Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMulti-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos
This paper focuses on tackling the problem of temporal language localization in videos, which aims to identify the start and end points of a moment described by a natural language sentence in an untrimmed video. However, it is non-trivial since it requires not only the comprehensive understanding of the video and sentence query, but also the accurate semantic correspondence capture between them. Existing efforts are mainly centered on exploring the sequential relation among video clips and query words to reason the video and sentence query, neglecting the other intra-modal relations (e.g., semantic similarity among video clips and syntactic dependency among the query words). Towards this end, in this work, we propose a Multi-modal Interaction Graph Convolutional Network (MIGCN), which jointly explores the complex intra-modal relations and inter-modal interactions residing in the video and sentence query to facilitate the understanding and semantic correspondence capture of the video and sentence query. In addition, we devise an adaptive context-aware localization method, where the context information is taken into the candidate moments and the multi-scale fully connected layers are designed to rank and adjust the boundary of the generated coarse candidate moments with different lengths. Extensive experiments on Charades-STA and ActivityNet datasets demonstrate the promising performance and superior efficiency of our model.
MMRL: Multi-Modal Representation Learning for Vision-Language Models
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.
Multi-agent Long-term 3D Human Pose Forecasting via Interaction-aware Trajectory Conditioning
Human pose forecasting garners attention for its diverse applications. However, challenges in modeling the multi-modal nature of human motion and intricate interactions among agents persist, particularly with longer timescales and more agents. In this paper, we propose an interaction-aware trajectory-conditioned long-term multi-agent human pose forecasting model, utilizing a coarse-to-fine prediction approach: multi-modal global trajectories are initially forecasted, followed by respective local pose forecasts conditioned on each mode. In doing so, our Trajectory2Pose model introduces a graph-based agent-wise interaction module for a reciprocal forecast of local motion-conditioned global trajectory and trajectory-conditioned local pose. Our model effectively handles the multi-modality of human motion and the complexity of long-term multi-agent interactions, improving performance in complex environments. Furthermore, we address the lack of long-term (6s+) multi-agent (5+) datasets by constructing a new dataset from real-world images and 2D annotations, enabling a comprehensive evaluation of our proposed model. State-of-the-art prediction performance on both complex and simpler datasets confirms the generalized effectiveness of our method. The code is available at https://github.com/Jaewoo97/T2P.
Joint Fusion and Encoding: Advancing Multimodal Retrieval from the Ground Up
Information retrieval is indispensable for today's Internet applications, yet traditional semantic matching techniques often fall short in capturing the fine-grained cross-modal interactions required for complex queries. Although late-fusion two-tower architectures attempt to bridge this gap by independently encoding visual and textual data before merging them at a high level, they frequently overlook the subtle interplay essential for comprehensive understanding. In this work, we rigorously assess these limitations and introduce a unified retrieval framework that fuses visual and textual cues from the ground up, enabling early cross-modal interactions for enhancing context interpretation. Through a two-stage training process--comprising post-training adaptation followed by instruction tuning--we adapt MLLMs as retrievers using a simple one-tower architecture. Our approach outperforms conventional methods across diverse retrieval scenarios, particularly when processing complex multi-modal inputs. Notably, the joint fusion encoder yields greater improvements on tasks that require modality fusion compared to those that do not, underscoring the transformative potential of early integration strategies and pointing toward a promising direction for contextually aware and effective information retrieval.
ReMamber: Referring Image Segmentation with Mamba Twister
Referring Image Segmentation~(RIS) leveraging transformers has achieved great success on the interpretation of complex visual-language tasks. However, the quadratic computation cost makes it resource-consuming in capturing long-range visual-language dependencies. Fortunately, Mamba addresses this with efficient linear complexity in processing. However, directly applying Mamba to multi-modal interactions presents challenges, primarily due to inadequate channel interactions for the effective fusion of multi-modal data. In this paper, we propose ReMamber, a novel RIS architecture that integrates the power of Mamba with a multi-modal Mamba Twister block. The Mamba Twister explicitly models image-text interaction, and fuses textual and visual features through its unique channel and spatial twisting mechanism. We achieve competitive results on three challenging benchmarks with a simple and efficient architecture. Moreover, we conduct thorough analyses of ReMamber and discuss other fusion designs using Mamba. These provide valuable perspectives for future research. The code has been released at: https://github.com/yyh-rain-song/ReMamber.
Bridging the Gap: Exploring the Capabilities of Bridge-Architectures for Complex Visual Reasoning Tasks
In recent times there has been a surge of multi-modal architectures based on Large Language Models, which leverage the zero shot generation capabilities of LLMs and project image embeddings into the text space and then use the auto-regressive capacity to solve tasks such as VQA, captioning, and image retrieval. We name these architectures as "bridge-architectures" as they project from the image space to the text space. These models deviate from the traditional recipe of training transformer based multi-modal models, which involve using large-scale pre-training and complex multi-modal interactions through co or cross attention. However, the capabilities of bridge architectures have not been tested on complex visual reasoning tasks which require fine grained analysis about the image. In this project, we investigate the performance of these bridge-architectures on the NLVR2 dataset, and compare it to state-of-the-art transformer based architectures. We first extend the traditional bridge architectures for the NLVR2 dataset, by adding object level features to faciliate fine-grained object reasoning. Our analysis shows that adding object level features to bridge architectures does not help, and that pre-training on multi-modal data is key for good performance on complex reasoning tasks such as NLVR2. We also demonstrate some initial results on a recently bridge-architecture, LLaVA, in the zero shot setting and analyze its performance.
TubeDETR: Spatio-Temporal Video Grounding with Transformers
We consider the problem of localizing a spatio-temporal tube in a video corresponding to a given text query. This is a challenging task that requires the joint and efficient modeling of temporal, spatial and multi-modal interactions. To address this task, we propose TubeDETR, a transformer-based architecture inspired by the recent success of such models for text-conditioned object detection. Our model notably includes: (i) an efficient video and text encoder that models spatial multi-modal interactions over sparsely sampled frames and (ii) a space-time decoder that jointly performs spatio-temporal localization. We demonstrate the advantage of our proposed components through an extensive ablation study. We also evaluate our full approach on the spatio-temporal video grounding task and demonstrate improvements over the state of the art on the challenging VidSTG and HC-STVG benchmarks. Code and trained models are publicly available at https://antoyang.github.io/tubedetr.html.
VLG-Net: Video-Language Graph Matching Network for Video Grounding
Grounding language queries in videos aims at identifying the time interval (or moment) semantically relevant to a language query. The solution to this challenging task demands understanding videos' and queries' semantic content and the fine-grained reasoning about their multi-modal interactions. Our key idea is to recast this challenge into an algorithmic graph matching problem. Fueled by recent advances in Graph Neural Networks, we propose to leverage Graph Convolutional Networks to model video and textual information as well as their semantic alignment. To enable the mutual exchange of information across the modalities, we design a novel Video-Language Graph Matching Network (VLG-Net) to match video and query graphs. Core ingredients include representation graphs built atop video snippets and query tokens separately and used to model intra-modality relationships. A Graph Matching layer is adopted for cross-modal context modeling and multi-modal fusion. Finally, moment candidates are created using masked moment attention pooling by fusing the moment's enriched snippet features. We demonstrate superior performance over state-of-the-art grounding methods on three widely used datasets for temporal localization of moments in videos with language queries: ActivityNet-Captions, TACoS, and DiDeMo.
Video-LLaVA: Learning United Visual Representation by Alignment Before Projection
The Large Vision-Language Model (LVLM) has enhanced the performance of various downstream tasks in visual-language understanding. Most existing approaches encode images and videos into separate feature spaces, which are then fed as inputs to large language models. However, due to the lack of unified tokenization for images and videos, namely misalignment before projection, it becomes challenging for a Large Language Model (LLM) to learn multi-modal interactions from several poor projection layers. In this work, we unify visual representation into the language feature space to advance the foundational LLM towards a unified LVLM. As a result, we establish a simple but robust LVLM baseline, Video-LLaVA, which learns from a mixed dataset of images and videos, mutually enhancing each other. Video-LLaVA achieves superior performances on a broad range of 9 image benchmarks across 5 image question-answering datasets and 4 image benchmark toolkits. Additionally, our Video-LLaVA also outperforms Video-ChatGPT by 5.8%, 9.9%, 18.6%, and 10.1% on MSRVTT, MSVD, TGIF, and ActivityNet, respectively. Notably, extensive experiments demonstrate that Video-LLaVA mutually benefits images and videos within a unified visual representation, outperforming models designed specifically for images or videos.
TalkMosaic: Interactive PhotoMosaic with Multi-modal LLM Q&A Interactions
We use images of cars of a wide range of varieties to compose an image of an animal such as a bird or a lion for the theme of environmental protection to maximize the information about cars in a single composed image and to raise the awareness about environmental challenges. We present a novel way of image interaction with an artistically-composed photomosaic image, in which a simple operation of "click and display" is used to demonstrate the interactive switch between a tile image in a photomosaic image and the corresponding original car image, which will be automatically saved on the Desktop. We build a multimodal custom GPT named TalkMosaic by incorporating car images information and the related knowledge to ChatGPT. By uploading the original car image to TalkMosaic, we can ask questions about the given car image and get the corresponding answers efficiently and effectively such as where to buy the tire in the car image that satisfies high environmental standards. We give an in-depth analysis on how to speed up the inference of multimodal LLM using sparse attention and quantization techniques with presented probabilistic FlashAttention (PrFlashAttention) and Staircase Adaptive Quantization (SAQ) methods. The implemented prototype demonstrates the feasibility and effectiveness of the presented approach.
BioMol-MQA: A Multi-Modal Question Answering Dataset For LLM Reasoning Over Bio-Molecular Interactions
Retrieval augmented generation (RAG) has shown great power in improving Large Language Models (LLMs). However, most existing RAG-based LLMs are dedicated to retrieving single modality information, mainly text; while for many real-world problems, such as healthcare, information relevant to queries can manifest in various modalities such as knowledge graph, text (clinical notes), and complex molecular structure. Thus, being able to retrieve relevant multi-modality domain-specific information, and reason and synthesize diverse knowledge to generate an accurate response is important. To address the gap, we present BioMol-MQA, a new question-answering (QA) dataset on polypharmacy, which is composed of two parts (i) a multimodal knowledge graph (KG) with text and molecular structure for information retrieval; and (ii) challenging questions that designed to test LLM capabilities in retrieving and reasoning over multimodal KG to answer questions. Our benchmarks indicate that existing LLMs struggle to answer these questions and do well only when given the necessary background data, signaling the necessity for strong RAG frameworks.
Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints
User data spread across multiple modalities has popularized multi-modal recommender systems (MMRS). They recommend diverse content such as products, social media posts, TikTok reels, etc., based on a user-item interaction graph. With rising data privacy demands, recent methods propose unlearning private user data from uni-modal recommender systems (RS). However, methods for unlearning item data related to outdated user preferences, revoked licenses, and legally requested removals are still largely unexplored. Previous RS unlearning methods are unsuitable for MMRS due to the incompatibility of their matrix-based representation with the multi-modal user-item interaction graph. Moreover, their data partitioning step degrades performance on each shard due to poor data heterogeneity and requires costly performance aggregation across shards. This paper introduces MMRecUn, the first approach known to us for unlearning in MMRS and unlearning item data. Given a trained RS model, MMRecUn employs a novel Reverse Bayesian Personalized Ranking (BPR) objective to enable the model to forget marked data. The reverse BPR attenuates the impact of user-item interactions within the forget set, while the forward BPR reinforces the significance of user-item interactions within the retain set. Our experiments demonstrate that MMRecUn outperforms baseline methods across various unlearning requests when evaluated on benchmark MMRS datasets. MMRecUn achieves recall performance improvements of up to 49.85% compared to baseline methods and is up to 1.3x faster than the Gold model, which is trained on retain set from scratch. MMRecUn offers significant advantages, including superiority in removing target interactions, preserving retained interactions, and zero overhead costs compared to previous methods. Code: https://github.com/MachineUnlearn/MMRecUN Extended version: arXiv:2405.15328
Multi-Modal Emotion recognition on IEMOCAP Dataset using Deep Learning
Emotion recognition has become an important field of research in Human Computer Interactions as we improve upon the techniques for modelling the various aspects of behaviour. With the advancement of technology our understanding of emotions are advancing, there is a growing need for automatic emotion recognition systems. One of the directions the research is heading is the use of Neural Networks which are adept at estimating complex functions that depend on a large number and diverse source of input data. In this paper we attempt to exploit this effectiveness of Neural networks to enable us to perform multimodal Emotion recognition on IEMOCAP dataset using data from Speech, Text, and Motion capture data from face expressions, rotation and hand movements. Prior research has concentrated on Emotion detection from Speech on the IEMOCAP dataset, but our approach is the first that uses the multiple modes of data offered by IEMOCAP for a more robust and accurate emotion detection.
Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception
Multimodal Large Language Model (MLLMs) leverages Large Language Models as a cognitive framework for diverse visual-language tasks. Recent efforts have been made to equip MLLMs with visual perceiving and grounding capabilities. However, there still remains a gap in providing fine-grained pixel-level perceptions and extending interactions beyond text-specific inputs. In this work, we propose {AnyRef}, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references, such as texts, boxes, images, or audio. This innovation empowers users with greater flexibility to engage with the model beyond textual and regional prompts, without modality-specific designs. Through our proposed refocusing mechanism, the generated grounding output is guided to better focus on the referenced object, implicitly incorporating additional pixel-level supervision. This simple modification utilizes attention scores generated during the inference of LLM, eliminating the need for extra computations while exhibiting performance enhancements in both grounding masks and referring expressions. With only publicly available training data, our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
MuMA-ToM: Multi-modal Multi-Agent Theory of Mind
Understanding people's social interactions in complex real-world scenarios often relies on intricate mental reasoning. To truly understand how and why people interact with one another, we must infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal -- we can watch people's actions, hear their conversations, and/or read about their past behaviors. For AI systems to successfully and safely interact with people in real-world environments, they also need to understand people's mental states as well as their inferences about each other's mental states based on multi-modal information about their interactions. For this, we introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In MuMA-ToM, we provide video and text descriptions of people's multi-modal behavior in realistic household environments. Based on the context, we then ask questions about people's goals, beliefs, and beliefs about others' goals. We validated MuMA-ToM in a human experiment and provided a human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5 Pro) and a recent multi-modal ToM model, BIP-ALM.
Experience and Evidence are the eyes of an excellent summarizer! Towards Knowledge Infused Multi-modal Clinical Conversation Summarization
With the advancement of telemedicine, both researchers and medical practitioners are working hand-in-hand to develop various techniques to automate various medical operations, such as diagnosis report generation. In this paper, we first present a multi-modal clinical conversation summary generation task that takes a clinician-patient interaction (both textual and visual information) and generates a succinct synopsis of the conversation. We propose a knowledge-infused, multi-modal, multi-tasking medical domain identification and clinical conversation summary generation (MM-CliConSummation) framework. It leverages an adapter to infuse knowledge and visual features and unify the fused feature vector using a gated mechanism. Furthermore, we developed a multi-modal, multi-intent clinical conversation summarization corpus annotated with intent, symptom, and summary. The extensive set of experiments, both quantitatively and qualitatively, led to the following findings: (a) critical significance of visuals, (b) more precise and medical entity preserving summary with additional knowledge infusion, and (c) a correlation between medical department identification and clinical synopsis generation. Furthermore, the dataset and source code are available at https://github.com/NLP-RL/MM-CliConSummation.
Multi-Modal Adapter for Vision-Language Models
Large pre-trained vision-language models, such as CLIP, have demonstrated state-of-the-art performance across a wide range of image classification tasks, without requiring retraining. Few-shot CLIP is competitive with existing specialized architectures that were trained on the downstream tasks. Recent research demonstrates that the performance of CLIP can be further improved using lightweight adaptation approaches. However, previous methods adapt different modalities of the CLIP model individually, ignoring the interactions and relationships between visual and textual representations. In this work, we propose Multi-Modal Adapter, an approach for Multi-Modal adaptation of CLIP. Specifically, we add a trainable Multi-Head Attention layer that combines text and image features to produce an additive adaptation of both. Multi-Modal Adapter demonstrates improved generalizability, based on its performance on unseen classes compared to existing adaptation methods. We perform additional ablations and investigations to validate and interpret the proposed approach.
Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving
Efficient data utilization is crucial for advancing 3D scene understanding in autonomous driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully supervised methods. Addressing this, our study extends into semi-supervised learning for LiDAR semantic segmentation, leveraging the intrinsic spatial priors of driving scenes and multi-sensor complements to augment the efficacy of unlabeled datasets. We introduce LaserMix++, an evolved framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to further assist data-efficient learning. Our framework is tailored to enhance 3D scene consistency regularization by incorporating multi-modality, including 1) multi-modal LaserMix operation for fine-grained cross-sensor interactions; 2) camera-to-LiDAR feature distillation that enhances LiDAR feature learning; and 3) language-driven knowledge guidance generating auxiliary supervisions using open-vocabulary models. The versatility of LaserMix++ enables applications across LiDAR representations, establishing it as a universally applicable solution. Our framework is rigorously validated through theoretical analysis and extensive experiments on popular driving perception datasets. Results demonstrate that LaserMix++ markedly outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations and significantly improving the supervised-only baselines. This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
DiffSensei: Bridging Multi-Modal LLMs and Diffusion Models for Customized Manga Generation
Story visualization, the task of creating visual narratives from textual descriptions, has seen progress with text-to-image generation models. However, these models often lack effective control over character appearances and interactions, particularly in multi-character scenes. To address these limitations, we propose a new task: customized manga generation and introduce DiffSensei, an innovative framework specifically designed for generating manga with dynamic multi-character control. DiffSensei integrates a diffusion-based image generator with a multimodal large language model (MLLM) that acts as a text-compatible identity adapter. Our approach employs masked cross-attention to seamlessly incorporate character features, enabling precise layout control without direct pixel transfer. Additionally, the MLLM-based adapter adjusts character features to align with panel-specific text cues, allowing flexible adjustments in character expressions, poses, and actions. We also introduce MangaZero, a large-scale dataset tailored to this task, containing 43,264 manga pages and 427,147 annotated panels, supporting the visualization of varied character interactions and movements across sequential frames. Extensive experiments demonstrate that DiffSensei outperforms existing models, marking a significant advancement in manga generation by enabling text-adaptable character customization. The project page is https://jianzongwu.github.io/projects/diffsensei/.
Fine-grained Multiple Supervisory Network for Multi-modal Manipulation Detecting and Grounding
The task of Detecting and Grounding Multi-Modal Media Manipulation (DGM^4) is a branch of misinformation detection. Unlike traditional binary classification, it includes complex subtasks such as forgery content localization and forgery method classification. Consider that existing methods are often limited in performance due to neglecting the erroneous interference caused by unreliable unimodal data and failing to establish comprehensive forgery supervision for mining fine-grained tampering traces. In this paper, we present a Fine-grained Multiple Supervisory (FMS) network, which incorporates modality reliability supervision, unimodal internal supervision and cross-modal supervision to provide comprehensive guidance for DGM^4 detection. For modality reliability supervision, we propose the Multimodal Decision Supervised Correction (MDSC) module. It leverages unimodal weak supervision to correct the multi-modal decision-making process. For unimodal internal supervision, we propose the Unimodal Forgery Mining Reinforcement (UFMR) module. It amplifies the disparity between real and fake information within unimodal modality from both feature-level and sample-level perspectives. For cross-modal supervision, we propose the Multimodal Forgery Alignment Reasoning (MFAR) module. It utilizes soft-attention interactions to achieve cross-modal feature perception from both consistency and inconsistency perspectives, where we also design the interaction constraints to ensure the interaction quality. Extensive experiments demonstrate the superior performance of our FMS compared to state-of-the-art methods.
EigenTrajectory: Low-Rank Descriptors for Multi-Modal Trajectory Forecasting
Capturing high-dimensional social interactions and feasible futures is essential for predicting trajectories. To address this complex nature, several attempts have been devoted to reducing the dimensionality of the output variables via parametric curve fitting such as the B\'ezier curve and B-spline function. However, these functions, which originate in computer graphics fields, are not suitable to account for socially acceptable human dynamics. In this paper, we present EigenTrajectory (ET), a trajectory prediction approach that uses a novel trajectory descriptor to form a compact space, known here as ET space, in place of Euclidean space, for representing pedestrian movements. We first reduce the complexity of the trajectory descriptor via a low-rank approximation. We transform the pedestrians' history paths into our ET space represented by spatio-temporal principle components, and feed them into off-the-shelf trajectory forecasting models. The inputs and outputs of the models as well as social interactions are all gathered and aggregated in the corresponding ET space. Lastly, we propose a trajectory anchor-based refinement method to cover all possible futures in the proposed ET space. Extensive experiments demonstrate that our EigenTrajectory predictor can significantly improve both the prediction accuracy and reliability of existing trajectory forecasting models on public benchmarks, indicating that the proposed descriptor is suited to represent pedestrian behaviors. Code is publicly available at https://github.com/inhwanbae/EigenTrajectory .
Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
BaitBuster-Bangla: A Comprehensive Dataset for Clickbait Detection in Bangla with Multi-Feature and Multi-Modal Analysis
This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preprocessing step has been applied to denoise, deduplicate, and remove bias from the features, ensuring unbiased and reliable analysis. As the largest and most robust clickbait corpus in Bangla to date, this dataset provides significant value for natural language processing and data science researchers seeking to advance modeling of clickbait phenomena in low-resource languages. Its multi-modal nature allows for comprehensive analyses of clickbait across content, user interactions, and linguistic dimensions to develop more sophisticated detection methods with cross-linguistic applications.
MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models
Despite Multi-modal Large Language Models (MM-LLMs) have made exciting strides recently, they are still struggling to efficiently model the interactions among multi-modal inputs and the generation in non-textual modalities. In this work, we propose TEAL (Tokenize and Embed ALl)}, an approach to treat the input from any modality as a token sequence and learn a joint embedding space for all modalities. Specifically, for the input from any modality, TEAL first discretizes it into a token sequence with the off-the-shelf tokenizer and embeds the token sequence into a joint embedding space with a learnable embedding matrix. MM-LLMs just need to predict the multi-modal tokens autoregressively as the textual LLMs do. Finally, the corresponding de-tokenizer is applied to generate the output in each modality based on the predicted token sequence. With the joint embedding space, TEAL enables the frozen LLMs to perform both understanding and generation tasks involving non-textual modalities, such as image and audio. Thus, the textual LLM can just work as an interface and maintain its high performance in textual understanding and generation. Experiments show that TEAL achieves substantial improvements in multi-modal understanding, and implements a simple scheme for multi-modal generations.
Yambda-5B -- A Large-Scale Multi-modal Dataset for Ranking And Retrieval
We present Yambda-5B, a large-scale open dataset sourced from the Yandex.Music streaming platform. Yambda-5B contains 4.79 billion user-item interactions from 1 million users across 9.39 million tracks. The dataset includes two primary types of interactions: implicit feedback (listening events) and explicit feedback (likes, dislikes, unlikes and undislikes). In addition, we provide audio embeddings for most tracks, generated by a convolutional neural network trained on audio spectrograms. A key distinguishing feature of Yambda-5B is the inclusion of the is_organic flag, which separates organic user actions from recommendation-driven events. This distinction is critical for developing and evaluating machine learning algorithms, as Yandex.Music relies on recommender systems to personalize track selection for users. To support rigorous benchmarking, we introduce an evaluation protocol based on a Global Temporal Split, allowing recommendation algorithms to be assessed in conditions that closely mirror real-world use. We report benchmark results for standard baselines (ItemKNN, iALS) and advanced models (SANSA, SASRec) using a variety of evaluation metrics. By releasing Yambda-5B to the community, we aim to provide a readily accessible, industrial-scale resource to advance research, foster innovation, and promote reproducible results in recommender systems.
InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been proven to struggle with biases from spurious cues, leading to a superficial understanding of the complex interactions between text and image. To address these issues, we propose InterCLIP-MEP, a robust framework for multi-modal sarcasm detection. InterCLIP-MEP introduces a refined variant of CLIP, Interactive CLIP (InterCLIP), as the backbone, enhancing sample representations by embedding cross-modality information in each encoder. Furthermore, a novel training strategy is designed to adapt InterCLIP for a Memory-Enhanced Predictor (MEP). MEP uses dynamic dual-channel memory to store valuable historical knowledge of test samples and then leverages this memory as a non-parametric classifier to derive the final prediction. By using InterCLIP to encode text-image interactions more effectively and incorporating MEP, InterCLIP-MEP offers a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark. Code and data are available at [https://github.com/CoderChen01/InterCLIP-MEP](https://github.com/CoderChen01/InterCLIP-MEP).
A Multi-Modal Neuro-Symbolic Approach for Spatial Reasoning-Based Visual Grounding in Robotics
Visual reasoning, particularly spatial reasoning, is a challenging cognitive task that requires understanding object relationships and their interactions within complex environments, especially in robotics domain. Existing vision_language models (VLMs) excel at perception tasks but struggle with fine-grained spatial reasoning due to their implicit, correlation-driven reasoning and reliance solely on images. We propose a novel neuro_symbolic framework that integrates both panoramic-image and 3D point cloud information, combining neural perception with symbolic reasoning to explicitly model spatial and logical relationships. Our framework consists of a perception module for detecting entities and extracting attributes, and a reasoning module that constructs a structured scene graph to support precise, interpretable queries. Evaluated on the JRDB-Reasoning dataset, our approach demonstrates superior performance and reliability in crowded, human_built environments while maintaining a lightweight design suitable for robotics and embodied AI applications.
Unified Multi-Modal Interleaved Document Representation for Information Retrieval
Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.
Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
InstructMol: Multi-Modal Integration for Building a Versatile and Reliable Molecular Assistant in Drug Discovery
The rapid evolution of artificial intelligence in drug discovery encounters challenges with generalization and extensive training, yet Large Language Models (LLMs) offer promise in reshaping interactions with complex molecular data. Our novel contribution, InstructMol, a multi-modal LLM, effectively aligns molecular structures with natural language via an instruction-tuning approach, utilizing a two-stage training strategy that adeptly combines limited domain-specific data with molecular and textual information. InstructMol showcases substantial performance improvements in drug discovery-related molecular tasks, surpassing leading LLMs and significantly reducing the gap with specialized models, thereby establishing a robust foundation for a versatile and dependable drug discovery assistant.
Replay: Multi-modal Multi-view Acted Videos for Casual Holography
We introduce Replay, a collection of multi-view, multi-modal videos of humans interacting socially. Each scene is filmed in high production quality, from different viewpoints with several static cameras, as well as wearable action cameras, and recorded with a large array of microphones at different positions in the room. Overall, the dataset contains over 4000 minutes of footage and over 7 million timestamped high-resolution frames annotated with camera poses and partially with foreground masks. The Replay dataset has many potential applications, such as novel-view synthesis, 3D reconstruction, novel-view acoustic synthesis, human body and face analysis, and training generative models. We provide a benchmark for training and evaluating novel-view synthesis, with two scenarios of different difficulty. Finally, we evaluate several baseline state-of-the-art methods on the new benchmark.
PaccMann: Prediction of anticancer compound sensitivity with multi-modal attention-based neural networks
We present a novel approach for the prediction of anticancer compound sensitivity by means of multi-modal attention-based neural networks (PaccMann). In our approach, we integrate three key pillars of drug sensitivity, namely, the molecular structure of compounds, transcriptomic profiles of cancer cells as well as prior knowledge about interactions among proteins within cells. Our models ingest a drug-cell pair consisting of SMILES encoding of a compound and the gene expression profile of a cancer cell and predicts an IC50 sensitivity value. Gene expression profiles are encoded using an attention-based encoding mechanism that assigns high weights to the most informative genes. We present and study three encoders for SMILES string of compounds: 1) bidirectional recurrent 2) convolutional 3) attention-based encoders. We compare our devised models against a baseline model that ingests engineered fingerprints to represent the molecular structure. We demonstrate that using our attention-based encoders, we can surpass the baseline model. The use of attention-based encoders enhance interpretability and enable us to identify genes, bonds and atoms that were used by the network to make a prediction.
CountGD: Multi-Modal Open-World Counting
The goal of this paper is to improve the generality and accuracy of open-vocabulary object counting in images. To improve the generality, we repurpose an open-vocabulary detection foundation model (GroundingDINO) for the counting task, and also extend its capabilities by introducing modules to enable specifying the target object to count by visual exemplars. In turn, these new capabilities - being able to specify the target object by multi-modalites (text and exemplars) - lead to an improvement in counting accuracy. We make three contributions: First, we introduce the first open-world counting model, CountGD, where the prompt can be specified by a text description or visual exemplars or both; Second, we show that the performance of the model significantly improves the state of the art on multiple counting benchmarks - when using text only, CountGD is comparable to or outperforms all previous text-only works, and when using both text and visual exemplars, we outperform all previous models; Third, we carry out a preliminary study into different interactions between the text and visual exemplar prompts, including the cases where they reinforce each other and where one restricts the other. The code and an app to test the model are available at https://www.robots.ox.ac.uk/~vgg/research/countgd/.
IMAD: IMage-Augmented multi-modal Dialogue
Currently, dialogue systems have achieved high performance in processing text-based communication. However, they have not yet effectively incorporated visual information, which poses a significant challenge. Furthermore, existing models that incorporate images in dialogue generation focus on discussing the image itself. Our proposed approach presents a novel perspective on multi-modal dialogue systems, which interprets the image in the context of the dialogue. By doing so, we aim to expand the capabilities of current dialogue systems and transition them from single modality (text) to multi-modality. However, there is a lack of validated English datasets that contain both images and dialogue contexts for this task. Thus, we propose a two-stage approach to automatically construct a multi-modal dialogue dataset. In the first stage, we utilize text-to-image similarity and sentence similarity to identify which utterances could be replaced with an image. In the second stage, we replace those utterances by selecting a subset of relevant images and filtering them with a visual question answering model. We used this approach, along with additional labeling, to create the IMage Augmented multi-modal Dialogue dataset (IMAD), which can serve as a validated dataset for this task. Furthermore, we propose a baseline model trained on this dataset, which outperforms model trained on the same data without images and BlenderBot.
Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning
Despite encouraging progress in 3D scene understanding, it remains challenging to develop an effective Large Multi-modal Model (LMM) that is capable of understanding and reasoning in complex 3D environments. Most previous methods typically encode 3D point and 2D image features separately, neglecting interactions between 2D semantics and 3D object properties, as well as the spatial relationships within the 3D environment. This limitation not only hinders comprehensive representations of 3D scene, but also compromises training and inference efficiency. To address these challenges, we propose a unified Instance-aware 3D Large Multi-modal Model (Inst3D-LMM) to deal with multiple 3D scene understanding tasks simultaneously. To obtain the fine-grained instance-level visual tokens, we first introduce a novel Multi-view Cross-Modal Fusion (MCMF) module to inject the multi-view 2D semantics into their corresponding 3D geometric features. For scene-level relation-aware tokens, we further present a 3D Instance Spatial Relation (3D-ISR) module to capture the intricate pairwise spatial relationships among objects. Additionally, we perform end-to-end multi-task instruction tuning simultaneously without the subsequent task-specific fine-tuning. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods across 3D scene understanding, reasoning and grounding tasks. Source code is available at https://github.com/hanxunyu/Inst3D-LMM
Full-Atom Peptide Design based on Multi-modal Flow Matching
Peptides, short chains of amino acid residues, play a vital role in numerous biological processes by interacting with other target molecules, offering substantial potential in drug discovery. In this work, we present PepFlow, the first multi-modal deep generative model grounded in the flow-matching framework for the design of full-atom peptides that target specific protein receptors. Drawing inspiration from the crucial roles of residue backbone orientations and side-chain dynamics in protein-peptide interactions, we characterize the peptide structure using rigid backbone frames within the SE(3) manifold and side-chain angles on high-dimensional tori. Furthermore, we represent discrete residue types in the peptide sequence as categorical distributions on the probability simplex. By learning the joint distributions of each modality using derived flows and vector fields on corresponding manifolds, our method excels in the fine-grained design of full-atom peptides. Harnessing the multi-modal paradigm, our approach adeptly tackles various tasks such as fix-backbone sequence design and side-chain packing through partial sampling. Through meticulously crafted experiments, we demonstrate that PepFlow exhibits superior performance in comprehensive benchmarks, highlighting its significant potential in computational peptide design and analysis.
OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.
DeepSpeed-VisualChat: Multi-Round Multi-Image Interleave Chat via Multi-Modal Causal Attention
Most of the existing multi-modal models, hindered by their incapacity to adeptly manage interleaved image-and-text inputs in multi-image, multi-round dialogues, face substantial constraints in resource allocation for training and data accessibility, impacting their adaptability and scalability across varied interaction realms. To address this, we present the DeepSpeed-VisualChat framework, designed to optimize Large Language Models (LLMs) by incorporating multi-modal capabilities, with a focus on enhancing the proficiency of Large Vision and Language Models in handling interleaved inputs. Our framework is notable for (1) its open-source support for multi-round and multi-image dialogues, (2) introducing an innovative multi-modal causal attention mechanism, and (3) utilizing data blending techniques on existing datasets to assure seamless interactions in multi-round, multi-image conversations. Compared to existing frameworks, DeepSpeed-VisualChat shows superior scalability up to 70B parameter language model size, representing a significant advancement in multi-modal language models and setting a solid foundation for future explorations.
Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models
Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. HAICTrain comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, HAICBench includes 500 manually annotated video-caption pairs and 1,400 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench are released at https://huggingface.co/datasets/KuaishouHAIC/HAIC.
ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
Time-series data are critical in diverse applications, such as industrial monitoring, medical diagnostics, and climate research. However, effectively integrating these high-dimensional temporal signals with natural language for dynamic, interactive tasks remains a significant challenge. To address this, we introduce the Time-Series Question Answering (Time-Series QA) task and release EngineMT-QA, the first large-scale, multi-task, temporal-textual QA dataset designed to capture complex interactions between time-series signals and natural language. Building on this resource, we propose the Instruct Time Transformer (ITFormer), a novel framework that bridges time-series encoders with frozen large language models (LLMs). ITFormer effectively extracts, aligns, and fuses temporal and textual features, achieving a strong improvement in QA accuracy over strong baselines with fewer than 1\% additional trainable parameters. By combining computational efficiency with robust cross-modal modeling, our work establishes a adaptable paradigm for integrating temporal data with natural language, paving the way for new research and applications in multi-modal AI. More details about the project, including datasets and code, are available at: https://pandalin98.github.io/itformer_site/
Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
Improving Agent Interactions in Virtual Environments with Language Models
Enhancing AI systems with efficient communication skills for effective human assistance necessitates proactive initiatives from the system side to discern specific circumstances and interact aptly. This research focuses on a collective building assignment in the Minecraft dataset, employing language modeling to enhance task understanding through state-of-the-art methods. These models focus on grounding multi-modal understanding and task-oriented dialogue comprehension tasks, providing insights into their interpretative and responsive capabilities. Our experimental results showcase a substantial improvement over existing methods, indicating a promising direction for future research in this domain.
InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions
Creating AI systems that can interact with environments over long periods, similar to human cognition, has been a longstanding research goal. Recent advancements in multimodal large language models (MLLMs) have made significant strides in open-world understanding. However, the challenge of continuous and simultaneous streaming perception, memory, and reasoning remains largely unexplored. Current MLLMs are constrained by their sequence-to-sequence architecture, which limits their ability to process inputs and generate responses simultaneously, akin to being unable to think while perceiving. Furthermore, relying on long contexts to store historical data is impractical for long-term interactions, as retaining all information becomes costly and inefficient. Therefore, rather than relying on a single foundation model to perform all functions, this project draws inspiration from the concept of the Specialized Generalist AI and introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input. The proposed framework InternLM-XComposer2.5-OmniLive (IXC2.5-OL) consists of three key modules: (1) Streaming Perception Module: Processes multimodal information in real-time, storing key details in memory and triggering reasoning in response to user queries. (2) Multi-modal Long Memory Module: Integrates short-term and long-term memory, compressing short-term memories into long-term ones for efficient retrieval and improved accuracy. (3) Reasoning Module: Responds to queries and executes reasoning tasks, coordinating with the perception and memory modules. This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
JRDB-Social: A Multifaceted Robotic Dataset for Understanding of Context and Dynamics of Human Interactions Within Social Groups
Understanding human social behaviour is crucial in computer vision and robotics. Micro-level observations like individual actions fall short, necessitating a comprehensive approach that considers individual behaviour, intra-group dynamics, and social group levels for a thorough understanding. To address dataset limitations, this paper introduces JRDB-Social, an extension of JRDB. Designed to fill gaps in human understanding across diverse indoor and outdoor social contexts, JRDB-Social provides annotations at three levels: individual attributes, intra-group interactions, and social group context. This dataset aims to enhance our grasp of human social dynamics for robotic applications. Utilizing the recent cutting-edge multi-modal large language models, we evaluated our benchmark to explore their capacity to decipher social human behaviour.
Learning State-Aware Visual Representations from Audible Interactions
We propose a self-supervised algorithm to learn representations from egocentric video data. Recently, significant efforts have been made to capture humans interacting with their own environments as they go about their daily activities. In result, several large egocentric datasets of interaction-rich multi-modal data have emerged. However, learning representations from videos can be challenging. First, given the uncurated nature of long-form continuous videos, learning effective representations require focusing on moments in time when interactions take place. Second, visual representations of daily activities should be sensitive to changes in the state of the environment. However, current successful multi-modal learning frameworks encourage representation invariance over time. To address these challenges, we leverage audio signals to identify moments of likely interactions which are conducive to better learning. We also propose a novel self-supervised objective that learns from audible state changes caused by interactions. We validate these contributions extensively on two large-scale egocentric datasets, EPIC-Kitchens-100 and the recently released Ego4D, and show improvements on several downstream tasks, including action recognition, long-term action anticipation, and object state change classification.
InTraGen: Trajectory-controlled Video Generation for Object Interactions
Advances in video generation have significantly improved the realism and quality of created scenes. This has fueled interest in developing intuitive tools that let users leverage video generation as world simulators. Text-to-video (T2V) generation is one such approach, enabling video creation from text descriptions only. Yet, due to the inherent ambiguity in texts and the limited temporal information offered by text prompts, researchers have explored additional control signals like trajectory-guided systems, for more accurate T2V generation. Nonetheless, methods to evaluate whether T2V models can generate realistic interactions between multiple objects are lacking. We introduce InTraGen, a pipeline for improved trajectory-based generation of object interaction scenarios. We propose 4 new datasets and a novel trajectory quality metric to evaluate the performance of the proposed InTraGen. To achieve object interaction, we introduce a multi-modal interaction encoding pipeline with an object ID injection mechanism that enriches object-environment interactions. Our results demonstrate improvements in both visual fidelity and quantitative performance. Code and datasets are available at https://github.com/insait-institute/InTraGen
MMFuser: Multimodal Multi-Layer Feature Fuser for Fine-Grained Vision-Language Understanding
Despite significant advancements in Multimodal Large Language Models (MLLMs) for understanding complex human intentions through cross-modal interactions, capturing intricate image details remains challenging. Previous methods integrating multiple vision encoders to enhance visual detail introduce redundancy and computational overhead. We observe that most MLLMs utilize only the last-layer feature map of the vision encoder for visual representation, neglecting the rich fine-grained information in shallow feature maps. To address this issue, we propose \modelname, a simple yet effective multi-layer feature fuser that efficiently integrates deep and shallow features from Vision Transformers (ViTs). Specifically, it leverages semantically aligned deep features as queries to dynamically extract missing details from shallow features, thus preserving semantic alignment while enriching the representation with fine-grained information. Applied to the LLaVA-1.5 model, \modelname~achieves significant improvements in visual representation and benchmark performance, providing a more flexible and lightweight solution compared to multi-encoder ensemble methods. The code and model have been released at https://github.com/yuecao0119/MMFuser.
HA-HI: Synergising fMRI and DTI through Hierarchical Alignments and Hierarchical Interactions for Mild Cognitive Impairment Diagnosis
Early diagnosis of mild cognitive impairment (MCI) and subjective cognitive decline (SCD) utilizing multi-modal magnetic resonance imaging (MRI) is a pivotal area of research. While various regional and connectivity features from functional MRI (fMRI) and diffusion tensor imaging (DTI) have been employed to develop diagnosis models, most studies integrate these features without adequately addressing their alignment and interactions. This limits the potential to fully exploit the synergistic contributions of combined features and modalities. To solve this gap, our study introduces a novel Hierarchical Alignments and Hierarchical Interactions (HA-HI) method for MCI and SCD classification, leveraging the combined strengths of fMRI and DTI. HA-HI efficiently learns significant MCI- or SCD- related regional and connectivity features by aligning various feature types and hierarchically maximizing their interactions. Furthermore, to enhance the interpretability of our approach, we have developed the Synergistic Activation Map (SAM) technique, revealing the critical brain regions and connections that are indicative of MCI/SCD. Comprehensive evaluations on the ADNI dataset and our self-collected data demonstrate that HA-HI outperforms other existing methods in diagnosing MCI and SCD, making it a potentially vital and interpretable tool for early detection. The implementation of this method is publicly accessible at https://github.com/ICI-BCI/Dual-MRI-HA-HI.git.
OmniResponse: Online Multimodal Conversational Response Generation in Dyadic Interactions
In this paper, we introduce Online Multimodal Conversational Response Generation (OMCRG), a novel task that aims to online generate synchronized verbal and non-verbal listener feedback, conditioned on the speaker's multimodal input. OMCRG reflects natural dyadic interactions and poses new challenges in achieving synchronization between the generated audio and facial responses of the listener. To address these challenges, we innovatively introduce text as an intermediate modality to bridge the audio and facial responses. We hence propose OmniResponse, a Multimodal Large Language Model (MLLM) that autoregressively generates high-quality multi-modal listener responses. OmniResponse leverages a pretrained LLM enhanced with two novel components: Chrono-Text, which temporally anchors generated text tokens, and TempoVoice, a controllable online TTS module that produces speech synchronized with facial reactions. To support further OMCRG research, we present ResponseNet, a new dataset comprising 696 high-quality dyadic interactions featuring synchronized split-screen videos, multichannel audio, transcripts, and facial behavior annotations. Comprehensive evaluations conducted on ResponseNet demonstrate that OmniResponse significantly outperforms baseline models in terms of semantic speech content, audio-visual synchronization, and generation quality.
What If : Understanding Motion Through Sparse Interactions
Understanding the dynamics of a physical scene involves reasoning about the diverse ways it can potentially change, especially as a result of local interactions. We present the Flow Poke Transformer (FPT), a novel framework for directly predicting the distribution of local motion, conditioned on sparse interactions termed "pokes". Unlike traditional methods that typically only enable dense sampling of a single realization of scene dynamics, FPT provides an interpretable directly accessible representation of multi-modal scene motion, its dependency on physical interactions and the inherent uncertainties of scene dynamics. We also evaluate our model on several downstream tasks to enable comparisons with prior methods and highlight the flexibility of our approach. On dense face motion generation, our generic pre-trained model surpasses specialized baselines. FPT can be fine-tuned in strongly out-of-distribution tasks such as synthetic datasets to enable significant improvements over in-domain methods in articulated object motion estimation. Additionally, predicting explicit motion distributions directly enables our method to achieve competitive performance on tasks like moving part segmentation from pokes which further demonstrates the versatility of our FPT. Code and models are publicly available at https://compvis.github.io/flow-poke-transformer.
Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
Multi-agent trajectory prediction at signalized intersections is crucial for developing efficient intelligent transportation systems and safe autonomous driving systems. Due to the complexity of intersection scenarios and the limitations of single-vehicle perception, the performance of vehicle-centric prediction methods has reached a plateau. In this paper, we introduce an Infrastructure-to-Everything (I2X) collaborative prediction scheme. In this scheme, roadside units (RSUs) independently forecast the future trajectories of all vehicles and transmit these predictions unidirectionally to subscribing vehicles. Building on this scheme, we propose I2XTraj, a dedicated infrastructure-based trajectory prediction model. I2XTraj leverages real-time traffic signal states, prior maneuver strategy knowledge, and multi-agent interactions to generate accurate, joint multi-modal trajectory prediction. First, a continuous signal-informed mechanism is proposed to adaptively process real-time traffic signals to guide trajectory proposal generation under varied intersection configurations. Second, a driving strategy awareness mechanism estimates the joint distribution of maneuver strategies by integrating spatial priors of intersection areas with dynamic vehicle states, enabling coverage of the full set of feasible maneuvers. Third, a spatial-temporal-mode attention network models multi-agent interactions to refine and adjust joint trajectory outputs.Finally, I2XTraj is evaluated on two real-world datasets of signalized intersections, the V2X-Seq and the SinD drone dataset. In both single-infrastructure and online collaborative scenarios, our model outperforms state-of-the-art methods by over 30\% on V2X-Seq and 15\% on SinD, demonstrating strong generalizability and robustness.
VideoCAD: A Large-Scale Video Dataset for Learning UI Interactions and 3D Reasoning from CAD Software
Computer-Aided Design (CAD) is a time-consuming and complex process, requiring precise, long-horizon user interactions with intricate 3D interfaces. While recent advances in AI-driven user interface (UI) agents show promise, most existing datasets and methods focus on short, low-complexity tasks in mobile or web applications, failing to capture the demands of professional engineering tools. In this work, we introduce VideoCAD, the first attempt at engineering UI interaction learning for precision tasks. Specifically, VideoCAD is a large-scale synthetic dataset consisting of over 41K annotated video recordings of CAD operations, generated using an automated framework for collecting high-fidelity UI action data from human-made CAD designs. Compared to existing datasets, VideoCAD offers an order of magnitude higher complexity in UI interaction learning for real-world engineering tasks, having up to a 20x longer time horizon than other datasets. We show two important downstream applications of VideoCAD: learning UI interactions from professional precision 3D CAD tools and a visual question-answering (VQA) benchmark designed to evaluate multimodal large language models' (LLM) spatial reasoning and video understanding abilities. To learn the UI interactions, we propose VideoCADFormer - a state-of-the-art model in learning CAD interactions directly from video, which outperforms multiple behavior cloning baselines. Both VideoCADFormer and the VQA benchmark derived from VideoCAD reveal key challenges in the current state of video-based UI understanding, including the need for precise action grounding, multi-modal and spatial reasoning, and long-horizon dependencies.
F-HOI: Toward Fine-grained Semantic-Aligned 3D Human-Object Interactions
Existing 3D human object interaction (HOI) datasets and models simply align global descriptions with the long HOI sequence, while lacking a detailed understanding of intermediate states and the transitions between states. In this paper, we argue that fine-grained semantic alignment, which utilizes state-level descriptions, offers a promising paradigm for learning semantically rich HOI representations. To achieve this, we introduce Semantic-HOI, a new dataset comprising over 20K paired HOI states with fine-grained descriptions for each HOI state and the body movements that happen between two consecutive states. Leveraging the proposed dataset, we design three state-level HOI tasks to accomplish fine-grained semantic alignment within the HOI sequence. Additionally, we propose a unified model called F-HOI, designed to leverage multimodal instructions and empower the Multi-modal Large Language Model to efficiently handle diverse HOI tasks. F-HOI offers multiple advantages: (1) It employs a unified task formulation that supports the use of versatile multimodal inputs. (2) It maintains consistency in HOI across 2D, 3D, and linguistic spaces. (3) It utilizes fine-grained textual supervision for direct optimization, avoiding intricate modeling of HOI states. Extensive experiments reveal that F-HOI effectively aligns HOI states with fine-grained semantic descriptions, adeptly tackling understanding, reasoning, generation, and reconstruction tasks.
OakInk: A Large-scale Knowledge Repository for Understanding Hand-Object Interaction
Learning how humans manipulate objects requires machines to acquire knowledge from two perspectives: one for understanding object affordances and the other for learning human's interactions based on the affordances. Even though these two knowledge bases are crucial, we find that current databases lack a comprehensive awareness of them. In this work, we propose a multi-modal and rich-annotated knowledge repository, OakInk, for visual and cognitive understanding of hand-object interactions. We start to collect 1,800 common household objects and annotate their affordances to construct the first knowledge base: Oak. Given the affordance, we record rich human interactions with 100 selected objects in Oak. Finally, we transfer the interactions on the 100 recorded objects to their virtual counterparts through a novel method: Tink. The recorded and transferred hand-object interactions constitute the second knowledge base: Ink. As a result, OakInk contains 50,000 distinct affordance-aware and intent-oriented hand-object interactions. We benchmark OakInk on pose estimation and grasp generation tasks. Moreover, we propose two practical applications of OakInk: intent-based interaction generation and handover generation. Our datasets and source code are publicly available at https://github.com/lixiny/OakInk.
PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements
In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research.
OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding
We introduce OpenShape, a method for learning multi-modal joint representations of text, image, and point clouds. We adopt the commonly used multi-modal contrastive learning framework for representation alignment, but with a specific focus on scaling up 3D representations to enable open-world 3D shape understanding. To achieve this, we scale up training data by ensembling multiple 3D datasets and propose several strategies to automatically filter and enrich noisy text descriptions. We also explore and compare strategies for scaling 3D backbone networks and introduce a novel hard negative mining module for more efficient training. We evaluate OpenShape on zero-shot 3D classification benchmarks and demonstrate its superior capabilities for open-world recognition. Specifically, OpenShape achieves a zero-shot accuracy of 46.8% on the 1,156-category Objaverse-LVIS benchmark, compared to less than 10% for existing methods. OpenShape also achieves an accuracy of 85.3% on ModelNet40, outperforming previous zero-shot baseline methods by 20% and performing on par with some fully-supervised methods. Furthermore, we show that our learned embeddings encode a wide range of visual and semantic concepts (e.g., subcategories, color, shape, style) and facilitate fine-grained text-3D and image-3D interactions. Due to their alignment with CLIP embeddings, our learned shape representations can also be integrated with off-the-shelf CLIP-based models for various applications, such as point cloud captioning and point cloud-conditioned image generation.
MMRel: A Relation Understanding Dataset and Benchmark in the MLLM Era
Despite the recent advancements in Multi-modal Large Language Models (MLLMs), understanding inter-object relations, i.e., interactions or associations between distinct objects, remains a major challenge for such models. This issue significantly hinders their advanced reasoning capabilities and is primarily due to the lack of large-scale, high-quality, and diverse multi-modal data essential for training and evaluating MLLMs. In this paper, we provide a taxonomy of inter-object relations and introduce Multi-Modal Relation Understanding (MMRel), a comprehensive dataset designed to bridge this gap by providing large-scale, high-quality and diverse data for studying inter-object relations with MLLMs. MMRel features three distinctive attributes: (i) It includes over 15K question-answer pairs, which are sourced from three distinct domains, ensuring large scale and high diversity; (ii) It contains a subset featuring highly unusual relations, on which MLLMs often fail due to hallucinations, thus are very challenging; (iii) It provides manually verified high-quality labels for inter-object relations. Thanks to these features, MMRel is ideal for evaluating MLLMs on relation understanding, as well as being used to fine-tune MLLMs to enhance relation understanding and even benefit overall performance in various vision-language tasks. Extensive experiments on various popular MLLMs validate the effectiveness of MMRel. Both MMRel dataset and the complete labeling scripts have been made publicly available.
A Survey of Large Language Models for Text-Guided Molecular Discovery: from Molecule Generation to Optimization
Large language models (LLMs) are introducing a paradigm shift in molecular discovery by enabling text-guided interaction with chemical spaces through natural language, symbolic notations, with emerging extensions to incorporate multi-modal inputs. To advance the new field of LLM for molecular discovery, this survey provides an up-to-date and forward-looking review of the emerging use of LLMs for two central tasks: molecule generation and molecule optimization. Based on our proposed taxonomy for both problems, we analyze representative techniques in each category, highlighting how LLM capabilities are leveraged across different learning settings. In addition, we include the commonly used datasets and evaluation protocols. We conclude by discussing key challenges and future directions, positioning this survey as a resource for researchers working at the intersection of LLMs and molecular science. A continuously updated reading list is available at https://github.com/REAL-Lab-NU/Awesome-LLM-Centric-Molecular-Discovery.
WOMD-Reasoning: A Large-Scale Dataset for Interaction Reasoning in Driving
Language models uncover unprecedented abilities in analyzing driving scenarios, owing to their limitless knowledge accumulated from text-based pre-training. Naturally, they should particularly excel in analyzing rule-based interactions, such as those triggered by traffic laws, which are well documented in texts. However, such interaction analysis remains underexplored due to the lack of dedicated language datasets that address it. Therefore, we propose Waymo Open Motion Dataset-Reasoning (WOMD-Reasoning), a comprehensive large-scale Q&As dataset built on WOMD focusing on describing and reasoning traffic rule-induced interactions in driving scenarios. WOMD-Reasoning also presents by far the largest multi-modal Q&A dataset, with 3 million Q&As on real-world driving scenarios, covering a wide range of driving topics from map descriptions and motion status descriptions to narratives and analyses of agents' interactions, behaviors, and intentions. To showcase the applications of WOMD-Reasoning, we design Motion-LLaVA, a motion-language model fine-tuned on WOMD-Reasoning. Quantitative and qualitative evaluations are performed on WOMD-Reasoning dataset as well as the outputs of Motion-LLaVA, supporting the data quality and wide applications of WOMD-Reasoning, in interaction predictions, traffic rule compliance plannings, etc. The dataset and its vision modal extension are available on https://waymo.com/open/download/. The codes & prompts to build it are available on https://github.com/yhli123/WOMD-Reasoning.
Enhancing Next Active Object-based Egocentric Action Anticipation with Guided Attention
Short-term action anticipation (STA) in first-person videos is a challenging task that involves understanding the next active object interactions and predicting future actions. Existing action anticipation methods have primarily focused on utilizing features extracted from video clips, but often overlooked the importance of objects and their interactions. To this end, we propose a novel approach that applies a guided attention mechanism between the objects, and the spatiotemporal features extracted from video clips, enhancing the motion and contextual information, and further decoding the object-centric and motion-centric information to address the problem of STA in egocentric videos. Our method, GANO (Guided Attention for Next active Objects) is a multi-modal, end-to-end, single transformer-based network. The experimental results performed on the largest egocentric dataset demonstrate that GANO outperforms the existing state-of-the-art methods for the prediction of the next active object label, its bounding box location, the corresponding future action, and the time to contact the object. The ablation study shows the positive contribution of the guided attention mechanism compared to other fusion methods. Moreover, it is possible to improve the next active object location and class label prediction results of GANO by just appending the learnable object tokens with the region of interest embeddings.
VLANet: Video-Language Alignment Network for Weakly-Supervised Video Moment Retrieval
Video Moment Retrieval (VMR) is a task to localize the temporal moment in untrimmed video specified by natural language query. For VMR, several methods that require full supervision for training have been proposed. Unfortunately, acquiring a large number of training videos with labeled temporal boundaries for each query is a labor-intensive process. This paper explores methods for performing VMR in a weakly-supervised manner (wVMR): training is performed without temporal moment labels but only with the text query that describes a segment of the video. Existing methods on wVMR generate multi-scale proposals and apply query-guided attention mechanisms to highlight the most relevant proposal. To leverage the weak supervision, contrastive learning is used which predicts higher scores for the correct video-query pairs than for the incorrect pairs. It has been observed that a large number of candidate proposals, coarse query representation, and one-way attention mechanism lead to blurry attention maps which limit the localization performance. To handle this issue, Video-Language Alignment Network (VLANet) is proposed that learns sharper attention by pruning out spurious candidate proposals and applying a multi-directional attention mechanism with fine-grained query representation. The Surrogate Proposal Selection module selects a proposal based on the proximity to the query in the joint embedding space, and thus substantially reduces candidate proposals which leads to lower computation load and sharper attention. Next, the Cascaded Cross-modal Attention module considers dense feature interactions and multi-directional attention flow to learn the multi-modal alignment. VLANet is trained end-to-end using contrastive loss which enforces semantically similar videos and queries to gather. The experiments show that the method achieves state-of-the-art performance on Charades-STA and DiDeMo datasets.
TV-Dialogue: Crafting Theme-Aware Video Dialogues with Immersive Interaction
Recent advancements in LLMs have accelerated the development of dialogue generation across text and images, yet video-based dialogue generation remains underexplored and presents unique challenges. In this paper, we introduce Theme-aware Video Dialogue Crafting (TVDC), a novel task aimed at generating new dialogues that align with video content and adhere to user-specified themes. We propose TV-Dialogue, a novel multi-modal agent framework that ensures both theme alignment (i.e., the dialogue revolves around the theme) and visual consistency (i.e., the dialogue matches the emotions and behaviors of characters in the video) by enabling real-time immersive interactions among video characters, thereby accurately understanding the video content and generating new dialogue that aligns with the given themes. To assess the generated dialogues, we present a multi-granularity evaluation benchmark with high accuracy, interpretability and reliability, demonstrating the effectiveness of TV-Dialogue on self-collected dataset over directly using existing LLMs. Extensive experiments reveal that TV-Dialogue can generate dialogues for videos of any length and any theme in a zero-shot manner without training. Our findings underscore the potential of TV-Dialogue for various applications, such as video re-creation, film dubbing and its use in downstream multimodal tasks.
Words or Vision: Do Vision-Language Models Have Blind Faith in Text?
Vision-Language Models (VLMs) excel in integrating visual and textual information for vision-centric tasks, but their handling of inconsistencies between modalities is underexplored. We investigate VLMs' modality preferences when faced with visual data and varied textual inputs in vision-centered settings. By introducing textual variations to four vision-centric tasks and evaluating ten Vision-Language Models (VLMs), we discover a ``blind faith in text'' phenomenon: VLMs disproportionately trust textual data over visual data when inconsistencies arise, leading to significant performance drops under corrupted text and raising safety concerns. We analyze factors influencing this text bias, including instruction prompts, language model size, text relevance, token order, and the interplay between visual and textual certainty. While certain factors, such as scaling up the language model size, slightly mitigate text bias, others like token order can exacerbate it due to positional biases inherited from language models. To address this issue, we explore supervised fine-tuning with text augmentation and demonstrate its effectiveness in reducing text bias. Additionally, we provide a theoretical analysis suggesting that the blind faith in text phenomenon may stem from an imbalance of pure text and multi-modal data during training. Our findings highlight the need for balanced training and careful consideration of modality interactions in VLMs to enhance their robustness and reliability in handling multi-modal data inconsistencies.
TartanDrive: A Large-Scale Dataset for Learning Off-Road Dynamics Models
We present TartanDrive, a large scale dataset for learning dynamics models for off-road driving. We collected a dataset of roughly 200,000 off-road driving interactions on a modified Yamaha Viking ATV with seven unique sensing modalities in diverse terrains. To the authors' knowledge, this is the largest real-world multi-modal off-road driving dataset, both in terms of number of interactions and sensing modalities. We also benchmark several state-of-the-art methods for model-based reinforcement learning from high-dimensional observations on this dataset. We find that extending these models to multi-modality leads to significant performance on off-road dynamics prediction, especially in more challenging terrains. We also identify some shortcomings with current neural network architectures for the off-road driving task. Our dataset is available at https://github.com/castacks/tartan_drive.
IC-Custom: Diverse Image Customization via In-Context Learning
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom
Explaining multimodal LLMs via intra-modal token interactions
Multimodal Large Language Models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet their internal decision-making mechanisms remain insufficiently understood. Existing interpretability research has primarily focused on cross-modal attribution, identifying which image regions the model attends to during output generation. However, these approaches often overlook intra-modal dependencies. In the visual modality, attributing importance to isolated image patches ignores spatial context due to limited receptive fields, resulting in fragmented and noisy explanations. In the textual modality, reliance on preceding tokens introduces spurious activations. Failing to effectively mitigate these interference compromises attribution fidelity. To address these limitations, we propose enhancing interpretability by leveraging intra-modal interaction. For the visual branch, we introduce Multi-Scale Explanation Aggregation (MSEA), which aggregates attributions over multi-scale inputs to dynamically adjust receptive fields, producing more holistic and spatially coherent visual explanations. For the textual branch, we propose Activation Ranking Correlation (ARC), which measures the relevance of contextual tokens to the current token via alignment of their top-k prediction rankings. ARC leverages this relevance to suppress spurious activations from irrelevant contexts while preserving semantically coherent ones. Extensive experiments across state-of-the-art MLLMs and benchmark datasets demonstrate that our approach consistently outperforms existing interpretability methods, yielding more faithful and fine-grained explanations of model behavior.
Discovering Sounding Objects by Audio Queries for Audio Visual Segmentation
Audio visual segmentation (AVS) aims to segment the sounding objects for each frame of a given video. To distinguish the sounding objects from silent ones, both audio-visual semantic correspondence and temporal interaction are required. The previous method applies multi-frame cross-modal attention to conduct pixel-level interactions between audio features and visual features of multiple frames simultaneously, which is both redundant and implicit. In this paper, we propose an Audio-Queried Transformer architecture, AQFormer, where we define a set of object queries conditioned on audio information and associate each of them to particular sounding objects. Explicit object-level semantic correspondence between audio and visual modalities is established by gathering object information from visual features with predefined audio queries. Besides, an Audio-Bridged Temporal Interaction module is proposed to exchange sounding object-relevant information among multiple frames with the bridge of audio features. Extensive experiments are conducted on two AVS benchmarks to show that our method achieves state-of-the-art performances, especially 7.1% M_J and 7.6% M_F gains on the MS3 setting.
InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue
We introduce InteractiveOmni, a unified and open-source omni-modal large language model for audio-visual multi-turn interaction, ranging from 4B to 8B parameters, designed to lead the field of lightweight models by offering comprehensive omni-modal understanding and speech generation capabilities. To achieve this, we integrate the vision encoder, audio encoder, large language model, and speech decoder into a unified model for understanding and generation tasks. We design a multi-stage training strategy to ensure robust cross-modal capabilities, including pre-training for omni-modal understanding, followed by post-training with speech conversation and audio-visual interaction. To enable human-like long-term conversational ability, we meticulously curate a multi-turn training dataset that enhances the model's ability to handle complex and multi-turn interactions. To effectively evaluate the multi-turn memory and speech interaction capabilities, we construct the multi-modal multi-turn memory benchmark and the multi-turn speech interaction benchmark. Experiments demonstrate that InteractiveOmni significantly outperforms leading open-source models and provides a more intelligent multi-turn audio-visual experience, particularly in its long-term memory capabilities. Notably, InteractiveOmni-4B is comparable to the much larger model like Qwen2.5-Omni-7B on general benchmarks, and it can retain 97% of the performance of the InteractiveOmni-8B while utilizing only 50% of the model size. Achieving state-of-the-art results against similarly sized models across image, audio, video understanding, and speech generation tasks, InteractiveOmni is an accessible, open-source foundation for next-generation intelligent interactive systems.
HM-ViT: Hetero-modal Vehicle-to-Vehicle Cooperative perception with vision transformer
Vehicle-to-Vehicle technologies have enabled autonomous vehicles to share information to see through occlusions, greatly enhancing perception performance. Nevertheless, existing works all focused on homogeneous traffic where vehicles are equipped with the same type of sensors, which significantly hampers the scale of collaboration and benefit of cross-modality interactions. In this paper, we investigate the multi-agent hetero-modal cooperative perception problem where agents may have distinct sensor modalities. We present HM-ViT, the first unified multi-agent hetero-modal cooperative perception framework that can collaboratively predict 3D objects for highly dynamic vehicle-to-vehicle (V2V) collaborations with varying numbers and types of agents. To effectively fuse features from multi-view images and LiDAR point clouds, we design a novel heterogeneous 3D graph transformer to jointly reason inter-agent and intra-agent interactions. The extensive experiments on the V2V perception dataset OPV2V demonstrate that the HM-ViT outperforms SOTA cooperative perception methods for V2V hetero-modal cooperative perception. We will release codes to facilitate future research.
Spectrum-guided Multi-granularity Referring Video Object Segmentation
Current referring video object segmentation (R-VOS) techniques extract conditional kernels from encoded (low-resolution) vision-language features to segment the decoded high-resolution features. We discovered that this causes significant feature drift, which the segmentation kernels struggle to perceive during the forward computation. This negatively affects the ability of segmentation kernels. To address the drift problem, we propose a Spectrum-guided Multi-granularity (SgMg) approach, which performs direct segmentation on the encoded features and employs visual details to further optimize the masks. In addition, we propose Spectrum-guided Cross-modal Fusion (SCF) to perform intra-frame global interactions in the spectral domain for effective multimodal representation. Finally, we extend SgMg to perform multi-object R-VOS, a new paradigm that enables simultaneous segmentation of multiple referred objects in a video. This not only makes R-VOS faster, but also more practical. Extensive experiments show that SgMg achieves state-of-the-art performance on four video benchmark datasets, outperforming the nearest competitor by 2.8% points on Ref-YouTube-VOS. Our extended SgMg enables multi-object R-VOS, runs about 3 times faster while maintaining satisfactory performance. Code is available at https://github.com/bo-miao/SgMg.
OmniMMI: A Comprehensive Multi-modal Interaction Benchmark in Streaming Video Contexts
The rapid advancement of multi-modal language models (MLLMs) like GPT-4o has propelled the development of Omni language models, designed to process and proactively respond to continuous streams of multi-modal data. Despite their potential, evaluating their real-world interactive capabilities in streaming video contexts remains a formidable challenge. In this work, we introduce OmniMMI, a comprehensive multi-modal interaction benchmark tailored for OmniLLMs in streaming video contexts. OmniMMI encompasses over 1,121 videos and 2,290 questions, addressing two critical yet underexplored challenges in existing video benchmarks: streaming video understanding and proactive reasoning, across six distinct subtasks. Moreover, we propose a novel framework, Multi-modal Multiplexing Modeling (M4), designed to enable an inference-efficient streaming model that can see, listen while generating.
UnityVideo: Unified Multi-Modal Multi-Task Learning for Enhancing World-Aware Video Generation
Recent video generation models demonstrate impressive synthesis capabilities but remain limited by single-modality conditioning, constraining their holistic world understanding. This stems from insufficient cross-modal interaction and limited modal diversity for comprehensive world knowledge representation. To address these limitations, we introduce UnityVideo, a unified framework for world-aware video generation that jointly learns across multiple modalities (segmentation masks, human skeletons, DensePose, optical flow, and depth maps) and training paradigms. Our approach features two core components: (1) dynamic noising to unify heterogeneous training paradigms, and (2) a modality switcher with an in-context learner that enables unified processing via modular parameters and contextual learning. We contribute a large-scale unified dataset with 1.3M samples. Through joint optimization, UnityVideo accelerates convergence and significantly enhances zero-shot generalization to unseen data. We demonstrate that UnityVideo achieves superior video quality, consistency, and improved alignment with physical world constraints. Code and data can be found at: https://github.com/dvlab-research/UnityVideo
MACO: A Modality Adversarial and Contrastive Framework for Modality-missing Multi-modal Knowledge Graph Completion
Recent years have seen significant advancements in multi-modal knowledge graph completion (MMKGC). MMKGC enhances knowledge graph completion (KGC) by integrating multi-modal entity information, thereby facilitating the discovery of unobserved triples in the large-scale knowledge graphs (KGs). Nevertheless, existing methods emphasize the design of elegant KGC models to facilitate modality interaction, neglecting the real-life problem of missing modalities in KGs. The missing modality information impedes modal interaction, consequently undermining the model's performance. In this paper, we propose a modality adversarial and contrastive framework (MACO) to solve the modality-missing problem in MMKGC. MACO trains a generator and discriminator adversarially to generate missing modality features that can be incorporated into the MMKGC model. Meanwhile, we design a cross-modal contrastive loss to improve the performance of the generator. Experiments on public benchmarks with further explorations demonstrate that MACO could achieve state-of-the-art results and serve as a versatile framework to bolster various MMKGC models. Our code and benchmark data are available at https://github.com/zjukg/MACO.
DeepInteraction++: Multi-Modality Interaction for Autonomous Driving
Existing top-performance autonomous driving systems typically rely on the multi-modal fusion strategy for reliable scene understanding. This design is however fundamentally restricted due to overlooking the modality-specific strengths and finally hampering the model performance. To address this limitation, in this work, we introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout, enabling their unique characteristics to be exploited during the whole perception pipeline. To demonstrate the effectiveness of the proposed strategy, we design DeepInteraction++, a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder. Specifically, the encoder is implemented as a dual-stream Transformer with specialized attention operation for information exchange and integration between separate modality-specific representations. Our multi-modal representational learning incorporates both object-centric, precise sampling-based feature alignment and global dense information spreading, essential for the more challenging planning task. The decoder is designed to iteratively refine the predictions by alternately aggregating information from separate representations in a unified modality-agnostic manner, realizing multi-modal predictive interaction. Extensive experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks. Our code is available at https://github.com/fudan-zvg/DeepInteraction.
BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs
LLMs have demonstrated remarkable abilities at interacting with humans through language, especially with the usage of instruction-following data. Recent advancements in LLMs, such as MiniGPT-4, LLaVA, and X-LLM, further enlarge their abilities by incorporating multi-modal inputs, including image, video, and speech. Despite their effectiveness at generating precise and detailed language understanding of the given modality signal, these LLMs give up the ability to ground specific parts of inputs, thus only constructing a coarse-grained mapping. However, explicit and informative correspondence between text and other modalities will not only improve the user experience but also help to expand the application scenario of multi-modal LLMs. Therefore, we propose BuboGPT, a multi-modal LLM with visual grounding that can perform cross-modal interaction between vision, audio and language, providing fine-grained understanding of visual objects and other given modalities. As a result, BuboGPT is able to point out the specific location of an object in the image, when it is generating response or description for that object. Our contributions are two-fold: 1) An off-the-shelf visual grounding module based on SAM that extracts entities in a sentence and find corresponding masks in the image. 2) A two-stage training scheme and instruction dataset to endow joint text-image-audio understanding. Our experiments show that BuboGPT achieves impressive multi-modality understanding and visual grounding abilities during the interaction with human. It performs consistently well when provided by arbitrary modality combinations (either aligned or unaligned). Our code, model and dataset are available at https://bubo-gpt.github.io .
UniTR: A Unified and Efficient Multi-Modal Transformer for Bird's-Eye-View Representation
Jointly processing information from multiple sensors is crucial to achieving accurate and robust perception for reliable autonomous driving systems. However, current 3D perception research follows a modality-specific paradigm, leading to additional computation overheads and inefficient collaboration between different sensor data. In this paper, we present an efficient multi-modal backbone for outdoor 3D perception named UniTR, which processes a variety of modalities with unified modeling and shared parameters. Unlike previous works, UniTR introduces a modality-agnostic transformer encoder to handle these view-discrepant sensor data for parallel modal-wise representation learning and automatic cross-modal interaction without additional fusion steps. More importantly, to make full use of these complementary sensor types, we present a novel multi-modal integration strategy by both considering semantic-abundant 2D perspective and geometry-aware 3D sparse neighborhood relations. UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks. It sets a new state-of-the-art performance on the nuScenes benchmark, achieving +1.1 NDS higher for 3D object detection and +12.0 higher mIoU for BEV map segmentation with lower inference latency. Code will be available at https://github.com/Haiyang-W/UniTR .
SimVG: A Simple Framework for Visual Grounding with Decoupled Multi-modal Fusion
Visual grounding is a common vision task that involves grounding descriptive sentences to the corresponding regions of an image. Most existing methods use independent image-text encoding and apply complex hand-crafted modules or encoder-decoder architectures for modal interaction and query reasoning. However, their performance significantly drops when dealing with complex textual expressions. This is because the former paradigm only utilizes limited downstream data to fit the multi-modal feature fusion. Therefore, it is only effective when the textual expressions are relatively simple. In contrast, given the wide diversity of textual expressions and the uniqueness of downstream training data, the existing fusion module, which extracts multimodal content from a visual-linguistic context, has not been fully investigated. In this paper, we present a simple yet robust transformer-based framework, SimVG, for visual grounding. Specifically, we decouple visual-linguistic feature fusion from downstream tasks by leveraging existing multimodal pre-trained models and incorporating additional object tokens to facilitate deep integration of downstream and pre-training tasks. Furthermore, we design a dynamic weight-balance distillation method in the multi-branch synchronous learning process to enhance the representation capability of the simpler branch. This branch only consists of a lightweight MLP, which simplifies the structure and improves reasoning speed. Experiments on six widely used VG datasets, i.e., RefCOCO/+/g, ReferIt, Flickr30K, and GRefCOCO, demonstrate the superiority of SimVG. Finally, the proposed method not only achieves improvements in efficiency and convergence speed but also attains new state-of-the-art performance on these benchmarks. Codes and models will be available at https://github.com/Dmmm1997/SimVG.
WenLan: Bridging Vision and Language by Large-Scale Multi-Modal Pre-Training
Multi-modal pre-training models have been intensively explored to bridge vision and language in recent years. However, most of them explicitly model the cross-modal interaction between image-text pairs, by assuming that there exists strong semantic correlation between the text and image modalities. Since this strong assumption is often invalid in real-world scenarios, we choose to implicitly model the cross-modal correlation for large-scale multi-modal pre-training, which is the focus of the Chinese project `WenLan' led by our team. Specifically, with the weak correlation assumption over image-text pairs, we propose a two-tower pre-training model called BriVL within the cross-modal contrastive learning framework. Unlike OpenAI CLIP that adopts a simple contrastive learning method, we devise a more advanced algorithm by adapting the latest method MoCo into the cross-modal scenario. By building a large queue-based dictionary, our BriVL can incorporate more negative samples in limited GPU resources. We further construct a large Chinese multi-source image-text dataset called RUC-CAS-WenLan for pre-training our BriVL model. Extensive experiments demonstrate that the pre-trained BriVL model outperforms both UNITER and OpenAI CLIP on various downstream tasks.
Beyond One-to-One: Rethinking the Referring Image Segmentation
Referring image segmentation aims to segment the target object referred by a natural language expression. However, previous methods rely on the strong assumption that one sentence must describe one target in the image, which is often not the case in real-world applications. As a result, such methods fail when the expressions refer to either no objects or multiple objects. In this paper, we address this issue from two perspectives. First, we propose a Dual Multi-Modal Interaction (DMMI) Network, which contains two decoder branches and enables information flow in two directions. In the text-to-image decoder, text embedding is utilized to query the visual feature and localize the corresponding target. Meanwhile, the image-to-text decoder is implemented to reconstruct the erased entity-phrase conditioned on the visual feature. In this way, visual features are encouraged to contain the critical semantic information about target entity, which supports the accurate segmentation in the text-to-image decoder in turn. Secondly, we collect a new challenging but realistic dataset called Ref-ZOM, which includes image-text pairs under different settings. Extensive experiments demonstrate our method achieves state-of-the-art performance on different datasets, and the Ref-ZOM-trained model performs well on various types of text inputs. Codes and datasets are available at https://github.com/toggle1995/RIS-DMMI.
SOC: Semantic-Assisted Object Cluster for Referring Video Object Segmentation
This paper studies referring video object segmentation (RVOS) by boosting video-level visual-linguistic alignment. Recent approaches model the RVOS task as a sequence prediction problem and perform multi-modal interaction as well as segmentation for each frame separately. However, the lack of a global view of video content leads to difficulties in effectively utilizing inter-frame relationships and understanding textual descriptions of object temporal variations. To address this issue, we propose Semantic-assisted Object Cluster (SOC), which aggregates video content and textual guidance for unified temporal modeling and cross-modal alignment. By associating a group of frame-level object embeddings with language tokens, SOC facilitates joint space learning across modalities and time steps. Moreover, we present multi-modal contrastive supervision to help construct well-aligned joint space at the video level. We conduct extensive experiments on popular RVOS benchmarks, and our method outperforms state-of-the-art competitors on all benchmarks by a remarkable margin. Besides, the emphasis on temporal coherence enhances the segmentation stability and adaptability of our method in processing text expressions with temporal variations. Code will be available.
FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension
Referring Expression Comprehension (REC) is a crucial cross-modal task that objectively evaluates the capabilities of language understanding, image comprehension, and language-to-image grounding. Consequently, it serves as an ideal testing ground for Multi-modal Large Language Models (MLLMs). In pursuit of this goal, we have established a new REC dataset characterized by two key features: Firstly, it is designed with controllable varying levels of difficulty, necessitating multi-level fine-grained reasoning across object categories, attributes, and multi-hop relationships. Secondly, it includes negative text and images created through fine-grained editing and generation based on existing data, thereby testing the model's ability to correctly reject scenarios where the target object is not visible in the image--an essential aspect often overlooked in existing datasets and approaches. Utilizing this high-quality dataset, we conducted comprehensive evaluations of both state-of-the-art specialist models and MLLMs. Our findings indicate that there remains a significant gap in achieving satisfactory grounding performance. We anticipate that our dataset will inspire new approaches to enhance visual reasoning and develop more advanced cross-modal interaction strategies, ultimately unlocking the full potential of MLLMs. Our code and the datasets are available at https://github.com/liujunzhuo/FineCops-Ref.
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP
We present CLIP2Video network to transfer the image-language pre-training model to video-text retrieval in an end-to-end manner. Leading approaches in the domain of video-and-language learning try to distill the spatio-temporal video features and multi-modal interaction between videos and languages from a large-scale video-text dataset. Different from them, we leverage pretrained image-language model, simplify it as a two-stage framework with co-learning of image-text and enhancing temporal relations between video frames and video-text respectively, make it able to train on comparatively small datasets. Specifically, based on the spatial semantics captured by Contrastive Language-Image Pretraining (CLIP) model, our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.
DocFormer: End-to-End Transformer for Document Understanding
We present DocFormer -- a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU). VDU is a challenging problem which aims to understand documents in their varied formats (forms, receipts etc.) and layouts. In addition, DocFormer is pre-trained in an unsupervised fashion using carefully designed tasks which encourage multi-modal interaction. DocFormer uses text, vision and spatial features and combines them using a novel multi-modal self-attention layer. DocFormer also shares learned spatial embeddings across modalities which makes it easy for the model to correlate text to visual tokens and vice versa. DocFormer is evaluated on 4 different datasets each with strong baselines. DocFormer achieves state-of-the-art results on all of them, sometimes beating models 4x its size (in no. of parameters).
Holistic Interaction Transformer Network for Action Detection
Actions are about how we interact with the environment, including other people, objects, and ourselves. In this paper, we propose a novel multi-modal Holistic Interaction Transformer Network (HIT) that leverages the largely ignored, but critical hand and pose information essential to most human actions. The proposed "HIT" network is a comprehensive bi-modal framework that comprises an RGB stream and a pose stream. Each of them separately models person, object, and hand interactions. Within each sub-network, an Intra-Modality Aggregation module (IMA) is introduced that selectively merges individual interaction units. The resulting features from each modality are then glued using an Attentive Fusion Mechanism (AFM). Finally, we extract cues from the temporal context to better classify the occurring actions using cached memory. Our method significantly outperforms previous approaches on the J-HMDB, UCF101-24, and MultiSports datasets. We also achieve competitive results on AVA. The code will be available at https://github.com/joslefaure/HIT.
DeepInteraction: 3D Object Detection via Modality Interaction
Existing top-performance 3D object detectors typically rely on the multi-modal fusion strategy. This design is however fundamentally restricted due to overlooking the modality-specific useful information and finally hampering the model performance. To address this limitation, in this work we introduce a novel modality interaction strategy where individual per-modality representations are learned and maintained throughout for enabling their unique characteristics to be exploited during object detection. To realize this proposed strategy, we design a DeepInteraction architecture characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder. Experiments on the large-scale nuScenes dataset show that our proposed method surpasses all prior arts often by a large margin. Crucially, our method is ranked at the first position at the highly competitive nuScenes object detection leaderboard.
MMCLIP: Cross-modal Attention Masked Modelling for Medical Language-Image Pre-Training
Vision-and-language pretraining (VLP) in the medical field utilizes contrastive learning on image-text pairs to achieve effective transfer across tasks. Yet, current VLP approaches with the masked modeling strategy face two challenges when applied to the medical domain. First, current models struggle to accurately reconstruct key pathological features due to the scarcity of medical data. Second, most methods only adopt either paired image-text or image-only data, failing to exploit the combination of both paired and unpaired data. To this end, this paper proposes the MMCLIP (Masked Medical Contrastive Language-Image Pre-Training) framework to enhance pathological learning and feature learning via unpaired data. First, we introduce the attention-masked image modeling (AttMIM) and entity-driven masked language modeling module (EntMLM), which learns to reconstruct pathological visual and textual tokens via multi-modal feature interaction, thus improving medical-enhanced features. The AttMIM module masks a portion of the image features that are highly responsive to textual features. This allows MMCLIP to improve the reconstruction of highly similar image data in medicine efficiency. Second, our MMCLIP capitalizes unpaired data to enhance multimodal learning by introducing disease-kind prompts. The experimental results show that MMCLIP achieves SOTA for zero-shot and fine-tuning classification performance on five datasets. Our code will be available at https://github.com/AIGeeksGroup/MMCLIP.
PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers
Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.
SAM4D: Segment Anything in Camera and LiDAR Streams
We present SAM4D, a multi-modal and temporal foundation model designed for promptable segmentation across camera and LiDAR streams. Unified Multi-modal Positional Encoding (UMPE) is introduced to align camera and LiDAR features in a shared 3D space, enabling seamless cross-modal prompting and interaction. Additionally, we propose Motion-aware Cross-modal Memory Attention (MCMA), which leverages ego-motion compensation to enhance temporal consistency and long-horizon feature retrieval, ensuring robust segmentation across dynamically changing autonomous driving scenes. To avoid annotation bottlenecks, we develop a multi-modal automated data engine that synergizes VFM-driven video masklets, spatiotemporal 4D reconstruction, and cross-modal masklet fusion. This framework generates camera-LiDAR aligned pseudo-labels at a speed orders of magnitude faster than human annotation while preserving VFM-derived semantic fidelity in point cloud representations. We conduct extensive experiments on the constructed Waymo-4DSeg, which demonstrate the powerful cross-modal segmentation ability and great potential in data annotation of proposed SAM4D.
FiLo: Zero-Shot Anomaly Detection by Fine-Grained Description and High-Quality Localization
Zero-shot anomaly detection (ZSAD) methods entail detecting anomalies directly without access to any known normal or abnormal samples within the target item categories. Existing approaches typically rely on the robust generalization capabilities of multimodal pretrained models, computing similarities between manually crafted textual features representing "normal" or "abnormal" semantics and image features to detect anomalies and localize anomalous patches. However, the generic descriptions of "abnormal" often fail to precisely match diverse types of anomalies across different object categories. Additionally, computing feature similarities for single patches struggles to pinpoint specific locations of anomalies with various sizes and scales. To address these issues, we propose a novel ZSAD method called FiLo, comprising two components: adaptively learned Fine-Grained Description (FG-Des) and position-enhanced High-Quality Localization (HQ-Loc). FG-Des introduces fine-grained anomaly descriptions for each category using Large Language Models (LLMs) and employs adaptively learned textual templates to enhance the accuracy and interpretability of anomaly detection. HQ-Loc, utilizing Grounding DINO for preliminary localization, position-enhanced text prompts, and Multi-scale Multi-shape Cross-modal Interaction (MMCI) module, facilitates more accurate localization of anomalies of different sizes and shapes. Experimental results on datasets like MVTec and VisA demonstrate that FiLo significantly improves the performance of ZSAD in both detection and localization, achieving state-of-the-art performance with an image-level AUC of 83.9% and a pixel-level AUC of 95.9% on the VisA dataset. Code is available at https://github.com/CASIA-IVA-Lab/FiLo.
InterBERT: Vision-and-Language Interaction for Multi-modal Pretraining
Multi-modal pretraining for learning high-level multi-modal representation is a further step towards deep learning and artificial intelligence. In this work, we propose a novel model, namely InterBERT (BERT for Interaction), which is the first model of our series of multimodal pretraining methods M6 (MultiModality-to-MultiModality Multitask Mega-transformer). The model owns strong capability of modeling interaction between the information flows of different modalities. The single-stream interaction module is capable of effectively processing information of multiple modalilties, and the two-stream module on top preserves the independence of each modality to avoid performance downgrade in single-modal tasks. We pretrain the model with three pretraining tasks, including masked segment modeling (MSM), masked region modeling (MRM) and image-text matching (ITM); and finetune the model on a series of vision-and-language downstream tasks. Experimental results demonstrate that InterBERT outperforms a series of strong baselines, including the most recent multi-modal pretraining methods, and the analysis shows that MSM and MRM are effective for pretraining and our method can achieve performances comparable to BERT in single-modal tasks. Besides, we propose a large-scale dataset for multi-modal pretraining in Chinese, and we develop the Chinese InterBERT which is the first Chinese multi-modal pretrained model. We pretrain the Chinese InterBERT on our proposed dataset of 3.1M image-text pairs from the mobile Taobao, the largest Chinese e-commerce platform. We finetune the model for text-based image retrieval, and recently we deployed the model online for topic-based recommendation.
CRISP-SAM2: SAM2 with Cross-Modal Interaction and Semantic Prompting for Multi-Organ Segmentation
Multi-organ medical segmentation is a crucial component of medical image processing, essential for doctors to make accurate diagnoses and develop effective treatment plans. Despite significant progress in this field, current multi-organ segmentation models often suffer from inaccurate details, dependence on geometric prompts and loss of spatial information. Addressing these challenges, we introduce a novel model named CRISP-SAM2 with CRoss-modal Interaction and Semantic Prompting based on SAM2. This model represents a promising approach to multi-organ medical segmentation guided by textual descriptions of organs. Our method begins by converting visual and textual inputs into cross-modal contextualized semantics using a progressive cross-attention interaction mechanism. These semantics are then injected into the image encoder to enhance the detailed understanding of visual information. To eliminate reliance on geometric prompts, we use a semantic prompting strategy, replacing the original prompt encoder to sharpen the perception of challenging targets. In addition, a similarity-sorting self-updating strategy for memory and a mask-refining process is applied to further adapt to medical imaging and enhance localized details. Comparative experiments conducted on seven public datasets indicate that CRISP-SAM2 outperforms existing models. Extensive analysis also demonstrates the effectiveness of our method, thereby confirming its superior performance, especially in addressing the limitations mentioned earlier. Our code is available at: https://github.com/YU-deep/CRISP\_SAM2.git.
PolyVivid: Vivid Multi-Subject Video Generation with Cross-Modal Interaction and Enhancement
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation
Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.
IDAT: A Multi-Modal Dataset and Toolkit for Building and Evaluating Interactive Task-Solving Agents
Seamless interaction between AI agents and humans using natural language remains a key goal in AI research. This paper addresses the challenges of developing interactive agents capable of understanding and executing grounded natural language instructions through the IGLU competition at NeurIPS. Despite advancements, challenges such as a scarcity of appropriate datasets and the need for effective evaluation platforms persist. We introduce a scalable data collection tool for gathering interactive grounded language instructions within a Minecraft-like environment, resulting in a Multi-Modal dataset with around 9,000 utterances and over 1,000 clarification questions. Additionally, we present a Human-in-the-Loop interactive evaluation platform for qualitative analysis and comparison of agent performance through multi-turn communication with human annotators. We offer to the community these assets referred to as IDAT (IGLU Dataset And Toolkit) which aim to advance the development of intelligent, interactive AI agents and provide essential resources for further research.
Multi-Modal Motion Retrieval by Learning a Fine-Grained Joint Embedding Space
Motion retrieval is crucial for motion acquisition, offering superior precision, realism, controllability, and editability compared to motion generation. Existing approaches leverage contrastive learning to construct a unified embedding space for motion retrieval from text or visual modality. However, these methods lack a more intuitive and user-friendly interaction mode and often overlook the sequential representation of most modalities for improved retrieval performance. To address these limitations, we propose a framework that aligns four modalities -- text, audio, video, and motion -- within a fine-grained joint embedding space, incorporating audio for the first time in motion retrieval to enhance user immersion and convenience. This fine-grained space is achieved through a sequence-level contrastive learning approach, which captures critical details across modalities for better alignment. To evaluate our framework, we augment existing text-motion datasets with synthetic but diverse audio recordings, creating two multi-modal motion retrieval datasets. Experimental results demonstrate superior performance over state-of-the-art methods across multiple sub-tasks, including an 10.16% improvement in R@10 for text-to-motion retrieval and a 25.43% improvement in R@1 for video-to-motion retrieval on the HumanML3D dataset. Furthermore, our results show that our 4-modal framework significantly outperforms its 3-modal counterpart, underscoring the potential of multi-modal motion retrieval for advancing motion acquisition.
M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation
Emotion Recognition in Conversations (ERC) is crucial in developing sympathetic human-machine interaction. In conversational videos, emotion can be present in multiple modalities, i.e., audio, video, and transcript. However, due to the inherent characteristics of these modalities, multi-modal ERC has always been considered a challenging undertaking. Existing ERC research focuses mainly on using text information in a discussion, ignoring the other two modalities. We anticipate that emotion recognition accuracy can be improved by employing a multi-modal approach. Thus, in this study, we propose a Multi-modal Fusion Network (M2FNet) that extracts emotion-relevant features from visual, audio, and text modality. It employs a multi-head attention-based fusion mechanism to combine emotion-rich latent representations of the input data. We introduce a new feature extractor to extract latent features from the audio and visual modality. The proposed feature extractor is trained with a novel adaptive margin-based triplet loss function to learn emotion-relevant features from the audio and visual data. In the domain of ERC, the existing methods perform well on one benchmark dataset but not on others. Our results show that the proposed M2FNet architecture outperforms all other methods in terms of weighted average F1 score on well-known MELD and IEMOCAP datasets and sets a new state-of-the-art performance in ERC.
LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding
Pre-training of text and layout has proved effective in a variety of visually-rich document understanding tasks due to its effective model architecture and the advantage of large-scale unlabeled scanned/digital-born documents. We propose LayoutLMv2 architecture with new pre-training tasks to model the interaction among text, layout, and image in a single multi-modal framework. Specifically, with a two-stream multi-modal Transformer encoder, LayoutLMv2 uses not only the existing masked visual-language modeling task but also the new text-image alignment and text-image matching tasks, which make it better capture the cross-modality interaction in the pre-training stage. Meanwhile, it also integrates a spatial-aware self-attention mechanism into the Transformer architecture so that the model can fully understand the relative positional relationship among different text blocks. Experiment results show that LayoutLMv2 outperforms LayoutLM by a large margin and achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks, including FUNSD (0.7895 to 0.8420), CORD (0.9493 to 0.9601), SROIE (0.9524 to 0.9781), Kleister-NDA (0.8340 to 0.8520), RVL-CDIP (0.9443 to 0.9564), and DocVQA (0.7295 to 0.8672). We made our model and code publicly available at https://aka.ms/layoutlmv2.
Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection
Zero-shot Human-Object Interaction (HOI) detection has emerged as a frontier topic due to its capability to detect HOIs beyond a predefined set of categories. This task entails not only identifying the interactiveness of human-object pairs and localizing them but also recognizing both seen and unseen interaction categories. In this paper, we introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP. This approach enhances the generalization of large foundation models, such as CLIP, when fine-tuned for HOI detection. Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction and generalizable interaction classification, respectively. Specifically, we integrate prior knowledge of different granularity into conditional vision prompts, including an input-conditioned instance prior and a global spatial pattern prior. The former encourages the image encoder to treat instances belonging to seen or potentially unseen HOI concepts equally while the latter provides representative plausible spatial configuration of the human and object under interaction. Besides, we employ language-aware prompt learning with a consistency constraint to preserve the knowledge of the large foundation model to enable better generalization in the text branch. Extensive experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings. The code and models are available at https://github.com/ltttpku/CMMP.
Bootstrap Latent Representations for Multi-modal Recommendation
This paper studies the multi-modal recommendation problem, where the item multi-modality information (e.g., images and textual descriptions) is exploited to improve the recommendation accuracy. Besides the user-item interaction graph, existing state-of-the-art methods usually use auxiliary graphs (e.g., user-user or item-item relation graph) to augment the learned representations of users and/or items. These representations are often propagated and aggregated on auxiliary graphs using graph convolutional networks, which can be prohibitively expensive in computation and memory, especially for large graphs. Moreover, existing multi-modal recommendation methods usually leverage randomly sampled negative examples in Bayesian Personalized Ranking (BPR) loss to guide the learning of user/item representations, which increases the computational cost on large graphs and may also bring noisy supervision signals into the training process. To tackle the above issues, we propose a novel self-supervised multi-modal recommendation model, dubbed BM3, which requires neither augmentations from auxiliary graphs nor negative samples. Specifically, BM3 first bootstraps latent contrastive views from the representations of users and items with a simple dropout augmentation. It then jointly optimizes three multi-modal objectives to learn the representations of users and items by reconstructing the user-item interaction graph and aligning modality features under both inter- and intra-modality perspectives. BM3 alleviates both the need for contrasting with negative examples and the complex graph augmentation from an additional target network for contrastive view generation. We show BM3 outperforms prior recommendation models on three datasets with number of nodes ranging from 20K to 200K, while achieving a 2-9X reduction in training time. Our code is available at https://github.com/enoche/BM3.
Revisiting Multi-modal Emotion Learning with Broad State Space Models and Probability-guidance Fusion
Multi-modal Emotion Recognition in Conversation (MERC) has received considerable attention in various fields, e.g., human-computer interaction and recommendation systems. Most existing works perform feature disentanglement and fusion to extract emotional contextual information from multi-modal features and emotion classification. After revisiting the characteristic of MERC, we argue that long-range contextual semantic information should be extracted in the feature disentanglement stage and the inter-modal semantic information consistency should be maximized in the feature fusion stage. Inspired by recent State Space Models (SSMs), Mamba can efficiently model long-distance dependencies. Therefore, in this work, we fully consider the above insights to further improve the performance of MERC. Specifically, on the one hand, in the feature disentanglement stage, we propose a Broad Mamba, which does not rely on a self-attention mechanism for sequence modeling, but uses state space models to compress emotional representation, and utilizes broad learning systems to explore the potential data distribution in broad space. Different from previous SSMs, we design a bidirectional SSM convolution to extract global context information. On the other hand, we design a multi-modal fusion strategy based on probability guidance to maximize the consistency of information between modalities. Experimental results show that the proposed method can overcome the computational and memory limitations of Transformer when modeling long-distance contexts, and has great potential to become a next-generation general architecture in MERC.
PixFoundation 2.0: Do Video Multi-Modal LLMs Use Motion in Visual Grounding?
Multi-modal large language models (MLLMs) have shown impressive generalization across tasks using images and text modalities. While their extension to video has enabled tasks such as video question answering and video captioning, their pixel-level visual grounding abilities are less studied. In this work, we raise the pertinent question of whether motion is used in pixel-level visual grounding and whether video MLLMs can segment objects based on natural language expressions describing their motion patterns. We identify the shortcomings in the current benchmarks, where we show that a single frame can often suffice for capturing the motion referring expression without any temporal reasoning. To address this, we introduce four motion-centric probing techniques, particularly designed for the visual grounding task, to study video MLLMs' ability to identify true motion from a fake one and their ability to grasp the motion order. Consequently, we provide a motion-centric benchmark, MoCentric-Bench. It ensures that video MLLMs are evaluated towards leveraging the interaction between motion and language rather than being dominated by static appearance cues emphasized in existing visual grounding datasets. We further establish strong single-image baselines that are on par with or outperform prior methods. Finally, we explore simple motion-centric adaptation techniques that provide state-of-the-art performance on our MoCentric-Bench. Our motion-centric benchmark, evaluation and findings challenge future models to improve dense spatiotemporal grounding and pixel-level understanding within videos. Code and datasets will be made publicly available at https://github.com/MSiam/PixFoundation-2.0.git.
RSVP: Reasoning Segmentation via Visual Prompting and Multi-modal Chain-of-Thought
Multi-modal Large Language Models (MLLMs) have demonstrated remarkable reasoning capability while lack explicit mechanisms for visual grounding and segmentation, creating a gap between cognitive reasoning and visual perception. To bridge this gap, we introduce Reasoning Segmentation via Visual Prompting (RSVP), a novel framework that unifies multi-step multimodal reasoning with grounded visual understanding. RSVP is a two-stage structuralized framework that integrates reasoning-driven localization with segmentation refinement. In the reasoning stage, RSVP employs multimodal chain-of-thought visual prompts to help MLLMs understand queries and infer targets, generating interpretable region proposals that enhance visual grounding. In segmentation stage, RSVP refines these proposals with a Vision-Language Segmentation Module (VLSM), seamlessly integrates textual and visual cues to produce precise segmentation masks. By explicitly modelling the interaction between multimodal reasoning and segmentation, RSVP introduces a new paradigm for interpretable reasoning segmentation. It exploits MLLMs' inherent localization capabilities, enabling the models to not only reason about objects but also generate structured visual representations. Our extensive experiments demonstrate that RSVP achieves state-of-the-art performance, surpasses state-of-the-art methods by up to +6.5 gIoU and +9.2 cIoU on ReasonSeg, and achieves 49.7 mAP on SegInW under zero-shot settings. These results validate RSVP as an effective and scalable framework for integrating cognitive reasoning with structured visual understanding.
Bidirectional Hierarchical Protein Multi-Modal Representation Learning
Protein representation learning is critical for numerous biological tasks. Recently, large transformer-based protein language models (pLMs) pretrained on large scale protein sequences have demonstrated significant success in sequence-based tasks. However, pLMs lack structural context. Conversely, graph neural networks (GNNs) designed to leverage 3D structural information have shown promising generalization in protein-related prediction tasks, but their effectiveness is often constrained by the scarcity of labeled structural data. Recognizing that sequence and structural representations are complementary perspectives of the same protein entity, we propose a multimodal bidirectional hierarchical fusion framework to effectively merge these modalities. Our framework employs attention and gating mechanisms to enable effective interaction between pLMs-generated sequential representations and GNN-extracted structural features, improving information exchange and enhancement across layers of the neural network. This bidirectional and hierarchical (Bi-Hierarchical) fusion approach leverages the strengths of both modalities to capture richer and more comprehensive protein representations. Based on the framework, we further introduce local Bi-Hierarchical Fusion with gating and global Bi-Hierarchical Fusion with multihead self-attention approaches. Our method demonstrates consistent improvements over strong baselines and existing fusion techniques in a variety of protein representation learning benchmarks, including enzyme EC classification, model quality assessment, protein-ligand binding affinity prediction, protein-protein binding site prediction, and B cell epitopes prediction. Our method establishes a new state-of-the-art for multimodal protein representation learning, emphasizing the efficacy of Bi-Hierarchical Fusion in bridging sequence and structural modalities.
META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI
Task-oriented dialogue (TOD) systems have been widely used by mobile phone intelligent assistants to accomplish tasks such as calendar scheduling or hotel reservation. Current TOD systems usually focus on multi-turn text/speech interaction, then they would call back-end APIs designed for TODs to perform the task. However, this API-based architecture greatly limits the information-searching capability of intelligent assistants and may even lead to task failure if TOD-specific APIs are not available or the task is too complicated to be executed by the provided APIs. In this paper, we propose a new TOD architecture: GUI-based task-oriented dialogue system (GUI-TOD). A GUI-TOD system can directly perform GUI operations on real APPs and execute tasks without invoking TOD-specific backend APIs. Furthermore, we release META-GUI, a dataset for training a Multi-modal convErsaTional Agent on mobile GUI. We also propose a multi-model action prediction and response model, which show promising results on META-GUI. The dataset, codes and leaderboard are publicly available.
LLaVA-$φ$: Efficient Multi-Modal Assistant with Small Language Model
In this paper, we introduce LLaVA-phi (LLaVA-Phi), an efficient multi-modal assistant that harnesses the power of the recently advanced small language model, Phi-2, to facilitate multi-modal dialogues. LLaVA-Phi marks a notable advancement in the realm of compact multi-modal models. It demonstrates that even smaller language models, with as few as 2.7B parameters, can effectively engage in intricate dialogues that integrate both textual and visual elements, provided they are trained with high-quality corpora. Our model delivers commendable performance on publicly available benchmarks that encompass visual comprehension, reasoning, and knowledge-based perception. Beyond its remarkable performance in multi-modal dialogue tasks, our model opens new avenues for applications in time-sensitive environments and systems that require real-time interaction, such as embodied agents. It highlights the potential of smaller language models to achieve sophisticated levels of understanding and interaction, while maintaining greater resource efficiency.The project is available at {https://github.com/zhuyiche/llava-phi}.
MoDA: Multi-modal Diffusion Architecture for Talking Head Generation
Talking head generation with arbitrary identities and speech audio remains a crucial problem in the realm of the virtual metaverse. Recently, diffusion models have become a popular generative technique in this field with their strong generation capabilities. However, several challenges remain for diffusion-based methods: 1) inefficient inference and visual artifacts caused by the implicit latent space of Variational Auto-Encoders (VAE), which complicates the diffusion process; 2) a lack of authentic facial expressions and head movements due to inadequate multi-modal information fusion. In this paper, MoDA handles these challenges by: 1) defining a joint parameter space that bridges motion generation and neural rendering, and leveraging flow matching to simplify diffusion learning; 2) introducing a multi-modal diffusion architecture to model the interaction among noisy motion, audio, and auxiliary conditions, enhancing overall facial expressiveness. In addition, a coarse-to-fine fusion strategy is employed to progressively integrate different modalities, ensuring effective feature fusion. Experimental results demonstrate that MoDA improves video diversity, realism, and efficiency, making it suitable for real-world applications. Project Page: https://lixinyyang.github.io/MoDA.github.io/
Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design
We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding and interaction within human-AI and multi-agent AI frameworks. A key innovation of Cephalo is its advanced dataset generation method, which employs a sophisticated algorithm to accurately detect and separate images and their corresponding textual descriptions from PDF documents, such as scientific papers. The method includes a careful refinement of image-text pairs through integrated vision and language processing, ensuring high-quality, contextually relevant, and well reasoned training data. Cephalo is trained on integrated image and text data extracted from thousands of scientific papers and science-focused Wikipedia pages demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports complex natural language understanding in an integrated model, which can be coupled with other generative methods to create an image-to-text-to-image or image-to-text-to-3D pipeline. To explore the development of larger models from smaller ones, we merge sets of layers that originate from different pre-trained source models. This hybrid approach allows us to leverage the domain-specific expertise and general conversational capabilities to harness the strengths of multiple models. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse.
EmbodiedScan: A Holistic Multi-Modal 3D Perception Suite Towards Embodied AI
In the realm of computer vision and robotics, embodied agents are expected to explore their environment and carry out human instructions. This necessitates the ability to fully understand 3D scenes given their first-person observations and contextualize them into language for interaction. However, traditional research focuses more on scene-level input and output setups from a global view. To address the gap, we introduce EmbodiedScan, a multi-modal, ego-centric 3D perception dataset and benchmark for holistic 3D scene understanding. It encompasses over 5k scans encapsulating 1M ego-centric RGB-D views, 1M language prompts, 160k 3D-oriented boxes spanning over 760 categories, some of which partially align with LVIS, and dense semantic occupancy with 80 common categories. Building upon this database, we introduce a baseline framework named Embodied Perceptron. It is capable of processing an arbitrary number of multi-modal inputs and demonstrates remarkable 3D perception capabilities, both within the two series of benchmarks we set up, i.e., fundamental 3D perception tasks and language-grounded tasks, and in the wild. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
Stark: Social Long-Term Multi-Modal Conversation with Persona Commonsense Knowledge
Humans share a wide variety of images related to their personal experiences within conversations via instant messaging tools. However, existing works focus on (1) image-sharing behavior in singular sessions, leading to limited long-term social interaction, and (2) a lack of personalized image-sharing behavior. In this work, we introduce Stark, a large-scale long-term multi-modal conversation dataset that covers a wide range of social personas in a multi-modality format, time intervals, and images. To construct Stark automatically, we propose a novel multi-modal contextualization framework, Mcu, that generates long-term multi-modal dialogue distilled from ChatGPT and our proposed Plan-and-Execute image aligner. Using our Stark, we train a multi-modal conversation model, Ultron 7B, which demonstrates impressive visual imagination ability. Furthermore, we demonstrate the effectiveness of our dataset in human evaluation. We make our source code and dataset publicly available.
Detecting and Grounding Multi-Modal Media Manipulation
Misinformation has become a pressing issue. Fake media, in both visual and textual forms, is widespread on the web. While various deepfake detection and text fake news detection methods have been proposed, they are only designed for single-modality forgery based on binary classification, let alone analyzing and reasoning subtle forgery traces across different modalities. In this paper, we highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM^4). DGM^4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content (i.e., image bounding boxes and text tokens), which requires deeper reasoning of multi-modal media manipulation. To support a large-scale investigation, we construct the first DGM^4 dataset, where image-text pairs are manipulated by various approaches, with rich annotation of diverse manipulations. Moreover, we propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities. HAMMER performs 1) manipulation-aware contrastive learning between two uni-modal encoders as shallow manipulation reasoning, and 2) modality-aware cross-attention by multi-modal aggregator as deep manipulation reasoning. Dedicated manipulation detection and grounding heads are integrated from shallow to deep levels based on the interacted multi-modal information. Finally, we build an extensive benchmark and set up rigorous evaluation metrics for this new research problem. Comprehensive experiments demonstrate the superiority of our model; several valuable observations are also revealed to facilitate future research in multi-modal media manipulation.
RealTalk-CN: A Realistic Chinese Speech-Text Dialogue Benchmark With Cross-Modal Interaction Analysis
In recent years, large language models (LLMs) have achieved remarkable advancements in multimodal processing, including end-to-end speech-based language models that enable natural interactions and perform specific tasks in task-oriented dialogue (TOD) systems. However, existing TOD datasets are predominantly text-based, lacking real speech signals that are essential for evaluating the robustness of speech-based LLMs. Moreover, existing speech TOD datasets are primarily English and lack critical aspects such as speech disfluencies and speaker variations. To address these gaps, we introduce RealTalk-CN, the first Chinese multi-turn, multi-domain speech-text dual-modal TOD dataset, comprising 5.4k dialogues (60K utterances, 150 hours) with paired speech-text annotations. RealTalk-CN captures diverse dialogue scenarios with annotated spontaneous speech disfluencies, ensuring comprehensive coverage of real-world complexities in speech dialogue. In addition, we propose a novel cross-modal chat task that authentically simulates real-world user interactions, allowing dynamic switching between speech and text modalities. Our evaluation covers robustness to speech disfluencies, sensitivity to speaker characteristics, and cross-domain performance. Extensive experiments validate the effectiveness of RealTalk-CN, establishing a strong foundation for Chinese speech-based LLMs research.
Refining Contrastive Learning and Homography Relations for Multi-Modal Recommendation
Multi-modal recommender system focuses on utilizing rich modal information ( i.e., images and textual descriptions) of items to improve recommendation performance. The current methods have achieved remarkable success with the powerful structure modeling capability of graph neural networks. However, these methods are often hindered by sparse data in real-world scenarios. Although contrastive learning and homography ( i.e., homogeneous graphs) are employed to address the data sparsity challenge, existing methods still suffer two main limitations: 1) Simple multi-modal feature contrasts fail to produce effective representations, causing noisy modal-shared features and loss of valuable information in modal-unique features; 2) The lack of exploration of the homograph relations between user interests and item co-occurrence results in incomplete mining of user-item interplay. To address the above limitations, we propose a novel framework for REfining multi-modAl contRastive learning and hoMography relations (REARM). Specifically, we complement multi-modal contrastive learning by employing meta-network and orthogonal constraint strategies, which filter out noise in modal-shared features and retain recommendation-relevant information in modal-unique features. To mine homogeneous relationships effectively, we integrate a newly constructed user interest graph and an item co-occurrence graph with the existing user co-occurrence and item semantic graphs for graph learning. The extensive experiments on three real-world datasets demonstrate the superiority of REARM to various state-of-the-art baselines. Our visualization further shows an improvement made by REARM in distinguishing between modal-shared and modal-unique features. Code is available https://github.com/MrShouxingMa/REARM{here}.
AVE Speech Dataset: A Comprehensive Benchmark for Multi-Modal Speech Recognition Integrating Audio, Visual, and Electromyographic Signals
The global aging population faces considerable challenges, particularly in communication, due to the prevalence of hearing and speech impairments. To address these, we introduce the AVE speech dataset, a comprehensive multi-modal benchmark for speech recognition tasks. The dataset includes a 100-sentence Mandarin Chinese corpus with audio signals, lip-region video recordings, and six-channel electromyography (EMG) data, collected from 100 participants. Each subject read the entire corpus ten times, with each sentence averaging approximately two seconds in duration, resulting in over 55 hours of multi-modal speech data per modality. Experiments demonstrate that combining these modalities significantly improves recognition performance, particularly in cross-subject and high-noise environments. To our knowledge, this is the first publicly available sentence-level dataset integrating these three modalities for large-scale Mandarin speech recognition. We expect this dataset to drive advancements in both acoustic and non-acoustic speech recognition research, enhancing cross-modal learning and human-machine interaction.
ProtSolM: Protein Solubility Prediction with Multi-modal Features
Understanding protein solubility is essential for their functional applications. Computational methods for predicting protein solubility are crucial for reducing experimental costs and enhancing the efficiency and success rates of protein engineering. Existing methods either construct a supervised learning scheme on small-scale datasets with manually processed physicochemical properties, or blindly apply pre-trained protein language models to extract amino acid interaction information. The scale and quality of available training datasets leave significant room for improvement in terms of accuracy and generalization. To address these research gaps, we propose \sol, a novel deep learning method that combines pre-training and fine-tuning schemes for protein solubility prediction. ProtSolM integrates information from multiple dimensions, including physicochemical properties, amino acid sequences, and protein backbone structures. Our model is trained using \data, the largest solubility dataset that we have constructed. PDBSol includes over 60,000 protein sequences and structures. We provide a comprehensive leaderboard of existing statistical learning and deep learning methods on independent datasets with computational and experimental labels. ProtSolM achieved state-of-the-art performance across various evaluation metrics, demonstrating its potential to significantly advance the accuracy of protein solubility prediction.
SynchroRaMa : Lip-Synchronized and Emotion-Aware Talking Face Generation via Multi-Modal Emotion Embedding
Audio-driven talking face generation has received growing interest, particularly for applications requiring expressive and natural human-avatar interaction. However, most existing emotion-aware methods rely on a single modality (either audio or image) for emotion embedding, limiting their ability to capture nuanced affective cues. Additionally, most methods condition on a single reference image, restricting the model's ability to represent dynamic changes in actions or attributes across time. To address these issues, we introduce SynchroRaMa, a novel framework that integrates a multi-modal emotion embedding by combining emotional signals from text (via sentiment analysis) and audio (via speech-based emotion recognition and audio-derived valence-arousal features), enabling the generation of talking face videos with richer and more authentic emotional expressiveness and fidelity. To ensure natural head motion and accurate lip synchronization, SynchroRaMa includes an audio-to-motion (A2M) module that generates motion frames aligned with the input audio. Finally, SynchroRaMa incorporates scene descriptions generated by Large Language Model (LLM) as additional textual input, enabling it to capture dynamic actions and high-level semantic attributes. Conditioning the model on both visual and textual cues enhances temporal consistency and visual realism. Quantitative and qualitative experiments on benchmark datasets demonstrate that SynchroRaMa outperforms the state-of-the-art, achieving improvements in image quality, expression preservation, and motion realism. A user study further confirms that SynchroRaMa achieves higher subjective ratings than competing methods in overall naturalness, motion diversity, and video smoothness. Our project page is available at <https://novicemm.github.io/synchrorama>.
Bridging the Gap Between Semantic and User Preference Spaces for Multi-modal Music Representation Learning
Recent works of music representation learning mainly focus on learning acoustic music representations with unlabeled audios or further attempt to acquire multi-modal music representations with scarce annotated audio-text pairs. They either ignore the language semantics or rely on labeled audio datasets that are difficult and expensive to create. Moreover, merely modeling semantic space usually fails to achieve satisfactory performance on music recommendation tasks since the user preference space is ignored. In this paper, we propose a novel Hierarchical Two-stage Contrastive Learning (HTCL) method that models similarity from the semantic perspective to the user perspective hierarchically to learn a comprehensive music representation bridging the gap between semantic and user preference spaces. We devise a scalable audio encoder and leverage a pre-trained BERT model as the text encoder to learn audio-text semantics via large-scale contrastive pre-training. Further, we explore a simple yet effective way to exploit interaction data from our online music platform to adapt the semantic space to user preference space via contrastive fine-tuning, which differs from previous works that follow the idea of collaborative filtering. As a result, we obtain a powerful audio encoder that not only distills language semantics from the text encoder but also models similarity in user preference space with the integrity of semantic space preserved. Experimental results on both music semantic and recommendation tasks confirm the effectiveness of our method.
