based, and text-to-transfer-based models, for text understanding, classification, generation, and summarization. The official results of the TREC evaluation contradict our initial self-evaluation, which may suggest that a decrease in the reliance on our retrieval and classification methods is better. Nonetheless, our findings suggest that the sequence of involving these different components matters, where we see an essentiality of using LLMs before using search engines.
How Does Data Corruption Affect Natural Language Understanding Models? A Study on GLUE datasets
A central question in natural language understanding (NLU) research is whether high performance demonstrates the models' strong reasoning capabilities. We present an extensive series of controlled experiments where pre-trained language models are exposed to data that have undergone specific corruption transformations. These involve removing instances of specific word classes and often lead to non-sensical sentences. Our results show that performance remains high on most GLUE tasks when the models are fine-tuned or tested on corrupted data, suggesting that they leverage other cues for prediction even in non-sensical contexts. Our proposed data transformations can be used to assess the extent to which a specific dataset constitutes a proper testbed for evaluating models' language understanding capabilities.
Exploring the Landscape of Natural Language Processing Research
As an efficient approach to understand, generate, and process natural language texts, research in natural language processing (NLP) has exhibited a rapid spread and wide adoption in recent years. Given the increasing research work in this area, several NLP-related approaches have been surveyed in the research community. However, a comprehensive study that categorizes established topics, identifies trends, and outlines areas for future research remains absent. Contributing to closing this gap, we have systematically classified and analyzed research papers in the ACL Anthology. As a result, we present a structured overview of the research landscape, provide a taxonomy of fields of study in NLP, analyze recent developments in NLP, summarize our findings, and highlight directions for future work.
For those who don't know (how) to ask: Building a dataset of technology questions for digital newcomers
While the rise of large language models (LLMs) has created rich new opportunities to learn about digital technology, many on the margins of this technology struggle to gain and maintain competency due to lexical or conceptual barriers that prevent them from asking appropriate questions. Although there have been many efforts to understand factuality of LLM-created content and ability of LLMs to answer questions, it is not well understood how unclear or nonstandard language queries affect the model outputs. We propose the creation of a dataset that captures questions of digital newcomers and outsiders, utilizing data we have compiled from a decade's worth of one-on-one tutoring. In this paper we lay out our planned efforts and some potential uses of this dataset.
Teaching LLMs at Charles University: Assignments and Activities
This paper presents teaching materials, particularly assignments and ideas for classroom activities, from a new course on large language models (LLMs) taught at Charles University. The assignments include experiments with LLM inference for weather report generation and machine translation. The classroom activities include class quizzes, focused research on downstream tasks and datasets, and an interactive "best paper" session aimed at reading and comprehension of research papers.
Understanding Syllogistic Reasoning in LLMs from Formal and Natural Language Perspectives
We study syllogistic reasoning in LLMs from the logical and natural language perspectives. In process, we explore fundamental reasoning capabilities of the LLMs and the direction this research is moving forward. To aid in our studies, we use 14 large language models and investigate their syllogistic reasoning capabilities in terms of symbolic inferences as well as natural language understanding. Even though this reasoning mechanism is not a uniform emergent property across LLMs, the perfect symbolic performances in certain models make us wonder whether LLMs are becoming more and more formal reasoning mechanisms, rather than making explicit the nuances of human reasoning.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
For natural language understanding (NLU) technology to be maximally useful, both practically and as a scientific object of study, it must be general: it must be able to process language in a way that is not exclusively tailored to any one specific task or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation benchmark (GLUE), a tool for evaluating and analyzing the performance of models across a diverse range of existing NLU tasks. GLUE is model-agnostic, but it incentivizes sharing knowledge across tasks because certain tasks have very limited training data. We further provide a hand-crafted diagnostic test suite that enables detailed linguistic analysis of NLU models. We evaluate baselines based on current methods for multi-task and transfer learning and find that they do not immediately give substantial improvements over the aggregate performance of training a separate model per task, indicating room for improvement in developing general and robust NLU systems.
Reasoning Over Paragraph Effects in Situations
A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%.
Spoken SQuAD: A Study of Mitigating the Impact of Speech Recognition Errors on Listening Comprehension
Reading comprehension has been widely studied. One of the most representative reading comprehension tasks is Stanford Question Answering Dataset (SQuAD), on which machine is already comparable with human. On the other hand, accessing large collections of multimedia or spoken content is much more difficult and time-consuming than plain text content for humans. It's therefore highly attractive to develop machines which can automatically understand spoken content. In this paper, we propose a new listening comprehension task - Spoken SQuAD. On the new task, we found that speech recognition errors have catastrophic impact on machine comprehension, and several approaches are proposed to mitigate the impact.
Towards Reasoning in Large Language Models: A Survey
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models
Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.
The NarrativeQA Reading Comprehension Challenge
Reading comprehension (RC)---in contrast to information retrieval---requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents.
Can Transformers Reason in Fragments of Natural Language?
State-of-the-art deep-learning-based approaches to Natural Language Processing (NLP) are credited with various capabilities that involve reasoning with natural language texts. In this paper we carry out a large-scale empirical study investigating the detection of formally valid inferences in controlled fragments of natural language for which the satisfiability problem becomes increasingly complex. We find that, while transformer-based language models perform surprisingly well in these scenarios, a deeper analysis re-veals that they appear to overfit to superficial patterns in the data rather than acquiring the logical principles governing the reasoning in these fragments.
CLUE: A Chinese Language Understanding Evaluation Benchmark
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering
Legislation can be viewed as a body of prescriptive rules expressed in natural language. The application of legislation to facts of a case we refer to as statutory reasoning, where those facts are also expressed in natural language. Computational statutory reasoning is distinct from most existing work in machine reading, in that much of the information needed for deciding a case is declared exactly once (a law), while the information needed in much of machine reading tends to be learned through distributional language statistics. To investigate the performance of natural language understanding approaches on statutory reasoning, we introduce a dataset, together with a legal-domain text corpus. Straightforward application of machine reading models exhibits low out-of-the-box performance on our questions, whether or not they have been fine-tuned to the legal domain. We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task. These experiments support a discussion of the challenges facing statutory reasoning moving forward, which we argue is an interesting real-world task that can motivate the development of models able to utilize prescriptive rules specified in natural language.
