Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLearning Manipulation by Predicting Interaction
Representation learning approaches for robotic manipulation have boomed in recent years. Due to the scarcity of in-domain robot data, prevailing methodologies tend to leverage large-scale human video datasets to extract generalizable features for visuomotor policy learning. Despite the progress achieved, prior endeavors disregard the interactive dynamics that capture behavior patterns and physical interaction during the manipulation process, resulting in an inadequate understanding of the relationship between objects and the environment. To this end, we propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction (MPI) and enhances the visual representation.Given a pair of keyframes representing the initial and final states, along with language instructions, our algorithm predicts the transition frame and detects the interaction object, respectively. These two learning objectives achieve superior comprehension towards "how-to-interact" and "where-to-interact". We conduct a comprehensive evaluation of several challenging robotic tasks.The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms as well as simulation environments. Code and checkpoints are publicly shared at https://github.com/OpenDriveLab/MPI.
Safe Learning-Based Control of Elastic Joint Robots via Control Barrier Functions
Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both adherence to safety constraints defined on the system state, as well as guaranteeing compliant behavior of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. The incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order to enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree-of-freedom planar robot with elastic joints.
Human Learning by Model Feedback: The Dynamics of Iterative Prompting with Midjourney
Generating images with a Text-to-Image model often requires multiple trials, where human users iteratively update their prompt based on feedback, namely the output image. Taking inspiration from cognitive work on reference games and dialogue alignment, this paper analyzes the dynamics of the user prompts along such iterations. We compile a dataset of iterative interactions of human users with Midjourney. Our analysis then reveals that prompts predictably converge toward specific traits along these iterations. We further study whether this convergence is due to human users, realizing they missed important details, or due to adaptation to the model's ``preferences'', producing better images for a specific language style. We show initial evidence that both possibilities are at play. The possibility that users adapt to the model's preference raises concerns about reusing user data for further training. The prompts may be biased towards the preferences of a specific model, rather than align with human intentions and natural manner of expression.
Reinforcement Learning by Guided Safe Exploration
Safety is critical to broadening the application of reinforcement learning (RL). Often, we train RL agents in a controlled environment, such as a laboratory, before deploying them in the real world. However, the real-world target task might be unknown prior to deployment. Reward-free RL trains an agent without the reward to adapt quickly once the reward is revealed. We consider the constrained reward-free setting, where an agent (the guide) learns to explore safely without the reward signal. This agent is trained in a controlled environment, which allows unsafe interactions and still provides the safety signal. After the target task is revealed, safety violations are not allowed anymore. Thus, the guide is leveraged to compose a safe behaviour policy. Drawing from transfer learning, we also regularize a target policy (the student) towards the guide while the student is unreliable and gradually eliminate the influence of the guide as training progresses. The empirical analysis shows that this method can achieve safe transfer learning and helps the student solve the target task faster.
Learning State-Aware Visual Representations from Audible Interactions
We propose a self-supervised algorithm to learn representations from egocentric video data. Recently, significant efforts have been made to capture humans interacting with their own environments as they go about their daily activities. In result, several large egocentric datasets of interaction-rich multi-modal data have emerged. However, learning representations from videos can be challenging. First, given the uncurated nature of long-form continuous videos, learning effective representations require focusing on moments in time when interactions take place. Second, visual representations of daily activities should be sensitive to changes in the state of the environment. However, current successful multi-modal learning frameworks encourage representation invariance over time. To address these challenges, we leverage audio signals to identify moments of likely interactions which are conducive to better learning. We also propose a novel self-supervised objective that learns from audible state changes caused by interactions. We validate these contributions extensively on two large-scale egocentric datasets, EPIC-Kitchens-100 and the recently released Ego4D, and show improvements on several downstream tasks, including action recognition, long-term action anticipation, and object state change classification.
Attacking Cooperative Multi-Agent Reinforcement Learning by Adversarial Minority Influence
This study probes the vulnerabilities of cooperative multi-agent reinforcement learning (c-MARL) under adversarial attacks, a critical determinant of c-MARL's worst-case performance prior to real-world implementation. Current observation-based attacks, constrained by white-box assumptions, overlook c-MARL's complex multi-agent interactions and cooperative objectives, resulting in impractical and limited attack capabilities. To address these shortcomes, we propose Adversarial Minority Influence (AMI), a practical and strong for c-MARL. AMI is a practical black-box attack and can be launched without knowing victim parameters. AMI is also strong by considering the complex multi-agent interaction and the cooperative goal of agents, enabling a single adversarial agent to unilaterally misleads majority victims to form targeted worst-case cooperation. This mirrors minority influence phenomena in social psychology. To achieve maximum deviation in victim policies under complex agent-wise interactions, our unilateral attack aims to characterize and maximize the impact of the adversary on the victims. This is achieved by adapting a unilateral agent-wise relation metric derived from mutual information, thereby mitigating the adverse effects of victim influence on the adversary. To lead the victims into a jointly detrimental scenario, our targeted attack deceives victims into a long-term, cooperatively harmful situation by guiding each victim towards a specific target, determined through a trial-and-error process executed by a reinforcement learning agent. Through AMI, we achieve the first successful attack against real-world robot swarms and effectively fool agents in simulated environments into collectively worst-case scenarios, including Starcraft II and Multi-agent Mujoco. The source code and demonstrations can be found at: https://github.com/DIG-Beihang/AMI.
Self-supervised visual learning from interactions with objects
Self-supervised learning (SSL) has revolutionized visual representation learning, but has not achieved the robustness of human vision. A reason for this could be that SSL does not leverage all the data available to humans during learning. When learning about an object, humans often purposefully turn or move around objects and research suggests that these interactions can substantially enhance their learning. Here we explore whether such object-related actions can boost SSL. For this, we extract the actions performed to change from one ego-centric view of an object to another in four video datasets. We then introduce a new loss function to learn visual and action embeddings by aligning the performed action with the representations of two images extracted from the same clip. This permits the performed actions to structure the latent visual representation. Our experiments show that our method consistently outperforms previous methods on downstream category recognition. In our analysis, we find that the observed improvement is associated with a better viewpoint-wise alignment of different objects from the same category. Overall, our work demonstrates that embodied interactions with objects can improve SSL of object categories.
CADGL: Context-Aware Deep Graph Learning for Predicting Drug-Drug Interactions
Examining Drug-Drug Interactions (DDIs) is a pivotal element in the process of drug development. DDIs occur when one drug's properties are affected by the inclusion of other drugs. Detecting favorable DDIs has the potential to pave the way for creating and advancing innovative medications applicable in practical settings. However, existing DDI prediction models continue to face challenges related to generalization in extreme cases, robust feature extraction, and real-life application possibilities. We aim to address these challenges by leveraging the effectiveness of context-aware deep graph learning by introducing a novel framework named CADGL. Based on a customized variational graph autoencoder (VGAE), we capture critical structural and physio-chemical information using two context preprocessors for feature extraction from two different perspectives: local neighborhood and molecular context, in a heterogeneous graphical structure. Our customized VGAE consists of a graph encoder, a latent information encoder, and an MLP decoder. CADGL surpasses other state-of-the-art DDI prediction models, excelling in predicting clinically valuable novel DDIs, supported by rigorous case studies.
Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning
Compositional Zero-shot Learning (CZSL) aims to identify novel compositions via known attribute-object pairs. The primary challenge in CZSL tasks lies in the significant discrepancies introduced by the complex interaction between the visual primitives of attribute and object, consequently decreasing the classification performance towards novel compositions. Previous remarkable works primarily addressed this issue by focusing on disentangling strategy or utilizing object-based conditional probabilities to constrain the selection space of attributes. Unfortunately, few studies have explored the problem from the perspective of modeling the mechanism of visual primitive interactions. Inspired by the success of vanilla adversarial learning in Cross-Domain Few-Shot Learning, we take a step further and devise a model-agnostic and Primitive-Based Adversarial training (PBadv) method to deal with this problem. Besides, the latest studies highlight the weakness of the perception of hard compositions even under data-balanced conditions. To this end, we propose a novel over-sampling strategy with object-similarity guidance to augment target compositional training data. We performed detailed quantitative analysis and retrieval experiments on well-established datasets, such as UT-Zappos50K, MIT-States, and C-GQA, to validate the effectiveness of our proposed method, and the state-of-the-art (SOTA) performance demonstrates the superiority of our approach. The code is available at https://github.com/lisuyi/PBadv_czsl.
Distance Weighted Supervised Learning for Offline Interaction Data
Sequential decision making algorithms often struggle to leverage different sources of unstructured offline interaction data. Imitation learning (IL) methods based on supervised learning are robust, but require optimal demonstrations, which are hard to collect. Offline goal-conditioned reinforcement learning (RL) algorithms promise to learn from sub-optimal data, but face optimization challenges especially with high-dimensional data. To bridge the gap between IL and RL, we introduce Distance Weighted Supervised Learning or DWSL, a supervised method for learning goal-conditioned policies from offline data. DWSL models the entire distribution of time-steps between states in offline data with only supervised learning, and uses this distribution to approximate shortest path distances. To extract a policy, we weight actions by their reduction in distance estimates. Theoretically, DWSL converges to an optimal policy constrained to the data distribution, an attractive property for offline learning, without any bootstrapping. Across all datasets we test, DWSL empirically maintains behavior cloning as a lower bound while still exhibiting policy improvement. In high-dimensional image domains, DWSL surpasses the performance of both prior goal-conditioned IL and RL algorithms. Visualizations and code can be found at https://sites.google.com/view/dwsl/home .
Adaptive Pattern Extraction Multi-Task Learning for Multi-Step Conversion Estimations
Multi-task learning (MTL) has been successfully used in many real-world applications, which aims to simultaneously solve multiple tasks with a single model. The general idea of multi-task learning is designing kinds of global parameter sharing mechanism and task-specific feature extractor to improve the performance of all tasks. However, challenge still remains in balancing the trade-off of various tasks since model performance is sensitive to the relationships between them. Less correlated or even conflict tasks will deteriorate the performance by introducing unhelpful or negative information. Therefore, it is important to efficiently exploit and learn fine-grained feature representation corresponding to each task. In this paper, we propose an Adaptive Pattern Extraction Multi-task (APEM) framework, which is adaptive and flexible for large-scale industrial application. APEM is able to fully utilize the feature information by learning the interactions between the input feature fields and extracted corresponding tasks-specific information. We first introduce a DeepAuto Group Transformer module to automatically and efficiently enhance the feature expressivity with a modified set attention mechanism and a Squeeze-and-Excitation operation. Second, explicit Pattern Selector is introduced to further enable selectively feature representation learning by adaptive task-indicator vectors. Empirical evaluations show that APEM outperforms the state-of-the-art MTL methods on public and real-world financial services datasets. More importantly, we explore the online performance of APEM in a real industrial-level recommendation scenario.
Data-Efficient Reinforcement Learning with Self-Predictive Representations
While deep reinforcement learning excels at solving tasks where large amounts of data can be collected through virtually unlimited interaction with the environment, learning from limited interaction remains a key challenge. We posit that an agent can learn more efficiently if we augment reward maximization with self-supervised objectives based on structure in its visual input and sequential interaction with the environment. Our method, Self-Predictive Representations(SPR), trains an agent to predict its own latent state representations multiple steps into the future. We compute target representations for future states using an encoder which is an exponential moving average of the agent's parameters and we make predictions using a learned transition model. On its own, this future prediction objective outperforms prior methods for sample-efficient deep RL from pixels. We further improve performance by adding data augmentation to the future prediction loss, which forces the agent's representations to be consistent across multiple views of an observation. Our full self-supervised objective, which combines future prediction and data augmentation, achieves a median human-normalized score of 0.415 on Atari in a setting limited to 100k steps of environment interaction, which represents a 55% relative improvement over the previous state-of-the-art. Notably, even in this limited data regime, SPR exceeds expert human scores on 7 out of 26 games. The code associated with this work is available at https://github.com/mila-iqia/spr
Streaming Video Understanding and Multi-round Interaction with Memory-enhanced Knowledge
Recent advances in Large Language Models (LLMs) have enabled the development of Video-LLMs, advancing multimodal learning by bridging video data with language tasks. However, current video understanding models struggle with processing long video sequences, supporting multi-turn dialogues, and adapting to real-world dynamic scenarios. To address these issues, we propose StreamChat, a training-free framework for streaming video reasoning and conversational interaction. StreamChat leverages a novel hierarchical memory system to efficiently process and compress video features over extended sequences, enabling real-time, multi-turn dialogue. Our framework incorporates a parallel system scheduling strategy that enhances processing speed and reduces latency, ensuring robust performance in real-world applications. Furthermore, we introduce StreamBench, a versatile benchmark that evaluates streaming video understanding across diverse media types and interactive scenarios, including multi-turn interactions and complex reasoning tasks. Extensive evaluations on StreamBench and other public benchmarks demonstrate that StreamChat significantly outperforms existing state-of-the-art models in terms of accuracy and response times, confirming its effectiveness for streaming video understanding. Code is available at StreamChat: https://github.com/hmxiong/StreamChat.
Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models
Unlike most reinforcement learning agents which require an unrealistic amount of environment interactions to learn a new behaviour, humans excel at learning quickly by merely observing and imitating others. This ability highly depends on the fact that humans have a model of their own embodiment that allows them to infer the most likely actions that led to the observed behaviour. In this paper, we propose Action Inference by Maximising Evidence (AIME) to replicate this behaviour using world models. AIME consists of two distinct phases. In the first phase, the agent learns a world model from its past experience to understand its own body by maximising the ELBO. While in the second phase, the agent is given some observation-only demonstrations of an expert performing a novel task and tries to imitate the expert's behaviour. AIME achieves this by defining a policy as an inference model and maximising the evidence of the demonstration under the policy and world model. Our method is "zero-shot" in the sense that it does not require further training for the world model or online interactions with the environment after given the demonstration. We empirically validate the zero-shot imitation performance of our method on the Walker and Cheetah embodiment of the DeepMind Control Suite and find it outperforms the state-of-the-art baselines. Code is available at: https://github.com/argmax-ai/aime.
HyperZ$\cdot$Z$\cdot$W Operator Connects Slow-Fast Networks for Full Context Interaction
The self-attention mechanism utilizes large implicit weight matrices, programmed through dot product-based activations with very few trainable parameters, to enable long sequence modeling. In this paper, we investigate the possibility of discarding residual learning by employing large implicit kernels to achieve full context interaction at each layer of the network. To accomplish it, we introduce coordinate-based implicit MLPs as a slow network to generate hyper-kernels for another fast convolutional network. To get context-varying weights for fast dynamic encoding, we propose a HyperZ{cdotZ{cdot}W} operator that connects hyper-kernels (W) and hidden activations (Z) through simple elementwise multiplication, followed by convolution of Z using the context-dependent W. Based on this design, we present a novel Terminator architecture that integrates hyper-kernels of different sizes to produce multi-branch hidden representations for enhancing the feature extraction capability of each layer. Additionally, a bottleneck layer is employed to compress the concatenated channels, allowing only valuable information to propagate to the subsequent layers. Notably, our model incorporates several innovative components and exhibits excellent properties, such as introducing local feedback error for updating the slow network, stable zero-mean features, faster training convergence, and fewer model parameters. Extensive experimental results on pixel-level 1D and 2D image classification benchmarks demonstrate the superior performance of our architecture.
Conditional Graph Information Bottleneck for Molecular Relational Learning
Molecular relational learning, whose goal is to learn the interaction behavior between molecular pairs, got a surge of interest in molecular sciences due to its wide range of applications. Recently, graph neural networks have recently shown great success in molecular relational learning by modeling a molecule as a graph structure, and considering atom-level interactions between two molecules. Despite their success, existing molecular relational learning methods tend to overlook the nature of chemistry, i.e., a chemical compound is composed of multiple substructures such as functional groups that cause distinctive chemical reactions. In this work, we propose a novel relational learning framework, called CGIB, that predicts the interaction behavior between a pair of graphs by detecting core subgraphs therein. The main idea is, given a pair of graphs, to find a subgraph from a graph that contains the minimal sufficient information regarding the task at hand conditioned on the paired graph based on the principle of conditional graph information bottleneck. We argue that our proposed method mimics the nature of chemical reactions, i.e., the core substructure of a molecule varies depending on which other molecule it interacts with. Extensive experiments on various tasks with real-world datasets demonstrate the superiority of CGIB over state-of-the-art baselines. Our code is available at https://github.com/Namkyeong/CGIB.
Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning
Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as "zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While recent works have attempted to produce zero-shot RL agents, they make assumptions about the nature of the tasks or the structure of the MDP. We present Proto Successor Measure: the basis set for all possible solutions of Reinforcement Learning in a dynamical system. We provably show that any possible policy can be represented using an affine combination of these policy independent basis functions. Given a reward function at test time, we simply need to find the right set of linear weights to combine these basis corresponding to the optimal policy. We derive a practical algorithm to learn these basis functions using only interaction data from the environment and show that our approach can produce the optimal policy at test time for any given reward function without additional environmental interactions. Project page: https://agarwalsiddhant10.github.io/projects/psm.html.
"No, to the Right" -- Online Language Corrections for Robotic Manipulation via Shared Autonomy
Systems for language-guided human-robot interaction must satisfy two key desiderata for broad adoption: adaptivity and learning efficiency. Unfortunately, existing instruction-following agents cannot adapt, lacking the ability to incorporate online natural language supervision, and even if they could, require hundreds of demonstrations to learn even simple policies. In this work, we address these problems by presenting Language-Informed Latent Actions with Corrections (LILAC), a framework for incorporating and adapting to natural language corrections - "to the right," or "no, towards the book" - online, during execution. We explore rich manipulation domains within a shared autonomy paradigm. Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot: language is an input to a learned model that produces a meaningful, low-dimensional control space that the human can use to guide the robot. Each real-time correction refines the human's control space, enabling precise, extended behaviors - with the added benefit of requiring only a handful of demonstrations to learn. We evaluate our approach via a user study where users work with a Franka Emika Panda manipulator to complete complex manipulation tasks. Compared to existing learned baselines covering both open-loop instruction following and single-turn shared autonomy, we show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users because of its reliability, precision, and ease of use.
Adaptive Rollout Length for Model-Based RL Using Model-Free Deep RL
Model-based reinforcement learning promises to learn an optimal policy from fewer interactions with the environment compared to model-free reinforcement learning by learning an intermediate model of the environment in order to predict future interactions. When predicting a sequence of interactions, the rollout length, which limits the prediction horizon, is a critical hyperparameter as accuracy of the predictions diminishes in the regions that are further away from real experience. As a result, with a longer rollout length, an overall worse policy is learned in the long run. Thus, the hyperparameter provides a trade-off between quality and efficiency. In this work, we frame the problem of tuning the rollout length as a meta-level sequential decision-making problem that optimizes the final policy learned by model-based reinforcement learning given a fixed budget of environment interactions by adapting the hyperparameter dynamically based on feedback from the learning process, such as accuracy of the model and the remaining budget of interactions. We use model-free deep reinforcement learning to solve the meta-level decision problem and demonstrate that our approach outperforms common heuristic baselines on two well-known reinforcement learning environments.
Graph Neural Network based Agent in Google Research Football
Deep neural networks (DNN) can approximate value functions or policies for reinforcement learning, which makes the reinforcement learning algorithms more powerful. However, some DNNs, such as convolutional neural networks (CNN), cannot extract enough information or take too long to obtain enough features from the inputs under specific circumstances of reinforcement learning. For example, the input data of Google Research Football, a reinforcement learning environment which trains agents to play football, is the small map of players' locations. The information is contained not only in the coordinates of players, but also in the relationships between different players. CNNs can neither extract enough information nor take too long to train. To address this issue, this paper proposes a deep q-learning network (DQN) with a graph neural network (GNN) as its model. The GNN transforms the input data into a graph which better represents the football players' locations so that it extracts more information of the interactions between different players. With two GNNs to approximate its local and target value functions, this DQN allows players to learn from their experience by using value functions to see the prospective value of each intended action. The proposed model demonstrated the power of GNN in the football game by outperforming other DRL models with significantly fewer steps.
The Spectral Bias of Polynomial Neural Networks
Polynomial neural networks (PNNs) have been recently shown to be particularly effective at image generation and face recognition, where high-frequency information is critical. Previous studies have revealed that neural networks demonstrate a spectral bias towards low-frequency functions, which yields faster learning of low-frequency components during training. Inspired by such studies, we conduct a spectral analysis of the Neural Tangent Kernel (NTK) of PNNs. We find that the Pi-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the learning of the higher frequencies. We verify the theoretical bias through extensive experiments. We expect our analysis to provide novel insights into designing architectures and learning frameworks by incorporating multiplicative interactions via polynomials.
Masked Autoencoders with Multi-Window Local-Global Attention Are Better Audio Learners
In this work, we propose a Multi-Window Masked Autoencoder (MW-MAE) fitted with a novel Multi-Window Multi-Head Attention (MW-MHA) module that facilitates the modelling of local-global interactions in every decoder transformer block through attention heads of several distinct local and global windows. Empirical results on ten downstream audio tasks show that MW-MAEs consistently outperform standard MAEs in overall performance and learn better general-purpose audio representations, along with demonstrating considerably better scaling characteristics. Investigating attention distances and entropies reveals that MW-MAE encoders learn heads with broader local and global attention. Analyzing attention head feature representations through Projection Weighted Canonical Correlation Analysis (PWCCA) shows that attention heads with the same window sizes across the decoder layers of the MW-MAE learn correlated feature representations which enables each block to independently capture local and global information, leading to a decoupled decoder feature hierarchy. Code for feature extraction and downstream experiments along with pre-trained models will be released publically.
Improving Open Language Models by Learning from Organic Interactions
We present BlenderBot 3x, an update on the conversational model BlenderBot 3, which is now trained using organic conversation and feedback data from participating users of the system in order to improve both its skills and safety. We are publicly releasing the participating de-identified interaction data for use by the research community, in order to spur further progress. Training models with organic data is challenging because interactions with people "in the wild" include both high quality conversations and feedback, as well as adversarial and toxic behavior. We study techniques that enable learning from helpful teachers while avoiding learning from people who are trying to trick the model into unhelpful or toxic responses. BlenderBot 3x is both preferred in conversation to BlenderBot 3, and is shown to produce safer responses in challenging situations. While our current models are still far from perfect, we believe further improvement can be achieved by continued use of the techniques explored in this work.
Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach
Large language models (LLMs) encode a vast amount of world knowledge acquired from massive text datasets. Recent studies have demonstrated that LLMs can assist an embodied agent in solving complex sequential decision making tasks by providing high-level instructions. However, interactions with LLMs can be time-consuming. In many practical scenarios, they require a significant amount of storage space that can only be deployed on remote cloud server nodes. Additionally, using commercial LLMs can be costly since they may charge based on usage frequency. In this paper, we explore how to enable intelligent cost-effective interactions between the agent and an LLM. We propose When2Ask, a reinforcement learning based approach that learns when it is necessary to query LLMs for high-level instructions to accomplish a target task. Experiments on MiniGrid and Habitat environments that entail planning sub-goals demonstrate that When2Ask learns to solve target tasks with only a few necessary interactions with an LLM, and significantly reduces interaction costs in testing environments compared with baseline methods. Experiment results also suggest that by learning a mediator model to interact with the LLM, the agent's performance becomes more robust against partial observability of the environment. Our code is available at https://github.com/ZJLAB-AMMI/LLM4RL.
Aligning LLM Agents by Learning Latent Preference from User Edits
We study interactive learning of language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data and using it to define a prompt policy that drives future response generation. This avoids fine-tuning the agent, which is costly, challenging to scale with the number of users, and may even degrade its performance on other tasks. Furthermore, learning descriptive preference improves interpretability, allowing the user to view and modify the learned preference. However, user preference can be complex and vary based on context, making it challenging to learn. To address this, we propose a simple yet effective algorithm named CIPHER that leverages a large language model (LLM) to infer the user preference for a given context based on user edits. In the future, CIPHER retrieves inferred preferences from the k-closest contexts in the history, and forms an aggregate preference for response generation. We introduce two interactive environments -- summarization and email writing, for evaluation using a GPT-4 simulated user. We compare with algorithms that directly retrieve user edits but do not learn descriptive preference, and algorithms that learn context-agnostic preference. On both tasks, CIPHER achieves the lowest edit distance cost and learns preferences that show significant similarity to the ground truth preferences
TongUI: Building Generalized GUI Agents by Learning from Multimodal Web Tutorials
Building Graphical User Interface (GUI) agents is a promising research direction, which simulates human interaction with computers or mobile phones to perform diverse GUI tasks. However, a major challenge in developing generalized GUI agents is the lack of sufficient trajectory data across various operating systems and applications, mainly due to the high cost of manual annotations. In this paper, we propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials. Concretely, we crawl and process online GUI tutorials (such as videos and articles) into GUI agent trajectory data, through which we produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications. We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks, outperforming baseline agents about 10\% on multiple benchmarks, showing the effectiveness of the GUI-Net dataset and underscoring the significance of our TongUI framework. We will fully open-source the code, the GUI-Net dataset, and the trained models soon.
Multi-Modal Motion Retrieval by Learning a Fine-Grained Joint Embedding Space
Motion retrieval is crucial for motion acquisition, offering superior precision, realism, controllability, and editability compared to motion generation. Existing approaches leverage contrastive learning to construct a unified embedding space for motion retrieval from text or visual modality. However, these methods lack a more intuitive and user-friendly interaction mode and often overlook the sequential representation of most modalities for improved retrieval performance. To address these limitations, we propose a framework that aligns four modalities -- text, audio, video, and motion -- within a fine-grained joint embedding space, incorporating audio for the first time in motion retrieval to enhance user immersion and convenience. This fine-grained space is achieved through a sequence-level contrastive learning approach, which captures critical details across modalities for better alignment. To evaluate our framework, we augment existing text-motion datasets with synthetic but diverse audio recordings, creating two multi-modal motion retrieval datasets. Experimental results demonstrate superior performance over state-of-the-art methods across multiple sub-tasks, including an 10.16% improvement in R@10 for text-to-motion retrieval and a 25.43% improvement in R@1 for video-to-motion retrieval on the HumanML3D dataset. Furthermore, our results show that our 4-modal framework significantly outperforms its 3-modal counterpart, underscoring the potential of multi-modal motion retrieval for advancing motion acquisition.
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
Click-through rate prediction is one of the core tasks in commercial recommender systems. It aims to predict the probability of a user clicking a particular item given user and item features. As feature interactions bring in non-linearity, they are widely adopted to improve the performance of CTR prediction models. Therefore, effectively modelling feature interactions has attracted much attention in both the research and industry field. The current approaches can generally be categorized into three classes: (1) na\"ive methods, which do not model feature interactions and only use original features; (2) memorized methods, which memorize feature interactions by explicitly viewing them as new features and assigning trainable embeddings; (3) factorized methods, which learn latent vectors for original features and implicitly model feature interactions through factorization functions. Studies have shown that modelling feature interactions by one of these methods alone are suboptimal due to the unique characteristics of different feature interactions. To address this issue, we first propose a general framework called OptInter which finds the most suitable modelling method for each feature interaction. Different state-of-the-art deep CTR models can be viewed as instances of OptInter. To realize the functionality of OptInter, we also introduce a learning algorithm that automatically searches for the optimal modelling method. We conduct extensive experiments on four large datasets. Our experiments show that OptInter improves the best performed state-of-the-art baseline deep CTR models by up to 2.21%. Compared to the memorized method, which also outperforms baselines, we reduce up to 91% parameters. In addition, we conduct several ablation studies to investigate the influence of different components of OptInter. Finally, we provide interpretable discussions on the results of OptInter.
Neural Relighting with Subsurface Scattering by Learning the Radiance Transfer Gradient
Reconstructing and relighting objects and scenes under varying lighting conditions is challenging: existing neural rendering methods often cannot handle the complex interactions between materials and light. Incorporating pre-computed radiance transfer techniques enables global illumination, but still struggles with materials with subsurface scattering effects. We propose a novel framework for learning the radiance transfer field via volume rendering and utilizing various appearance cues to refine geometry end-to-end. This framework extends relighting and reconstruction capabilities to handle a wider range of materials in a data-driven fashion. The resulting models produce plausible rendering results in existing and novel conditions. We will release our code and a novel light stage dataset of objects with subsurface scattering effects publicly available.
Mimicking-Bench: A Benchmark for Generalizable Humanoid-Scene Interaction Learning via Human Mimicking
Learning generic skills for humanoid robots interacting with 3D scenes by mimicking human data is a key research challenge with significant implications for robotics and real-world applications. However, existing methodologies and benchmarks are constrained by the use of small-scale, manually collected demonstrations, lacking the general dataset and benchmark support necessary to explore scene geometry generalization effectively. To address this gap, we introduce Mimicking-Bench, the first comprehensive benchmark designed for generalizable humanoid-scene interaction learning through mimicking large-scale human animation references. Mimicking-Bench includes six household full-body humanoid-scene interaction tasks, covering 11K diverse object shapes, along with 20K synthetic and 3K real-world human interaction skill references. We construct a complete humanoid skill learning pipeline and benchmark approaches for motion retargeting, motion tracking, imitation learning, and their various combinations. Extensive experiments highlight the value of human mimicking for skill learning, revealing key challenges and research directions.
Full-Body Articulated Human-Object Interaction
Fine-grained capturing of 3D HOI boosts human activity understanding and facilitates downstream visual tasks, including action recognition, holistic scene reconstruction, and human motion synthesis. Despite its significance, existing works mostly assume that humans interact with rigid objects using only a few body parts, limiting their scope. In this paper, we address the challenging problem of f-AHOI, wherein the whole human bodies interact with articulated objects, whose parts are connected by movable joints. We present CHAIRS, a large-scale motion-captured f-AHOI dataset, consisting of 16.2 hours of versatile interactions between 46 participants and 81 articulated and rigid sittable objects. CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process, as well as realistic and physically plausible full-body interactions. We show the value of CHAIRS with object pose estimation. By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation to tackle the estimation of articulated object poses and shapes during whole-body interactions. Given an image and an estimated human pose, our model first reconstructs the pose and shape of the object, then optimizes the reconstruction according to a learned interaction prior. Under both evaluation settings (e.g., with or without the knowledge of objects' geometries/structures), our model significantly outperforms baselines. We hope CHAIRS will promote the community towards finer-grained interaction understanding. We will make the data/code publicly available.
Affogato: Learning Open-Vocabulary Affordance Grounding with Automated Data Generation at Scale
Affordance grounding-localizing object regions based on natural language descriptions of interactions-is a critical challenge for enabling intelligent agents to understand and interact with their environments. However, this task remains challenging due to the need for fine-grained part-level localization, the ambiguity arising from multiple valid interaction regions, and the scarcity of large-scale datasets. In this work, we introduce Affogato, a large-scale benchmark comprising 150K instances, annotated with open-vocabulary text descriptions and corresponding 3D affordance heatmaps across a diverse set of objects and interactions. Building on this benchmark, we develop simple yet effective vision-language models that leverage pretrained part-aware vision backbones and a text-conditional heatmap decoder. Our models trained with the Affogato dataset achieve promising performance on the existing 2D and 3D benchmarks, and notably, exhibit effectiveness in open-vocabulary cross-domain generalization. The Affogato dataset is shared in public: https://huggingface.co/datasets/project-affogato/affogato
Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-endedx2014models should support many different tasks unknown ahead of timex2014and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel templatex2014reward-free exploration, derived tests, and behavior-based scoringx2014to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
Learning From Failure: Integrating Negative Examples when Fine-tuning Large Language Models as Agents
Large language models (LLMs) have achieved success in acting as agents, which interact with environments through tools like search engines. However, LLMs are not optimized specifically for tool use during training or alignment, limiting their effectiveness as agents. To resolve this problem, previous work has collected interaction trajectories between GPT-4 and environments, and fine-tuned smaller models with them. As part of this, the standard approach has been to simply discard trajectories that do not finish the task successfully, which, on the one hand, leads to a significant waste of data and resources, and on the other hand, has the potential to limit the possible optimization paths during fine-tuning. In this paper, we contend that large language models can learn from failures through appropriate data cleaning and fine-tuning strategies. We conduct experiments on mathematical reasoning, multi-hop question answering, and strategic question answering tasks. Experimental results demonstrate that compared to solely using positive examples, incorporating negative examples enhances model performance by a large margin.
AgentFly: Extensible and Scalable Reinforcement Learning for LM Agents
Language model (LM) agents have gained significant attention for their ability to autonomously complete tasks through interactions with environments, tools, and APIs. LM agents are primarily built with prompt engineering or supervised finetuning. At the same time, reinforcement learning (RL) has been explored to enhance LM's capabilities, such as reasoning and factuality. However, the combination of the LM agents and reinforcement learning (Agent-RL) remains underexplored and lacks systematic study. To this end, we built AgentFly, a scalable and extensible Agent-RL framework designed to empower LM agents with a variety of RL algorithms. Our framework supports multi-turn interactions by adapting traditional RL methods with token-level masking. It features a decorator-based interface for defining tools and reward functions, enabling seamless extension and ease of use. To support high-throughput training, we implement asynchronous execution of tool calls and reward computations, and design a centralized resource management system for scalable environment coordination. We also provide a suite of prebuilt tools and environments, demonstrating the framework's effectiveness through successful agent training across multiple tasks.
Cross-Task Affinity Learning for Multitask Dense Scene Predictions
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly, achieving better per-task performance with fewer parameters than single-task learning. Recently, decoder-focused architectures have significantly improved multitask performance by refining task predictions using features from related tasks. However, most refinement methods struggle to efficiently capture both local and long-range dependencies between task-specific representations and cross-task patterns. In this paper, we introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks. CTAL effectively captures local and long-range cross-task interactions by optimizing task affinity matrices for parameter-efficient grouped convolutions without concern for information loss. Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning. Our code is publicly available at https://github.com/Armanfard-Lab/EMA-Net.
Graph Inverse Reinforcement Learning from Diverse Videos
Research on Inverse Reinforcement Learning (IRL) from third-person videos has shown encouraging results on removing the need for manual reward design for robotic tasks. However, most prior works are still limited by training from a relatively restricted domain of videos. In this paper, we argue that the true potential of third-person IRL lies in increasing the diversity of videos for better scaling. To learn a reward function from diverse videos, we propose to perform graph abstraction on the videos followed by temporal matching in the graph space to measure the task progress. Our insight is that a task can be described by entity interactions that form a graph, and this graph abstraction can help remove irrelevant information such as textures, resulting in more robust reward functions. We evaluate our approach, GraphIRL, on cross-embodiment learning in X-MAGICAL and learning from human demonstrations for real-robot manipulation. We show significant improvements in robustness to diverse video demonstrations over previous approaches, and even achieve better results than manual reward design on a real robot pushing task. Videos are available at https://sateeshkumar21.github.io/GraphIRL .
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
Task agnostic continual learning with Pairwise layer architecture
Most of the dominant approaches to continual learning are based on either memory replay, parameter isolation, or regularization techniques that require task boundaries to calculate task statistics. We propose a static architecture-based method that doesn't use any of these. We show that we can improve the continual learning performance by replacing the final layer of our networks with our pairwise interaction layer. The pairwise interaction layer uses sparse representations from a Winner-take-all style activation function to find the relevant correlations in the hidden layer representations. The networks using this architecture show competitive performance in MNIST and FashionMNIST-based continual image classification experiments. We demonstrate this in an online streaming continual learning setup where the learning system cannot access task labels or boundaries.
Distillation of Human-Object Interaction Contexts for Action Recognition
Modeling spatial-temporal relations is imperative for recognizing human actions, especially when a human is interacting with objects, while multiple objects appear around the human differently over time. Most existing action recognition models focus on learning overall visual cues of a scene but disregard informative fine-grained features, which can be captured by learning human-object relationships and interactions. In this paper, we learn human-object relationships by exploiting the interaction of their local and global contexts. We hence propose the Global-Local Interaction Distillation Network (GLIDN), learning human and object interactions through space and time via knowledge distillation for fine-grained scene understanding. GLIDN encodes humans and objects into graph nodes and learns local and global relations via graph attention network. The local context graphs learn the relation between humans and objects at a frame level by capturing their co-occurrence at a specific time step. The global relation graph is constructed based on the video-level of human and object interactions, identifying their long-term relations throughout a video sequence. More importantly, we investigate how knowledge from these graphs can be distilled to their counterparts for improving human-object interaction (HOI) recognition. We evaluate our model by conducting comprehensive experiments on two datasets including Charades and CAD-120 datasets. We have achieved better results than the baselines and counterpart approaches.
A Survey on Self-play Methods in Reinforcement Learning
Self-play, characterized by agents' interactions with copies or past versions of itself, has recently gained prominence in reinforcement learning. This paper first clarifies the preliminaries of self-play, including the multi-agent reinforcement learning framework and basic game theory concepts. Then it provides a unified framework and classifies existing self-play algorithms within this framework. Moreover, the paper bridges the gap between the algorithms and their practical implications by illustrating the role of self-play in different scenarios. Finally, the survey highlights open challenges and future research directions in self-play. This paper is an essential guide map for understanding the multifaceted landscape of self-play in RL.
Towards Better Dynamic Graph Learning: New Architecture and Unified Library
We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning. DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop interactions by: (1) a neighbor co-occurrence encoding scheme that explores the correlations of the source node and destination node based on their historical sequences; (2) a patching technique that divides each sequence into multiple patches and feeds them to Transformer, allowing the model to effectively and efficiently benefit from longer histories. We also introduce DyGLib, a unified library with standard training pipelines, extensible coding interfaces, and comprehensive evaluating protocols to promote reproducible, scalable, and credible dynamic graph learning research. By performing exhaustive experiments on thirteen datasets for dynamic link prediction and dynamic node classification tasks, we find that DyGFormer achieves state-of-the-art performance on most of the datasets, demonstrating its effectiveness in capturing nodes' correlations and long-term temporal dependencies. Moreover, some results of baselines are inconsistent with previous reports, which may be caused by their diverse but less rigorous implementations, showing the importance of DyGLib. All the used resources are publicly available at https://github.com/yule-BUAA/DyGLib.
Learning Subpocket Prototypes for Generalizable Structure-based Drug Design
Generating molecules with high binding affinities to target proteins (a.k.a. structure-based drug design) is a fundamental and challenging task in drug discovery. Recently, deep generative models have achieved remarkable success in generating 3D molecules conditioned on the protein pocket. However, most existing methods consider molecular generation for protein pockets independently while neglecting the underlying connections such as subpocket-level similarities. Subpockets are the local protein environments of ligand fragments and pockets with similar subpockets may bind the same molecular fragment (motif) even though their overall structures are different. Therefore, the trained models can hardly generalize to unseen protein pockets in real-world applications. In this paper, we propose a novel method DrugGPS for generalizable structure-based drug design. With the biochemical priors, we propose to learn subpocket prototypes and construct a global interaction graph to model the interactions between subpocket prototypes and molecular motifs. Moreover, a hierarchical graph transformer encoder and motif-based 3D molecule generation scheme are used to improve the model's performance. The experimental results show that our model consistently outperforms baselines in generating realistic drug candidates with high affinities in challenging out-of-distribution settings.
Learning to Generate Better Than Your LLM
Reinforcement learning (RL) has emerged as a powerful paradigm for fine-tuning Large Language Models (LLMs) for conditional text generation. In particular, recent LLMs such as ChatGPT and GPT-4 can engage in fluent conversations with users by incorporating RL and feedback from humans. Inspired by learning-to-search algorithms and capitalizing on key properties of text generation, we seek to investigate reinforcement learning algorithms beyond general purpose algorithms such as Proximal policy optimization (PPO). In particular, we extend RL algorithms to allow them to interact with a dynamic black-box guide LLM such as GPT-3 and propose RL with guided feedback (RLGF), a suite of RL algorithms for LLM fine-tuning. We experiment on the IMDB positive review and CommonGen text generation task from the GRUE benchmark. We show that our RL algorithms achieve higher performance than supervised learning (SL) and default PPO baselines, demonstrating the benefit of interaction with the guide LLM. On CommonGen, we not only outperform our SL baselines but also improve beyond PPO across a variety of lexical and semantic metrics beyond the one we optimized for. Notably, on the IMDB dataset, we show that our GPT-2 based policy outperforms the zero-shot GPT-3 oracle, indicating that our algorithms can learn from a powerful, black-box GPT-3 oracle with a simpler, cheaper, and publicly available GPT-2 model while gaining performance.
Localization Guided Learning for Pedestrian Attribute Recognition
Pedestrian attribute recognition has attracted many attentions due to its wide applications in scene understanding and person analysis from surveillance videos. Existing methods try to use additional pose, part or viewpoint information to complement the global feature representation for attribute classification. However, these methods face difficulties in localizing the areas corresponding to different attributes. To address this problem, we propose a novel Localization Guided Network which assigns attribute-specific weights to local features based on the affinity between proposals pre-extracted proposals and attribute locations. The advantage of our model is that our local features are learned automatically for each attribute and emphasized by the interaction with global features. We demonstrate the effectiveness of our Localization Guided Network on two pedestrian attribute benchmarks (PA-100K and RAP). Our result surpasses the previous state-of-the-art in all five metrics on both datasets.
Proprioceptive Learning with Soft Polyhedral Networks
Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.
MindAgent: Emergent Gaming Interaction
Large Language Models (LLMs) have the capacity of performing complex scheduling in a multi-agent system and can coordinate these agents into completing sophisticated tasks that require extensive collaboration. However, despite the introduction of numerous gaming frameworks, the community has insufficient benchmarks towards building general multi-agents collaboration infrastructure that encompass both LLM and human-NPCs collaborations. In this work, we propose a novel infrastructure - MindAgent - to evaluate planning and coordination emergent capabilities for gaming interaction. In particular, our infrastructure leverages existing gaming framework, to i) require understanding of the coordinator for a multi-agent system, ii) collaborate with human players via un-finetuned proper instructions, and iii) establish an in-context learning on few-shot prompt with feedback. Furthermore, we introduce CUISINEWORLD, a new gaming scenario and related benchmark that dispatch a multi-agent collaboration efficiency and supervise multiple agents playing the game simultaneously. We conduct comprehensive evaluations with new auto-metric CoS for calculating the collaboration efficiency. Finally, our infrastructure can be deployed into real-world gaming scenarios in a customized VR version of CUISINEWORLD and adapted in existing broader Minecraft gaming domain. We hope our findings on LLMs and the new infrastructure for general-purpose scheduling and coordination can help shed light on how such skills can be obtained by learning from large language corpora.
A Benchmark Environment for Offline Reinforcement Learning in Racing Games
Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL) by eliminating the need for continuous environmental interactions. ORL exploits a dataset of pre-collected transitions and thus expands the range of application of RL to tasks in which the excessive environment queries increase training time and decrease efficiency, such as in modern AAA games. This paper introduces OfflineMania a novel environment for ORL research. It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine. The environment simulates a single-agent racing game in which the objective is to complete the track through optimal navigation. We provide a variety of datasets to assess ORL performance. These datasets, created from policies of varying ability and in different sizes, aim to offer a challenging testbed for algorithm development and evaluation. We further establish a set of baselines for a range of Online RL, ORL, and hybrid Offline to Online RL approaches using our environment.
MLLM as Retriever: Interactively Learning Multimodal Retrieval for Embodied Agents
MLLM agents demonstrate potential for complex embodied tasks by retrieving multimodal task-relevant trajectory data. However, current retrieval methods primarily focus on surface-level similarities of textual or visual cues in trajectories, neglecting their effectiveness for the specific task at hand. To address this issue, we propose a novel method, MLLM as ReTriever (MART), which enhances the performance of embodied agents by utilizing interaction data to fine-tune an MLLM retriever based on preference learning, such that the retriever fully considers the effectiveness of trajectories and prioritize them for unseen tasks. We also introduce Trajectory Abstraction, a mechanism that leverages MLLMs' summarization capabilities to represent trajectories with fewer tokens while preserving key information, enabling agents to better comprehend milestones in the trajectory. Experimental results across various environments demonstrate our method significantly improves task success rates in unseen scenes compared to baseline methods. This work presents a new paradigm for multimodal retrieval in embodied agents, by fine-tuning a general-purpose MLLM as the retriever to assess trajectory effectiveness. All benchmark task sets and simulator code modifications for action and observation spaces will be released.
Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction
Recent progress in neural information retrieval has demonstrated large gains in effectiveness, while often sacrificing the efficiency and interpretability of the neural model compared to classical approaches. This paper proposes ColBERTer, a neural retrieval model using contextualized late interaction (ColBERT) with enhanced reduction. Along the effectiveness Pareto frontier, ColBERTer's reductions dramatically lower ColBERT's storage requirements while simultaneously improving the interpretability of its token-matching scores. To this end, ColBERTer fuses single-vector retrieval, multi-vector refinement, and optional lexical matching components into one model. For its multi-vector component, ColBERTer reduces the number of stored vectors per document by learning unique whole-word representations for the terms in each document and learning to identify and remove word representations that are not essential to effective scoring. We employ an explicit multi-task, multi-stage training to facilitate using very small vector dimensions. Results on the MS MARCO and TREC-DL collection show that ColBERTer can reduce the storage footprint by up to 2.5x, while maintaining effectiveness. With just one dimension per token in its smallest setting, ColBERTer achieves index storage parity with the plaintext size, with very strong effectiveness results. Finally, we demonstrate ColBERTer's robustness on seven high-quality out-of-domain collections, yielding statistically significant gains over traditional retrieval baselines.
CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards
Self-evolution is a central research topic in enabling large language model (LLM)-based agents to continually improve their capabilities after pretraining. Recent research has witnessed a transition from reinforcement learning (RL)-free to RL-based methods. Current RL-based methods either rely on dense external reward signals or extract intrinsic reward signals from LLMs themselves. However, these approaches diverge from the self-evolution mechanisms observed in human intelligence, where individuals learn and improve through mutual discussion and collaboration. In this work, we introduce Co-Evolving Multi-Agent Systems (CoMAS), a novel framework that enables agents to improve autonomously by learning from inter-agent interactions without external supervision. CoMAS generates intrinsic rewards from rich discussion dynamics, employs an LLM-as-a-judge mechanism to formulate these rewards, and optimizes each agent's policy through RL, thereby enabling decentralized and scalable co-evolution. Experimental results demonstrate that CoMAS consistently outperforms untrained agents and achieves state-of-the-art performance across most evaluation settings. Ablation studies confirm the necessity of interaction-based reward signals and reveal promising scalability as the number and diversity of agents increase. These findings establish CoMAS as a novel and effective paradigm for self-evolution in LLM-based agents.
Text2HOI: Text-guided 3D Motion Generation for Hand-Object Interaction
This paper introduces the first text-guided work for generating the sequence of hand-object interaction in 3D. The main challenge arises from the lack of labeled data where existing ground-truth datasets are nowhere near generalizable in interaction type and object category, which inhibits the modeling of diverse 3D hand-object interaction with the correct physical implication (e.g., contacts and semantics) from text prompts. To address this challenge, we propose to decompose the interaction generation task into two subtasks: hand-object contact generation; and hand-object motion generation. For contact generation, a VAE-based network takes as input a text and an object mesh, and generates the probability of contacts between the surfaces of hands and the object during the interaction. The network learns a variety of local geometry structure of diverse objects that is independent of the objects' category, and thus, it is applicable to general objects. For motion generation, a Transformer-based diffusion model utilizes this 3D contact map as a strong prior for generating physically plausible hand-object motion as a function of text prompts by learning from the augmented labeled dataset; where we annotate text labels from many existing 3D hand and object motion data. Finally, we further introduce a hand refiner module that minimizes the distance between the object surface and hand joints to improve the temporal stability of the object-hand contacts and to suppress the penetration artifacts. In the experiments, we demonstrate that our method can generate more realistic and diverse interactions compared to other baseline methods. We also show that our method is applicable to unseen objects. We will release our model and newly labeled data as a strong foundation for future research. Codes and data are available in: https://github.com/JunukCha/Text2HOI.
StuGPTViz: A Visual Analytics Approach to Understand Student-ChatGPT Interactions
The integration of Large Language Models (LLMs), especially ChatGPT, into education is poised to revolutionize students' learning experiences by introducing innovative conversational learning methodologies. To empower students to fully leverage the capabilities of ChatGPT in educational scenarios, understanding students' interaction patterns with ChatGPT is crucial for instructors. However, this endeavor is challenging due to the absence of datasets focused on student-ChatGPT conversations and the complexities in identifying and analyzing the evolutional interaction patterns within conversations. To address these challenges, we collected conversational data from 48 students interacting with ChatGPT in a master's level data visualization course over one semester. We then developed a coding scheme, grounded in the literature on cognitive levels and thematic analysis, to categorize students' interaction patterns with ChatGPT. Furthermore, we present a visual analytics system, StuGPTViz, that tracks and compares temporal patterns in student prompts and the quality of ChatGPT's responses at multiple scales, revealing significant pedagogical insights for instructors. We validated the system's effectiveness through expert interviews with six data visualization instructors and three case studies. The results confirmed StuGPTViz's capacity to enhance educators' insights into the pedagogical value of ChatGPT. We also discussed the potential research opportunities of applying visual analytics in education and developing AI-driven personalized learning solutions.
From Problem-Solving to Teaching Problem-Solving: Aligning LLMs with Pedagogy using Reinforcement Learning
Large language models (LLMs) can transform education, but their optimization for direct question-answering often undermines effective pedagogy which requires strategically withholding answers. To mitigate this, we propose an online reinforcement learning (RL)-based alignment framework that can quickly adapt LLMs into effective tutors using simulated student-tutor interactions by emphasizing pedagogical quality and guided problem-solving over simply giving away answers. We use our method to train a 7B parameter tutor model without human annotations which reaches similar performance to larger proprietary models like LearnLM. We introduce a controllable reward weighting to balance pedagogical support and student solving accuracy, allowing us to trace the Pareto frontier between these two objectives. Our models better preserve reasoning capabilities than single-turn SFT baselines and can optionally enhance interpretability through thinking tags that expose the model's instructional planning.
Dynamic 3D Gaussian Tracking for Graph-Based Neural Dynamics Modeling
Videos of robots interacting with objects encode rich information about the objects' dynamics. However, existing video prediction approaches typically do not explicitly account for the 3D information from videos, such as robot actions and objects' 3D states, limiting their use in real-world robotic applications. In this work, we introduce a framework to learn object dynamics directly from multi-view RGB videos by explicitly considering the robot's action trajectories and their effects on scene dynamics. We utilize the 3D Gaussian representation of 3D Gaussian Splatting (3DGS) to train a particle-based dynamics model using Graph Neural Networks. This model operates on sparse control particles downsampled from the densely tracked 3D Gaussian reconstructions. By learning the neural dynamics model on offline robot interaction data, our method can predict object motions under varying initial configurations and unseen robot actions. The 3D transformations of Gaussians can be interpolated from the motions of control particles, enabling the rendering of predicted future object states and achieving action-conditioned video prediction. The dynamics model can also be applied to model-based planning frameworks for object manipulation tasks. We conduct experiments on various kinds of deformable materials, including ropes, clothes, and stuffed animals, demonstrating our framework's ability to model complex shapes and dynamics. Our project page is available at https://gs-dynamics.github.io.
Training Agents Inside of Scalable World Models
World models learn general knowledge from videos and simulate experience for training behaviors in imagination, offering a path towards intelligent agents. However, previous world models have been unable to accurately predict object interactions in complex environments. We introduce Dreamer 4, a scalable agent that learns to solve control tasks by reinforcement learning inside of a fast and accurate world model. In the complex video game Minecraft, the world model accurately predicts object interactions and game mechanics, outperforming previous world models by a large margin. The world model achieves real-time interactive inference on a single GPU through a shortcut forcing objective and an efficient transformer architecture. Moreover, the world model learns general action conditioning from only a small amount of data, allowing it to extract the majority of its knowledge from diverse unlabeled videos. We propose the challenge of obtaining diamonds in Minecraft from only offline data, aligning with practical applications such as robotics where learning from environment interaction can be unsafe and slow. This task requires choosing sequences of over 20,000 mouse and keyboard actions from raw pixels. By learning behaviors in imagination, Dreamer 4 is the first agent to obtain diamonds in Minecraft purely from offline data, without environment interaction. Our work provides a scalable recipe for imagination training, marking a step towards intelligent agents.
Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement
Recent advancements in LLM-based agents have led to significant progress in automatic software engineering, particularly in software maintenance and evolution. Despite these encouraging advances, current research faces two major challenges. First, SOTA performance primarily depends on closed-source models, which significantly limits the technology's accessibility, and potential for customization in diverse SE tasks. Second, these models are predominantly trained on static code data, lacking a deep understanding of the dynamic interactions, iterative problem-solving processes, and evolutionary characteristics inherent in software development. To address these challenges, our study adopts a software engineering perspective. We recognize that real-world software maintenance and evolution processes encompass not only static code data but also developers' thought processes, utilization of external tools, and the interaction between different functional personnel. Consequently, we introduce the Lingma SWE-GPT series, comprising Lingma SWE-GPT 7B and 72B. By learning from and simulating real-world code submission activities, Lingma SWE-GPT systematically incorporates the dynamic interactions and iterative problem-solving inherent in software development process, thereby achieving a more comprehensive understanding of software improvement processes. We conducted experimental evaluations using SWE-bench Verified benchmark. The results demonstrate that Lingma SWE-GPT 72B successfully resolves 30.20% of the GitHub issues, marking a significant improvement in automatic issue resolution (22.76% relative improvement compared to Llama 3.1 405B), approaching the performance of closed-source models (31.80\% issues of GPT-4o resolved). Notably, Lingma SWE-GPT 7B resolves 18.20% of the issues, highlighting the potential for applying smaller models to ASE tasks.
Dynamic and Static Context-aware LSTM for Multi-agent Motion Prediction
Multi-agent motion prediction is challenging because it aims to foresee the future trajectories of multiple agents (e.g. pedestrians) simultaneously in a complicated scene. Existing work addressed this challenge by either learning social spatial interactions represented by the positions of a group of pedestrians, while ignoring their temporal coherence (i.e. dependencies between different long trajectories), or by understanding the complicated scene layout (e.g. scene segmentation) to ensure safe navigation. However, unlike previous work that isolated the spatial interaction, temporal coherence, and scene layout, this paper designs a new mechanism, i.e., Dynamic and Static Context-aware Motion Predictor (DSCMP), to integrates these rich information into the long-short-term-memory (LSTM). It has three appealing benefits. (1) DSCMP models the dynamic interactions between agents by learning both their spatial positions and temporal coherence, as well as understanding the contextual scene layout.(2) Different from previous LSTM models that predict motions by propagating hidden features frame by frame, limiting the capacity to learn correlations between long trajectories, we carefully design a differentiable queue mechanism in DSCMP, which is able to explicitly memorize and learn the correlations between long trajectories. (3) DSCMP captures the context of scene by inferring latent variable, which enables multimodal predictions with meaningful semantic scene layout. Extensive experiments show that DSCMP outperforms state-of-the-art methods by large margins, such as 9.05\% and 7.62\% relative improvements on the ETH-UCY and SDD datasets respectively.
Image Captioning with Deep Bidirectional LSTMs
This work presents an end-to-end trainable deep bidirectional LSTM (Long-Short Term Memory) model for image captioning. Our model builds on a deep convolutional neural network (CNN) and two separate LSTM networks. It is capable of learning long term visual-language interactions by making use of history and future context information at high level semantic space. Two novel deep bidirectional variant models, in which we increase the depth of nonlinearity transition in different way, are proposed to learn hierarchical visual-language embeddings. Data augmentation techniques such as multi-crop, multi-scale and vertical mirror are proposed to prevent overfitting in training deep models. We visualize the evolution of bidirectional LSTM internal states over time and qualitatively analyze how our models "translate" image to sentence. Our proposed models are evaluated on caption generation and image-sentence retrieval tasks with three benchmark datasets: Flickr8K, Flickr30K and MSCOCO datasets. We demonstrate that bidirectional LSTM models achieve highly competitive performance to the state-of-the-art results on caption generation even without integrating additional mechanism (e.g. object detection, attention model etc.) and significantly outperform recent methods on retrieval task.
Leveraging Implicit Feedback from Deployment Data in Dialogue
We study improving social conversational agents by learning from natural dialogue between users and a deployed model, without extra annotations. To implicitly measure the quality of a machine-generated utterance, we leverage signals like user response length, sentiment and reaction of the future human utterances in the collected dialogue episodes. Our experiments use the publicly released deployment data from BlenderBot (Xu et al., 2023). Human evaluation indicates improvements in our new models over baseline responses; however, we find that some proxy signals can lead to more generations with undesirable properties as well. For example, optimizing for conversation length can lead to more controversial or unfriendly generations compared to the baseline, whereas optimizing for positive sentiment or reaction can decrease these behaviors.
GENIE: Gaussian Encoding for Neural Radiance Fields Interactive Editing
Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) have recently transformed 3D scene representation and rendering. NeRF achieves high-fidelity novel view synthesis by learning volumetric representations through neural networks, but its implicit encoding makes editing and physical interaction challenging. In contrast, GS represents scenes as explicit collections of Gaussian primitives, enabling real-time rendering, faster training, and more intuitive manipulation. This explicit structure has made GS particularly well-suited for interactive editing and integration with physics-based simulation. In this paper, we introduce GENIE (Gaussian Encoding for Neural Radiance Fields Interactive Editing), a hybrid model that combines the photorealistic rendering quality of NeRF with the editable and structured representation of GS. Instead of using spherical harmonics for appearance modeling, we assign each Gaussian a trainable feature embedding. These embeddings are used to condition a NeRF network based on the k nearest Gaussians to each query point. To make this conditioning efficient, we introduce Ray-Traced Gaussian Proximity Search (RT-GPS), a fast nearest Gaussian search based on a modified ray-tracing pipeline. We also integrate a multi-resolution hash grid to initialize and update Gaussian features. Together, these components enable real-time, locality-aware editing: as Gaussian primitives are repositioned or modified, their interpolated influence is immediately reflected in the rendered output. By combining the strengths of implicit and explicit representations, GENIE supports intuitive scene manipulation, dynamic interaction, and compatibility with physical simulation, bridging the gap between geometry-based editing and neural rendering. The code can be found under (https://github.com/MikolajZielinski/genie)
AutoGLM: Autonomous Foundation Agents for GUIs
We present AutoGLM, a new series in the ChatGLM family, designed to serve as foundation agents for autonomous control of digital devices through Graphical User Interfaces (GUIs). While foundation models excel at acquiring human knowledge, they often struggle with decision-making in dynamic real-world environments, limiting their progress toward artificial general intelligence. This limitation underscores the importance of developing foundation agents capable of learning through autonomous environmental interactions by reinforcing existing models. Focusing on Web Browser and Phone as representative GUI scenarios, we have developed AutoGLM as a practical foundation agent system for real-world GUI interactions. Our approach integrates a comprehensive suite of techniques and infrastructures to create deployable agent systems suitable for user delivery. Through this development, we have derived two key insights: First, the design of an appropriate "intermediate interface" for GUI control is crucial, enabling the separation of planning and grounding behaviors, which require distinct optimization for flexibility and accuracy respectively. Second, we have developed a novel progressive training framework that enables self-evolving online curriculum reinforcement learning for AutoGLM. Our evaluations demonstrate AutoGLM's effectiveness across multiple domains. For web browsing, AutoGLM achieves a 55.2% success rate on VAB-WebArena-Lite (improving to 59.1% with a second attempt) and 96.2% on OpenTable evaluation tasks. In Android device control, AutoGLM attains a 36.2% success rate on AndroidLab (VAB-Mobile) and 89.7% on common tasks in popular Chinese APPs.
Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to 22times. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
Generalized Decoding for Pixel, Image, and Language
We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.
Inducing Programmatic Skills for Agentic Tasks
To succeed in common digital tasks such as web navigation, agents must carry out a variety of specialized tasks such as searching for products or planning a travel route. To tackle these tasks, agents can bootstrap themselves by learning task-specific skills online through interaction with the web environment. In this work, we demonstrate that programs are an effective representation for skills. We propose agent skill induction (ASI), which allows agents to adapt themselves by inducing, verifying, and utilizing program-based skills on the fly. We start with an evaluation on the WebArena agent benchmark and show that ASI outperforms the static baseline agent and its text-skill counterpart by 23.5% and 11.3% in success rate, mainly thanks to the programmatic verification guarantee during the induction phase. ASI also improves efficiency by reducing 10.7-15.3% of the steps over baselines, by composing primitive actions (e.g., click) into higher-level skills (e.g., search product). We then highlight the efficacy of ASI in remaining efficient and accurate under scaled-up web activities. Finally, we examine the generalizability of induced skills when transferring between websites, and find that ASI can effectively reuse common skills, while also updating incompatible skills to versatile website changes.
BTL-UI: Blink-Think-Link Reasoning Model for GUI Agent
In the field of AI-driven human-GUI interaction automation, while rapid advances in multimodal large language models and reinforcement fine-tuning techniques have yielded remarkable progress, a fundamental challenge persists: their interaction logic significantly deviates from natural human-GUI communication patterns. To fill this gap, we propose "Blink-Think-Link" (BTL), a brain-inspired framework for human-GUI interaction that mimics the human cognitive process between users and graphical interfaces. The system decomposes interactions into three biologically plausible phases: (1) Blink - rapid detection and attention to relevant screen areas, analogous to saccadic eye movements; (2) Think - higher-level reasoning and decision-making, mirroring cognitive planning; and (3) Link - generation of executable commands for precise motor control, emulating human action selection mechanisms. Additionally, we introduce two key technical innovations for the BTL framework: (1) Blink Data Generation - an automated annotation pipeline specifically optimized for blink data, and (2) BTL Reward -- the first rule-based reward mechanism that enables reinforcement learning driven by both process and outcome. Building upon this framework, we develop a GUI agent model named BTL-UI, which demonstrates consistent state-of-the-art performance across both static GUI understanding and dynamic interaction tasks in comprehensive benchmarks. These results provide conclusive empirical validation of the framework's efficacy in developing advanced GUI Agents.
ReasoningBank: Scaling Agent Self-Evolving with Reasoning Memory
With the growing adoption of large language model agents in persistent real-world roles, they naturally encounter continuous streams of tasks. A key limitation, however, is their failure to learn from the accumulated interaction history, forcing them to discard valuable insights and repeat past errors. We propose ReasoningBank, a novel memory framework that distills generalizable reasoning strategies from an agent's self-judged successful and failed experiences. At test time, an agent retrieves relevant memories from ReasoningBank to inform its interaction and then integrates new learnings back, enabling it to become more capable over time. Building on this powerful experience learner, we further introduce memory-aware test-time scaling (MaTTS), which accelerates and diversifies this learning process by scaling up the agent's interaction experience. By allocating more compute to each task, the agent generates abundant, diverse experiences that provide rich contrastive signals for synthesizing higher-quality memory. The better memory in turn guides more effective scaling, establishing a powerful synergy between memory and test-time scaling. Across web browsing and software engineering benchmarks, ReasoningBank consistently outperforms existing memory mechanisms that store raw trajectories or only successful task routines, improving both effectiveness and efficiency; MaTTS further amplifies these gains. These findings establish memory-driven experience scaling as a new scaling dimension, enabling agents to self-evolve with emergent behaviors naturally arise.
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model. The interplay between these two objectives creates useful, accurate models that can then be used for multi-step decision making. This formulation has the additional benefit that it is possible to learn forward models in an abstract feature space and thus alleviate the need of predicting pixels. Our experiments show that this joint modeling approach outperforms alternative methods.
SQL-R1: Training Natural Language to SQL Reasoning Model By Reinforcement Learning
Natural Language to SQL (NL2SQL) enables intuitive interactions with databases by transforming natural language queries into structured SQL statements. Despite recent advancements in enhancing human-computer interaction within database applications, significant challenges persist, particularly regarding the inference performance in complex scenarios involving multi-table joins and nested queries. Current methodologies primarily utilize supervised fine-tuning (SFT) to train the NL2SQL model, which may limit adaptability and interpretability in new environments (e.g., finance and healthcare). In order to enhance the reasoning performance of the NL2SQL model in the above complex situations, we introduce SQL-R1, a novel NL2SQL reasoning model trained by the reinforcement learning (RL) algorithms. We design a specialized RL-based reward function tailored for NL2SQL tasks and discussed the impact of cold start on the effectiveness of intensive training. In addition, we achieve competitive accuracy using only a tiny amount of synthetic NL2SQL data for augmented training and further explore data engineering for RL. In existing experiments, SQL-R1 achieves execution accuracy of 88.6% and 66.6% on the benchmark Spider and BIRD, respectively, only using the 7B base model.
ConsNet: Learning Consistency Graph for Zero-Shot Human-Object Interaction Detection
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of <human, action, object> in images. Most existing works treat HOIs as individual interaction categories, thus can not handle the problem of long-tail distribution and polysemy of action labels. We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs. Leveraging the compositional and relational peculiarities of HOI labels, we propose ConsNet, a knowledge-aware framework that explicitly encodes the relations among objects, actions and interactions into an undirected graph called consistency graph, and exploits Graph Attention Networks (GATs) to propagate knowledge among HOI categories as well as their constituents. Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities. We extensively evaluate our model on the challenging V-COCO and HICO-DET datasets, and results validate that our approach outperforms state-of-the-arts under both fully-supervised and zero-shot settings. Code is available at https://github.com/yeliudev/ConsNet.
MasHost Builds It All: Autonomous Multi-Agent System Directed by Reinforcement Learning
Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently emerged as a powerful paradigm for tackling complex real-world tasks. However, existing Mas construction methods typically rely on manually crafted interaction mechanisms or heuristic rules, introducing human biases and constraining the autonomous ability. Even with recent advances in adaptive Mas construction, existing systems largely remain within the paradigm of semi-autonomous patterns. In this work, we propose MasHost, a Reinforcement Learning (RL)-based framework for autonomous and query-adaptive Mas design. By formulating Mas construction as a graph search problem, our proposed MasHost jointly samples agent roles and their interactions through a unified probabilistic sampling mechanism. Beyond the accuracy and efficiency objectives pursued in prior works, we introduce component rationality as an additional and novel design principle in Mas. To achieve this multi-objective optimization, we propose Hierarchical Relative Policy Optimization (HRPO), a novel RL strategy that collaboratively integrates group-relative advantages and action-wise rewards. To our knowledge, our proposed MasHost is the first RL-driven framework for autonomous Mas graph construction. Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms most competitive baselines, validating its effectiveness, efficiency, and structure rationality.
Towards Authentic Movie Dubbing with Retrieve-Augmented Director-Actor Interaction Learning
The automatic movie dubbing model generates vivid speech from given scripts, replicating a speaker's timbre from a brief timbre prompt while ensuring lip-sync with the silent video. Existing approaches simulate a simplified workflow where actors dub directly without preparation, overlooking the critical director-actor interaction. In contrast, authentic workflows involve a dynamic collaboration: directors actively engage with actors, guiding them to internalize the context cues, specifically emotion, before performance. To address this issue, we propose a new Retrieve-Augmented Director-Actor Interaction Learning scheme to achieve authentic movie dubbing, termed Authentic-Dubber, which contains three novel mechanisms: (1) We construct a multimodal Reference Footage library to simulate the learning footage provided by directors. Note that we integrate Large Language Models (LLMs) to achieve deep comprehension of emotional representations across multimodal signals. (2) To emulate how actors efficiently and comprehensively internalize director-provided footage during dubbing, we propose an Emotion-Similarity-based Retrieval-Augmentation strategy. This strategy retrieves the most relevant multimodal information that aligns with the target silent video. (3) We develop a Progressive Graph-based speech generation approach that incrementally incorporates the retrieved multimodal emotional knowledge, thereby simulating the actor's final dubbing process. The above mechanisms enable the Authentic-Dubber to faithfully replicate the authentic dubbing workflow, achieving comprehensive improvements in emotional expressiveness. Both subjective and objective evaluations on the V2C Animation benchmark dataset validate the effectiveness. The code and demos are available at https://github.com/AI-S2-Lab/Authentic-Dubber.
A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap
Human-object interactions (HOI) detection aims at capturing human-object pairs in images and corresponding actions. It is an important step toward high-level visual reasoning and scene understanding. However, due to the natural bias from the real world, existing methods mostly struggle with rare human-object pairs and lead to sub-optimal results. Recently, with the development of the generative model, a straightforward approach is to construct a more balanced dataset based on a group of supplementary samples. Unfortunately, there is a significant domain gap between the generated data and the original data, and simply merging the generated images into the original dataset cannot significantly boost the performance. To alleviate the above problem, we present a novel model-agnostic framework called Context-Enhanced Feature Alignment (CEFA) module, which can effectively align the generated data with the original data at the feature level and bridge the domain gap. Specifically, CEFA consists of a feature alignment module and a context enhancement module. On one hand, considering the crucial role of human-object pairs information in HOI tasks, the feature alignment module aligns the human-object pairs by aggregating instance information. On the other hand, to mitigate the issue of losing important context information caused by the traditional discriminator-style alignment method, we employ a context-enhanced image reconstruction module to improve the model's learning ability of contextual cues. Extensive experiments have shown that our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categorieshttps://github.com/LijunZhang01/CEFA.
A Survey on GUI Agents with Foundation Models Enhanced by Reinforcement Learning
Graphical User Interface (GUI) agents, driven by Multi-modal Large Language Models (MLLMs), have emerged as a promising paradigm for enabling intelligent interaction with digital systems. This paper provides a structured survey of recent advances in GUI agents, focusing on architectures enhanced by Reinforcement Learning (RL). We first formalize GUI agent tasks as Markov Decision Processes and discuss typical execution environments and evaluation metrics. We then review the modular architecture of (M)LLM-based GUI agents, covering Perception, Planning, and Acting modules, and trace their evolution through representative works. Furthermore, we categorize GUI agent training methodologies into Prompt-based, Supervised Fine-Tuning (SFT)-based, and RL-based approaches, highlighting the progression from simple prompt engineering to dynamic policy learning via RL. Our summary illustrates how recent innovations in multimodal perception, decision reasoning, and adaptive action generation have significantly improved the generalization and robustness of GUI agents in complex real-world environments. We conclude by identifying key challenges and future directions for building more capable and reliable GUI agents.
Eyes Will Shut: A Vision-Based Next GPS Location Prediction Model by Reinforcement Learning from Visual Map Feed Back
Next Location Prediction is a fundamental task in the study of human mobility, with wide-ranging applications in transportation planning, urban governance, and epidemic forecasting. In practice, when humans attempt to predict the next location in a trajectory, they often visualize the trajectory on a map and reason based on road connectivity and movement trends. However, the vast majority of existing next-location prediction models do not reason over maps in the way that humans do. Fortunately, the recent development of Vision-Language Models (VLMs) has demonstrated strong capabilities in visual perception and even visual reasoning. This opens up a new possibility: by rendering both the road network and trajectory onto an image and leveraging the reasoning abilities of VLMs, we can enable models to perform trajectory inference in a human-like manner. To explore this idea, we first propose a method called Vision-Guided Location Search (VGLS), which evaluates whether a general-purpose VLM is capable of trajectory-based reasoning without modifying any of its internal parameters. Based on insights from the VGLS results, we further propose our main approach: VLMLocPredictor, which is composed of two stages: In the first stage, we design two Supervised Fine-Tuning (SFT) tasks that help the VLM understand road network and trajectory structures and acquire basic reasoning ability on such visual inputs. In the second stage, we introduce Reinforcement Learning from Visual Map Feedback, enabling the model to self-improve its next-location prediction ability through interaction with the environment. Experiments conducted on datasets from four different cities show that our method achieves state-of-the-art (SOTA) performance and exhibits superior cross-city generalization compared to other LLM-based approaches.
DEMO: Reframing Dialogue Interaction with Fine-grained Element Modeling
Large language models (LLMs) have made dialogue one of the central modes of human-machine interaction, leading to the accumulation of vast amounts of conversation logs and increasing demand for dialogue generation. A conversational life-cycle spans from the Prelude through the Interlocution to the Epilogue, encompassing various elements. Despite the existence of numerous dialogue-related studies, there is a lack of benchmarks that encompass comprehensive dialogue elements, hindering precise modeling and systematic evaluation. To bridge this gap, we introduce an innovative research task Dialogue Element MOdeling, including Element Awareness and Dialogue Agent Interaction, and propose a novel benchmark, DEMO, designed for a comprehensive dialogue modeling and assessment. Inspired by imitation learning, we further build the agent which possesses the adept ability to model dialogue elements based on the DEMO benchmark. Extensive experiments indicate that existing LLMs still exhibit considerable potential for enhancement, and our DEMO agent has superior performance in both in-domain and out-of-domain tasks.
Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications
Sim-to-real transfer remains a significant challenge in robotics due to the discrepancies between simulated and real-world dynamics. Traditional methods like Domain Randomization often fail to capture fine-grained dynamics, limiting their effectiveness for precise control tasks. In this work, we propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning. By leveraging past interaction histories as context, our method adapts the simulation environment dynamics to real-world dynamics without requiring gradient updates, resulting in faster and more accurate alignment between simulated and real-world performance. We validate our approach across two tasks: object scooping and table air hockey. In the sim-to-sim evaluations, our method significantly outperforms the baselines on environment parameter estimation by 80% and 42% in the object scooping and table air hockey setups, respectively. Furthermore, our method achieves at least 70% success rate in sim-to-real transfer on object scooping across three different objects. By incorporating historical interaction data, our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios. Demos are available on our project page: https://sim2real-capture.github.io/
CANVAS: Commonsense-Aware Navigation System for Intuitive Human-Robot Interaction
Real-life robot navigation involves more than just reaching a destination; it requires optimizing movements while addressing scenario-specific goals. An intuitive way for humans to express these goals is through abstract cues like verbal commands or rough sketches. Such human guidance may lack details or be noisy. Nonetheless, we expect robots to navigate as intended. For robots to interpret and execute these abstract instructions in line with human expectations, they must share a common understanding of basic navigation concepts with humans. To this end, we introduce CANVAS, a novel framework that combines visual and linguistic instructions for commonsense-aware navigation. Its success is driven by imitation learning, enabling the robot to learn from human navigation behavior. We present COMMAND, a comprehensive dataset with human-annotated navigation results, spanning over 48 hours and 219 km, designed to train commonsense-aware navigation systems in simulated environments. Our experiments show that CANVAS outperforms the strong rule-based system ROS NavStack across all environments, demonstrating superior performance with noisy instructions. Notably, in the orchard environment, where ROS NavStack records a 0% total success rate, CANVAS achieves a total success rate of 67%. CANVAS also closely aligns with human demonstrations and commonsense constraints, even in unseen environments. Furthermore, real-world deployment of CANVAS showcases impressive Sim2Real transfer with a total success rate of 69%, highlighting the potential of learning from human demonstrations in simulated environments for real-world applications.
CHORUS: Learning Canonicalized 3D Human-Object Spatial Relations from Unbounded Synthesized Images
We present a method for teaching machines to understand and model the underlying spatial common sense of diverse human-object interactions in 3D in a self-supervised way. This is a challenging task, as there exist specific manifolds of the interactions that can be considered human-like and natural, but the human pose and the geometry of objects can vary even for similar interactions. Such diversity makes the annotating task of 3D interactions difficult and hard to scale, which limits the potential to reason about that in a supervised way. One way of learning the 3D spatial relationship between humans and objects during interaction is by showing multiple 2D images captured from different viewpoints when humans interact with the same type of objects. The core idea of our method is to leverage a generative model that produces high-quality 2D images from an arbitrary text prompt input as an "unbounded" data generator with effective controllability and view diversity. Despite its imperfection of the image quality over real images, we demonstrate that the synthesized images are sufficient to learn the 3D human-object spatial relations. We present multiple strategies to leverage the synthesized images, including (1) the first method to leverage a generative image model for 3D human-object spatial relation learning; (2) a framework to reason about the 3D spatial relations from inconsistent 2D cues in a self-supervised manner via 3D occupancy reasoning with pose canonicalization; (3) semantic clustering to disambiguate different types of interactions with the same object types; and (4) a novel metric to assess the quality of 3D spatial learning of interaction.
PEToolLLM: Towards Personalized Tool Learning in Large Language Models
Tool learning has emerged as a promising direction by extending Large Language Models' (LLMs) capabilities with external tools. Existing tool learning studies primarily focus on the general-purpose tool-use capability, which addresses explicit user requirements in instructions. However, they overlook the importance of personalized tool-use capability, leading to an inability to handle implicit user preferences. To address the limitation, we first formulate the task of personalized tool learning, which integrates user's interaction history towards personalized tool usage. To fill the gap of missing benchmarks, we construct PEToolBench, featuring diverse user preferences reflected in interaction history under three distinct personalized settings, and encompassing a wide range of tool-use scenarios. Moreover, we propose a framework PEToolLLaMA to adapt LLMs to the personalized tool learning task, which is trained through supervised fine-tuning and direct preference optimization. Extensive experiments on PEToolBench demonstrate the superiority of PEToolLLaMA over existing LLMs.
Reinforcement Learning Foundations for Deep Research Systems: A Survey
Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.
Reinforce Lifelong Interaction Value of User-Author Pairs for Large-Scale Recommendation Systems
Recommendation systems (RS) help users find interested content and connect authors with their target audience. Most research in RS tends to focus either on predicting users' immediate feedback (like click-through rate) accurately or improving users' long-term engagement. However, they ignore the influence for authors and the lifelong interaction value (LIV) of user-author pairs, which is particularly crucial for improving the prosperity of social community in short-video platforms. Currently, reinforcement learning (RL) can optimize long-term benefits and has been widely applied in RS. In this paper, we introduce RL to Reinforce Lifelong Interaction Value of User-Author pairs (RLIV-UA) based on each interaction of UA pairs. To address the long intervals between UA interactions and the large scale of the UA space, we propose a novel Sparse Cross-Request Interaction Markov Decision Process (SCRI-MDP) and introduce an Adjacent State Approximation (ASA) method to construct RL training samples. Additionally, we introduce Multi-Task Critic Learning (MTCL) to capture the progressive nature of UA interactions (click -> follow -> gift), where denser interaction signals are leveraged to compensate for the learning of sparse labels. Finally, an auxiliary supervised learning task is designed to enhance the convergence of the RLIV-UA model. In offline experiments and online A/B tests, the RLIV-UA model achieves both higher user satisfaction and higher platform profits than compared methods.
Multi-view Hypergraph-based Contrastive Learning Model for Cold-Start Micro-video Recommendation
With the widespread use of mobile devices and the rapid growth of micro-video platforms such as TikTok and Kwai, the demand for personalized micro-video recommendation systems has significantly increased. Micro-videos typically contain diverse information, such as textual metadata, visual cues (e.g., cover images), and dynamic video content, significantly affecting user interaction and engagement patterns. However, most existing approaches often suffer from the problem of over-smoothing, which limits their ability to capture comprehensive interaction information effectively. Additionally, cold-start scenarios present ongoing challenges due to sparse interaction data and the underutilization of available interaction signals. To address these issues, we propose a Multi-view Hypergraph-based Contrastive learning model for cold-start micro-video Recommendation (MHCR). MHCR introduces a multi-view multimodal feature extraction layer to capture interaction signals from various perspectives and incorporates multi-view self-supervised learning tasks to provide additional supervisory signals. Through extensive experiments on two real-world datasets, we show that MHCR significantly outperforms existing video recommendation models and effectively mitigates cold-start challenges. Our code is available at https://github.com/sisuolv/MHCR.
Not All Features Deserve Attention: Graph-Guided Dependency Learning for Tabular Data Generation with Language Models
Large Language Models (LLMs) have shown strong potential for tabular data generation by modeling textualized feature-value pairs. However, tabular data inherently exhibits sparse feature-level dependencies, where many feature interactions are structurally insignificant. This creates a fundamental mismatch as LLMs' self-attention mechanism inevitably distributes focus across all pairs, diluting attention on critical relationships, particularly in datasets with complex dependencies or semantically ambiguous features. To address this limitation, we propose GraDe (Graph-Guided Dependency Learning), a novel method that explicitly integrates sparse dependency graphs into LLMs' attention mechanism. GraDe employs a lightweight dynamic graph learning module guided by externally extracted functional dependencies, prioritizing key feature interactions while suppressing irrelevant ones. Our experiments across diverse real-world datasets demonstrate that GraDe outperforms existing LLM-based approaches by up to 12% on complex datasets while achieving competitive results with state-of-the-art approaches in synthetic data quality. Our method is minimally intrusive yet effective, offering a practical solution for structure-aware tabular data modeling with LLMs.
Trajeglish: Learning the Language of Driving Scenarios
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs. In pursuit of this functionality, we apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios. Using a simple data-driven tokenization scheme, we discretize trajectories to centimeter-level resolution using a small vocabulary. We then model the multi-agent sequence of motion tokens with a GPT-like encoder-decoder that is autoregressive in time and takes into account intra-timestep interaction between agents. Scenarios sampled from our model exhibit state-of-the-art realism; our model tops the Waymo Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%. We ablate our modeling choices in full autonomy and partial autonomy settings, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes. We additionally evaluate the scalability of our model with respect to parameter count and dataset size, and use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks
Representation learning methods have revolutionized machine learning on networks by converting discrete network structures into continuous domains. However, dynamic networks that evolve over time pose new challenges. To address this, dynamic representation learning methods have gained attention, offering benefits like reduced learning time and improved accuracy by utilizing temporal information. T-batching is a valuable technique for training dynamic network models that reduces training time while preserving vital conditions for accurate modeling. However, we have identified a limitation in the training loss function used with t-batching. Through mathematical analysis, we propose two alternative loss functions that overcome these issues, resulting in enhanced training performance. We extensively evaluate the proposed loss functions on synthetic and real-world dynamic networks. The results consistently demonstrate superior performance compared to the original loss function. Notably, in a real-world network characterized by diverse user interaction histories, the proposed loss functions achieved more than 26.9% enhancement in Mean Reciprocal Rank (MRR) and more than 11.8% improvement in Recall@10. These findings underscore the efficacy of the proposed loss functions in dynamic network modeling.
Representation Learning in Continuous-Time Dynamic Signed Networks
Signed networks allow us to model conflicting relationships and interactions, such as friend/enemy and support/oppose. These signed interactions happen in real-time. Modeling such dynamics of signed networks is crucial to understanding the evolution of polarization in the network and enabling effective prediction of the signed structure (i.e., link signs and signed weights) in the future. However, existing works have modeled either (static) signed networks or dynamic (unsigned) networks but not dynamic signed networks. Since both sign and dynamics inform the graph structure in different ways, it is non-trivial to model how to combine the two features. In this work, we propose a new Graph Neural Network (GNN)-based approach to model dynamic signed networks, named SEMBA: Signed link's Evolution using Memory modules and Balanced Aggregation. Here, the idea is to incorporate the signs of temporal interactions using separate modules guided by balance theory and to evolve the embeddings from a higher-order neighborhood. Experiments on 4 real-world datasets and 4 different tasks demonstrate that SEMBA consistently and significantly outperforms the baselines by up to 80% on the tasks of predicting signs of future links while matching the state-of-the-art performance on predicting the existence of these links in the future. We find that this improvement is due specifically to the superior performance of SEMBA on the minority negative class.
Rewarded meta-pruning: Meta Learning with Rewards for Channel Pruning
Convolutional Neural Networks (CNNs) have a large number of parameters and take significantly large hardware resources to compute, so edge devices struggle to run high-level networks. This paper proposes a novel method to reduce the parameters and FLOPs for computational efficiency in deep learning models. We introduce accuracy and efficiency coefficients to control the trade-off between the accuracy of the network and its computing efficiency. The proposed Rewarded meta-pruning algorithm trains a network to generate weights for a pruned model chosen based on the approximate parameters of the final model by controlling the interactions using a reward function. The reward function allows more control over the metrics of the final pruned model. Extensive experiments demonstrate superior performances of the proposed method over the state-of-the-art methods in pruning ResNet-50, MobileNetV1, and MobileNetV2 networks.
VLN-PETL: Parameter-Efficient Transfer Learning for Vision-and-Language Navigation
The performance of the Vision-and-Language Navigation~(VLN) tasks has witnessed rapid progress recently thanks to the use of large pre-trained vision-and-language models. However, full fine-tuning the pre-trained model for every downstream VLN task is becoming costly due to the considerable model size. Recent research hotspot of Parameter-Efficient Transfer Learning (PETL) shows great potential in efficiently tuning large pre-trained models for the common CV and NLP tasks, which exploits the most of the representation knowledge implied in the pre-trained model while only tunes a minimal set of parameters. However, simply utilizing existing PETL methods for the more challenging VLN tasks may bring non-trivial degeneration to the performance. Therefore, we present the first study to explore PETL methods for VLN tasks and propose a VLN-specific PETL method named VLN-PETL. Specifically, we design two PETL modules: Historical Interaction Booster (HIB) and Cross-modal Interaction Booster (CIB). Then we combine these two modules with several existing PETL methods as the integrated VLN-PETL. Extensive experimental results on four mainstream VLN tasks (R2R, REVERIE, NDH, RxR) demonstrate the effectiveness of our proposed VLN-PETL, where VLN-PETL achieves comparable or even better performance to full fine-tuning and outperforms other PETL methods with promising margins.
Truncating Trajectories in Monte Carlo Reinforcement Learning
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed in improving performance.
GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving
Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. This paper tackles the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer model for its implementation. The model incorporates a Transformer encoder, which effectively models the relationships between scene elements, alongside a novel hierarchical Transformer decoder structure. At each decoding level, the decoder utilizes the prediction outcomes from the previous level, in addition to the shared environmental context, to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the preceding level. Through comprehensive experiments on large-scale real-world driving datasets, we demonstrate the state-of-the-art accuracy of our model on the Waymo interaction prediction task. Additionally, we validate the model's capacity to jointly reason about the motion plan of the ego agent and the behaviors of multiple agents in both open-loop and closed-loop planning tests, outperforming various baseline methods. Furthermore, we evaluate the efficacy of our model on the nuPlan planning benchmark, where it achieves leading performance.
On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning
Reinforcement Learning (RL) algorithms can solve challenging control problems directly from image observations, but they often require millions of environment interactions to do so. Recently, model-based RL algorithms have greatly improved sample-efficiency by concurrently learning an internal model of the world, and supplementing real environment interactions with imagined rollouts for policy improvement. However, learning an effective model of the world from scratch is challenging, and in stark contrast to humans that rely heavily on world understanding and visual cues for learning new skills. In this work, we investigate whether internal models learned by modern model-based RL algorithms can be leveraged to solve new, distinctly different tasks faster. We propose Model-Based Cross-Task Transfer (XTRA), a framework for sample-efficient online RL with scalable pretraining and finetuning of learned world models. By offline multi-task pretraining and online cross-task finetuning, we achieve substantial improvements over a baseline trained from scratch; we improve mean performance of model-based algorithm EfficientZero by 23%, and by as much as 71% in some instances.
TPD: Enhancing Student Language Model Reasoning via Principle Discovery and Guidance
Large Language Models (LLMs) have recently showcased remarkable reasoning abilities. However, larger models often surpass their smaller counterparts in reasoning tasks, posing the challenge of effectively transferring these capabilities from larger models. Existing approaches heavily rely on extensive fine-tuning data or continuous interactions with a superior teacher LLM during inference. We introduce a principle-based teacher-student framework called ``Teaching via Principle Discovery'' (TPD) to address these limitations. Inspired by human learning mechanisms, TPD mimics the interaction between a teacher and a student using a principle-based approach. The teacher LLM generates problem-solving instructions and corrective principles based on the student LLM's errors. These principles guide the refinement of instructions and the selection of instructive examples from a validation set. This enables the student model to learn from both the teacher's guidance and its own mistakes. Once the student model begins making inferences, TPD requires no further intervention from the teacher LLM or humans. Through extensive experiments across eight reasoning tasks, we demonstrate the effectiveness of TPD. Compared to standard chain-of-thought prompting, TPD significantly improves the student model's performance, achieving 6.2% improvement on average.
Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection
Human-Object Interaction (HOI) detection is a challenging computer vision task that requires visual models to address the complex interactive relationship between humans and objects and predict HOI triplets. Despite the challenges posed by the numerous interaction combinations, they also offer opportunities for multimodal learning of visual texts. In this paper, we present a systematic and unified framework (RmLR) that enhances HOI detection by incorporating structured text knowledge. Firstly, we qualitatively and quantitatively analyze the loss of interaction information in the two-stage HOI detector and propose a re-mining strategy to generate more comprehensive visual representation.Secondly, we design more fine-grained sentence- and word-level alignment and knowledge transfer strategies to effectively address the many-to-many matching problem between multiple interactions and multiple texts.These strategies alleviate the matching confusion problem that arises when multiple interactions occur simultaneously, thereby improving the effectiveness of the alignment process. Finally, HOI reasoning by visual features augmented with textual knowledge substantially improves the understanding of interactions. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on public benchmarks. We further analyze the effects of different components of our approach to provide insights into its efficacy.
Expanding the Action Space of LLMs to Reason Beyond Language
Large Language Models (LLMs) are powerful reasoners in natural language, but their actions are typically confined to outputting vocabulary tokens. As a result, interactions with external environments -- such as symbolic operators or simulators -- must be expressed through text in predefined formats, parsed, and routed to external interfaces. This overloads the model's language with both reasoning and control duties, and requires a hand-crafted parser, external to the LLM. To address this, we decouple environment interactions from language by internalizing them in an Expanded Action space (ExpA), beyond the vocabulary. The model starts reasoning in the default language environment, but may trigger routing actions and switch to an external environment at any time. From there, the model can only invoke environment-specific actions, receive feedback from the environment, and potentially route back to language as a result. To promote effective exploration of the expanded action space and new environments, we introduce ExpA Reinforcement Learning (EARL) with counterfactual policy optimization. On tasks requiring multi-turn interactions and contingent planning, EARL outperforms strong baselines with vocabulary-constrained actions. It performs robustly across calculator-based multi-task learning and, in the partially observed sorting problem, achieves perfect Sort-4 accuracy while self-discovering an efficient algorithm competitive with classical designs.
DexNDM: Closing the Reality Gap for Dexterous In-Hand Rotation via Joint-Wise Neural Dynamics Model
Achieving generalized in-hand object rotation remains a significant challenge in robotics, largely due to the difficulty of transferring policies from simulation to the real world. The complex, contact-rich dynamics of dexterous manipulation create a "reality gap" that has limited prior work to constrained scenarios involving simple geometries, limited object sizes and aspect ratios, constrained wrist poses, or customized hands. We address this sim-to-real challenge with a novel framework that enables a single policy, trained in simulation, to generalize to a wide variety of objects and conditions in the real world. The core of our method is a joint-wise dynamics model that learns to bridge the reality gap by effectively fitting limited amount of real-world collected data and then adapting the sim policy's actions accordingly. The model is highly data-efficient and generalizable across different whole-hand interaction distributions by factorizing dynamics across joints, compressing system-wide influences into low-dimensional variables, and learning each joint's evolution from its own dynamic profile, implicitly capturing these net effects. We pair this with a fully autonomous data collection strategy that gathers diverse, real-world interaction data with minimal human intervention. Our complete pipeline demonstrates unprecedented generality: a single policy successfully rotates challenging objects with complex shapes (e.g., animals), high aspect ratios (up to 5.33), and small sizes, all while handling diverse wrist orientations and rotation axes. Comprehensive real-world evaluations and a teleoperation application for complex tasks validate the effectiveness and robustness of our approach. Website: https://meowuu7.github.io/DexNDM/
VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that can be extracted for robot manipulation in the form of reasoning and planning. Despite the progress, most still rely on pre-defined motion primitives to carry out the physical interactions with the environment, which remains a major bottleneck. In this work, we aim to synthesize robot trajectories, i.e., a dense sequence of 6-DoF end-effector waypoints, for a large variety of manipulation tasks given an open-set of instructions and an open-set of objects. We achieve this by first observing that LLMs excel at inferring affordances and constraints given a free-form language instruction. More importantly, by leveraging their code-writing capabilities, they can interact with a visual-language model (VLM) to compose 3D value maps to ground the knowledge into the observation space of the agent. The composed value maps are then used in a model-based planning framework to zero-shot synthesize closed-loop robot trajectories with robustness to dynamic perturbations. We further demonstrate how the proposed framework can benefit from online experiences by efficiently learning a dynamics model for scenes that involve contact-rich interactions. We present a large-scale study of the proposed method in both simulated and real-robot environments, showcasing the ability to perform a large variety of everyday manipulation tasks specified in free-form natural language. Project website: https://voxposer.github.io
FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
As an important modeling paradigm in click-through rate (CTR) prediction, the Deep & Cross Network (DCN) and its derivative models have gained widespread recognition primarily due to their success in a trade-off between computational cost and performance. This paradigm employs a cross network to explicitly model feature interactions with linear growth, while leveraging deep neural networks (DNN) to implicitly capture higher-order feature interactions. However, these models still face several key limitations: (1) The performance of existing explicit feature interaction methods lags behind that of implicit DNN, resulting in overall model performance being dominated by the DNN; (2) While these models claim to capture high-order feature interactions, they often overlook potential noise within these interactions; (3) The learning process for different interaction network branches lacks appropriate supervision signals; and (4) The high-order feature interactions captured by these models are often implicit and non-interpretable due to their reliance on DNN. To address the identified limitations, this paper proposes a novel model, called Fusing Cross Network (FCN), along with two sub-networks: Linear Cross Network (LCN) and Exponential Cross Network (ECN). FCN explicitly captures feature interactions with both linear and exponential growth, eliminating the need to rely on implicit DNN. Moreover, we introduce the Self-Mask operation to filter noise layer by layer and reduce the number of parameters in the cross network by half. To effectively train these two cross networks, we propose a simple yet effective loss function called Tri-BCE, which provides tailored supervision signals for each network. We evaluate the effectiveness, efficiency, and interpretability of FCN on six benchmark datasets. Furthermore, by integrating LCN and ECN, FCN achieves a new state-of-the-art performance.
MoIIE: Mixture of Intra- and Inter-Modality Experts for Large Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across multi-modal tasks by scaling model size and training data. However, these dense LVLMs incur significant computational costs and motivate the exploration of sparse Mixture of Experts (MoE) architectures. While MoE improve parameter efficiency, effectively applying MoE to simultaneously model modality-specific features and cross-modal associations in LVLMs remains challenging. In this work, we propose to incorporate Mixture of Intra- and Inter-Modality Experts (MoIIE) to LVLMs. For each token, expert routing is guided by its modality, directing tokens to their respective intra-modality experts as well as a shared pool of inter-modality experts, enabling the model to jointly learn rich intra-modal features and cross-modal interactions. We further introduce an effective and straightforward two-stage training strategy, which facilitates the direct activation of both MoE and multi-modal capabilities. Extensive experiments across different data scales and LLM backbone demonstrate the effectiveness, efficiency and generality of our approach. Notably, our MoIIE models with 5.5B and 11.3B activated parameters match or even surpass the performance of existing advanced open-source MoE-LLMs based multi-modal models that involve more activated parameters. The code is available at https://github.com/AlenjandroWang/MoIIE.
Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs
We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut.
Learning Interactions Between Continuous Treatments and Covariates with a Semiparametric Model
Estimating the impact of continuous treatment variables (e.g., dosage amount) on binary outcomes presents significant challenges in modeling and estimation because many existing approaches make strong assumptions that do not hold for certain continuous treatment variables. For instance, traditional logistic regression makes strong linearity assumptions that do not hold for continuous treatment variables like time of initiation. In this work, we propose a semiparametric regression framework that decomposes effects into two interpretable components: a prognostic score that captures baseline outcome risk based on a combination of clinical, genetic, and sociodemographic features, and a treatment-interaction score that flexibly models the optimal treatment level via a nonparametric link function. By connecting these two parametric scores with Nadaraya-Watson regression, our approach is both interpretable and flexible. The potential of our approach is demonstrated through numerical simulations that show empirical estimation convergence. We conclude by applying our approach to a real-world case study using the International Warfarin Pharmacogenomics Consortium (IWPC) dataset to show our approach's clinical utility by deriving personalized warfarin dosing recommendations that integrate both genetic and clinical data, providing insights towards enhancing patient safety and therapeutic efficacy in anticoagulation therapy.
Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars
In this paper, we propose to create animatable avatars for interacting hands with 3D Gaussian Splatting (GS) and single-image inputs. Existing GS-based methods designed for single subjects often yield unsatisfactory results due to limited input views, various hand poses, and occlusions. To address these challenges, we introduce a novel two-stage interaction-aware GS framework that exploits cross-subject hand priors and refines 3D Gaussians in interacting areas. Particularly, to handle hand variations, we disentangle the 3D presentation of hands into optimization-based identity maps and learning-based latent geometric features and neural texture maps. Learning-based features are captured by trained networks to provide reliable priors for poses, shapes, and textures, while optimization-based identity maps enable efficient one-shot fitting of out-of-distribution hands. Furthermore, we devise an interaction-aware attention module and a self-adaptive Gaussian refinement module. These modules enhance image rendering quality in areas with intra- and inter-hand interactions, overcoming the limitations of existing GS-based methods. Our proposed method is validated via extensive experiments on the large-scale InterHand2.6M dataset, and it significantly improves the state-of-the-art performance in image quality. Project Page: https://github.com/XuanHuang0/GuassianHand.
SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction
Analyzing and forecasting trajectories of agents like pedestrians and cars in complex scenes has become more and more significant in many intelligent systems and applications. The diversity and uncertainty in socially interactive behaviors among a rich variety of agents make this task more challenging than other deterministic computer vision tasks. Researchers have made a lot of efforts to quantify the effects of these interactions on future trajectories through different mathematical models and network structures, but this problem has not been well solved. Inspired by marine animals that localize the positions of their companions underwater through echoes, we build a new anglebased trainable social interaction representation, named SocialCircle, for continuously reflecting the context of social interactions at different angular orientations relative to the target agent. We validate the effect of the proposed SocialCircle by training it along with several newly released trajectory prediction models, and experiments show that the SocialCircle not only quantitatively improves the prediction performance, but also qualitatively helps better simulate social interactions when forecasting pedestrian trajectories in a way that is consistent with human intuitions.
Learning Language Games through Interaction
We introduce a new language learning setting relevant to building adaptive natural language interfaces. It is inspired by Wittgenstein's language games: a human wishes to accomplish some task (e.g., achieving a certain configuration of blocks), but can only communicate with a computer, who performs the actual actions (e.g., removing all red blocks). The computer initially knows nothing about language and therefore must learn it from scratch through interaction, while the human adapts to the computer's capabilities. We created a game in a blocks world and collected interactions from 100 people playing it. First, we analyze the humans' strategies, showing that using compositionality and avoiding synonyms correlates positively with task performance. Second, we compare computer strategies, showing how to quickly learn a semantic parsing model from scratch, and that modeling pragmatics further accelerates learning for successful players.
Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
Learning Human-Human Interactions in Images from Weak Textual Supervision
Interactions between humans are diverse and context-dependent, but previous works have treated them as categorical, disregarding the heavy tail of possible interactions. We propose a new paradigm of learning human-human interactions as free text from a single still image, allowing for flexibility in modeling the unlimited space of situations and relationships between people. To overcome the absence of data labelled specifically for this task, we use knowledge distillation applied to synthetic caption data produced by a large language model without explicit supervision. We show that the pseudo-labels produced by this procedure can be used to train a captioning model to effectively understand human-human interactions in images, as measured by a variety of metrics that measure textual and semantic faithfulness and factual groundedness of our predictions. We further show that our approach outperforms SOTA image captioning and situation recognition models on this task. We will release our code and pseudo-labels along with Waldo and Wenda, a manually-curated test set for still image human-human interaction understanding.
Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction
Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.
Consistency Learning via Decoding Path Augmentation for Transformers in Human Object Interaction Detection
Human-Object Interaction detection is a holistic visual recognition task that entails object detection as well as interaction classification. Previous works of HOI detection has been addressed by the various compositions of subset predictions, e.g., Image -> HO -> I, Image -> HI -> O. Recently, transformer based architecture for HOI has emerged, which directly predicts the HOI triplets in an end-to-end fashion (Image -> HOI). Motivated by various inference paths for HOI detection, we propose cross-path consistency learning (CPC), which is a novel end-to-end learning strategy to improve HOI detection for transformers by leveraging augmented decoding paths. CPC learning enforces all the possible predictions from permuted inference sequences to be consistent. This simple scheme makes the model learn consistent representations, thereby improving generalization without increasing model capacity. Our experiments demonstrate the effectiveness of our method, and we achieved significant improvement on V-COCO and HICO-DET compared to the baseline models. Our code is available at https://github.com/mlvlab/CPChoi.
Learning to Predict Program Execution by Modeling Dynamic Dependency on Code Graphs
Predicting program behavior without execution is an essential and challenging task in software engineering. Traditional models often struggle to capture dynamic dependencies and interactions within code. This paper introduces a novel machine learning-based framework called CodeFlowrepresents, which predicts code coverage and detects runtime errors through Dynamic Dependencies Learning. Utilizing control flow graphs (CFGs), CodeFlowrepresents all possible execution paths and the relationships between different statements, offering a comprehensive understanding of program behavior. It constructs CFGs to depict execution paths and learns vector representations for CFG nodes, capturing static control-flow dependencies. Additionally, it learns dynamic dependencies through execution traces, which reflect the impacts among statements during execution. This approach enables accurate prediction of code coverage and identification of runtime errors. Empirical evaluations show significant improvements in code coverage prediction accuracy and effective localization of runtime errors, surpassing current models.
Improving Human-Object Interaction Detection via Phrase Learning and Label Composition
Human-Object Interaction (HOI) detection is a fundamental task in high-level human-centric scene understanding. We propose PhraseHOI, containing a HOI branch and a novel phrase branch, to leverage language prior and improve relation expression. Specifically, the phrase branch is supervised by semantic embeddings, whose ground truths are automatically converted from the original HOI annotations without extra human efforts. Meanwhile, a novel label composition method is proposed to deal with the long-tailed problem in HOI, which composites novel phrase labels by semantic neighbors. Further, to optimize the phrase branch, a loss composed of a distilling loss and a balanced triplet loss is proposed. Extensive experiments are conducted to prove the effectiveness of the proposed PhraseHOI, which achieves significant improvement over the baseline and surpasses previous state-of-the-art methods on Full and NonRare on the challenging HICO-DET benchmark.
Multi-Modality Representation Learning for Antibody-Antigen Interactions Prediction
While deep learning models play a crucial role in predicting antibody-antigen interactions (AAI), the scarcity of publicly available sequence-structure pairings constrains their generalization. Current AAI methods often focus on residue-level static details, overlooking fine-grained structural representations of antibodies and their inter-antibody similarities. To tackle this challenge, we introduce a multi-modality representation approach that integates 3D structural and 1D sequence data to unravel intricate intra-antibody hierarchical relationships. By harnessing these representations, we present MuLAAIP, an AAI prediction framework that utilizes graph attention networks to illuminate graph-level structural features and normalized adaptive graph convolution networks to capture inter-antibody sequence associations. Furthermore, we have curated an AAI benchmark dataset comprising both structural and sequence information along with interaction labels. Through extensive experiments on this benchmark, our results demonstrate that MuLAAIP outperforms current state-of-the-art methods in terms of predictive performance. The implementation code and dataset are publicly available at https://github.com/trashTian/MuLAAIP for reproducibility.
Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach
The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.
Learning to Match Jobs with Resumes from Sparse Interaction Data using Multi-View Co-Teaching Network
With the ever-increasing growth of online recruitment data, job-resume matching has become an important task to automatically match jobs with suitable resumes. This task is typically casted as a supervised text matching problem. Supervised learning is powerful when the labeled data is sufficient. However, on online recruitment platforms, job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms. To alleviate these problems, in this paper, we propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching. Our network consists of two major components, namely text-based matching model and relation-based matching model. The two parts capture semantic compatibility in two different views, and complement each other. In order to address the challenges from sparse and noisy data, we design two specific strategies to combine the two components. First, two components share the learned parameters or representations, so that the original representations of each component can be enhanced. More importantly, we adopt a co-teaching mechanism to reduce the influence of noise in training data. The core idea is to let the two components help each other by selecting more reliable training instances. The two strategies focus on representation enhancement and data enhancement, respectively. Compared with pure text-based matching models, the proposed approach is able to learn better data representations from limited or even sparse interaction data, which is more resistible to noise in training data. Experiment results have demonstrated that our model is able to outperform state-of-the-art methods for job-resume matching.
Thinking by Doing: Building Efficient World Model Reasoning in LLMs via Multi-turn Interaction
Developing robust world model reasoning is crucial for large language model (LLM) agents to plan and interact in complex environments. While multi-turn interaction offers a superior understanding of environmental dynamics via authentic feedback, current approaches often impose a rigid reasoning process, which constrains the model's active learning, ultimately hindering efficient world model reasoning. To address these issues, we explore world-model internalization through efficient interaction and active reasoning (WMAct), which liberates the model from structured reasoning, allowing the model to shape thinking directly through its doing, and achieves effective and efficient world model reasoning with two key mechanisms: (1) a reward rescaling mechanism adjusting outcome reward based on action efficacy to incentivize redundancy reduction and purposeful interaction; (2) an interaction frequency annealing strategy to progressively reduce the maximum allowed interaction turns, which compels the model to condense its learning and internalize environmental dynamics rather than over-relying on environmental cues. Our experiments on Sokoban, Maze, and Taxi show that WMAct yields effective world model reasoning capable of resolving tasks in a single turn that previously required multiple interactions and fosters strong transferability to complex environments, improving performance on a suite of reasoning benchmarks.
Learning to design protein-protein interactions with enhanced generalization
Discovering mutations enhancing protein-protein interactions (PPIs) is critical for advancing biomedical research and developing improved therapeutics. While machine learning approaches have substantially advanced the field, they often struggle to generalize beyond training data in practical scenarios. The contributions of this work are three-fold. First, we construct PPIRef, the largest and non-redundant dataset of 3D protein-protein interactions, enabling effective large-scale learning. Second, we leverage the PPIRef dataset to pre-train PPIformer, a new SE(3)-equivariant model generalizing across diverse protein-binder variants. We fine-tune PPIformer to predict effects of mutations on protein-protein interactions via a thermodynamically motivated adjustment of the pre-training loss function. Finally, we demonstrate the enhanced generalization of our new PPIformer approach by outperforming other state-of-the-art methods on new, non-leaking splits of standard labeled PPI mutational data and independent case studies optimizing a human antibody against SARS-CoV-2 and increasing the thrombolytic activity of staphylokinase.
The Curious Robot: Learning Visual Representations via Physical Interactions
What is the right supervisory signal to train visual representations? Current approaches in computer vision use category labels from datasets such as ImageNet to train ConvNets. However, in case of biological agents, visual representation learning does not require millions of semantic labels. We argue that biological agents use physical interactions with the world to learn visual representations unlike current vision systems which just use passive observations (images and videos downloaded from web). For example, babies push objects, poke them, put them in their mouth and throw them to learn representations. Towards this goal, we build one of the first systems on a Baxter platform that pushes, pokes, grasps and observes objects in a tabletop environment. It uses four different types of physical interactions to collect more than 130K datapoints, with each datapoint providing supervision to a shared ConvNet architecture allowing us to learn visual representations. We show the quality of learned representations by observing neuron activations and performing nearest neighbor retrieval on this learned representation. Quantitatively, we evaluate our learned ConvNet on image classification tasks and show improvements compared to learning without external data. Finally, on the task of instance retrieval, our network outperforms the ImageNet network on recall@1 by 3%
Video-Text as Game Players: Hierarchical Banzhaf Interaction for Cross-Modal Representation Learning
Contrastive learning-based video-language representation learning approaches, e.g., CLIP, have achieved outstanding performance, which pursue semantic interaction upon pre-defined video-text pairs. To clarify this coarse-grained global interaction and move a step further, we have to encounter challenging shell-breaking interactions for fine-grained cross-modal learning. In this paper, we creatively model video-text as game players with multivariate cooperative game theory to wisely handle the uncertainty during fine-grained semantic interaction with diverse granularity, flexible combination, and vague intensity. Concretely, we propose Hierarchical Banzhaf Interaction (HBI) to value possible correspondence between video frames and text words for sensitive and explainable cross-modal contrast. To efficiently realize the cooperative game of multiple video frames and multiple text words, the proposed method clusters the original video frames (text words) and computes the Banzhaf Interaction between the merged tokens. By stacking token merge modules, we achieve cooperative games at different semantic levels. Extensive experiments on commonly used text-video retrieval and video-question answering benchmarks with superior performances justify the efficacy of our HBI. More encouragingly, it can also serve as a visualization tool to promote the understanding of cross-modal interaction, which have a far-reaching impact on the community. Project page is available at https://jpthu17.github.io/HBI/.
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.
