Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOverlooked factors in concept-based explanations: Dataset choice, concept learnability, and human capability
Concept-based interpretability methods aim to explain deep neural network model predictions using a predefined set of semantic concepts. These methods evaluate a trained model on a new, "probe" dataset and correlate model predictions with the visual concepts labeled in that dataset. Despite their popularity, they suffer from limitations that are not well-understood and articulated by the literature. In this work, we analyze three commonly overlooked factors in concept-based explanations. First, the choice of the probe dataset has a profound impact on the generated explanations. Our analysis reveals that different probe datasets may lead to very different explanations, and suggests that the explanations are not generalizable outside the probe dataset. Second, we find that concepts in the probe dataset are often less salient and harder to learn than the classes they claim to explain, calling into question the correctness of the explanations. We argue that only visually salient concepts should be used in concept-based explanations. Finally, while existing methods use hundreds or even thousands of concepts, our human studies reveal a much stricter upper bound of 32 concepts or less, beyond which the explanations are much less practically useful. We make suggestions for future development and analysis of concept-based interpretability methods. Code for our analysis and user interface can be found at https://github.com/princetonvisualai/OverlookedFactors
Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches
Concept-based explanations have emerged as a popular way of extracting human-interpretable representations from deep discriminative models. At the same time, the disentanglement learning literature has focused on extracting similar representations in an unsupervised or weakly-supervised way, using deep generative models. Despite the overlapping goals and potential synergies, to our knowledge, there has not yet been a systematic comparison of the limitations and trade-offs between concept-based explanations and disentanglement approaches. In this paper, we give an overview of these fields, comparing and contrasting their properties and behaviours on a diverse set of tasks, and highlighting their potential strengths and limitations. In particular, we demonstrate that state-of-the-art approaches from both classes can be data inefficient, sensitive to the specific nature of the classification/regression task, or sensitive to the employed concept representation.
Towards Automatic Concept-based Explanations
Interpretability has become an important topic of research as more machine learning (ML) models are deployed and widely used to make important decisions. Most of the current explanation methods provide explanations through feature importance scores, which identify features that are important for each individual input. However, how to systematically summarize and interpret such per sample feature importance scores itself is challenging. In this work, we propose principles and desiderata for concept based explanation, which goes beyond per-sample features to identify higher-level human-understandable concepts that apply across the entire dataset. We develop a new algorithm, ACE, to automatically extract visual concepts. Our systematic experiments demonstrate that \alg discovers concepts that are human-meaningful, coherent and important for the neural network's predictions.
Interpretable Neural-Symbolic Concept Reasoning
Deep learning methods are highly accurate, yet their opaque decision process prevents them from earning full human trust. Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts. However, state-of-the-art concept-based models rely on high-dimensional concept embedding representations which lack a clear semantic meaning, thus questioning the interpretability of their decision process. To overcome this limitation, we propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings. In DCR, neural networks do not make task predictions directly, but they build syntactic rule structures using concept embeddings. DCR then executes these rules on meaningful concept truth degrees to provide a final interpretable and semantically-consistent prediction in a differentiable manner. Our experiments show that DCR: (i) improves up to +25% w.r.t. state-of-the-art interpretable concept-based models on challenging benchmarks (ii) discovers meaningful logic rules matching known ground truths even in the absence of concept supervision during training, and (iii), facilitates the generation of counterfactual examples providing the learnt rules as guidance.
Nonparametric Identification of Latent Concepts
We are born with the ability to learn concepts by comparing diverse observations. This helps us to understand the new world in a compositional manner and facilitates extrapolation, as objects naturally consist of multiple concepts. In this work, we argue that the cognitive mechanism of comparison, fundamental to human learning, is also vital for machines to recover true concepts underlying the data. This offers correctness guarantees for the field of concept learning, which, despite its impressive empirical successes, still lacks general theoretical support. Specifically, we aim to develop a theoretical framework for the identifiability of concepts with multiple classes of observations. We show that with sufficient diversity across classes, hidden concepts can be identified without assuming specific concept types, functional relations, or parametric generative models. Interestingly, even when conditions are not globally satisfied, we can still provide alternative guarantees for as many concepts as possible based on local comparisons, thereby extending the applicability of our theory to more flexible scenarios. Moreover, the hidden structure between classes and concepts can also be identified nonparametrically. We validate our theoretical results in both synthetic and real-world settings.
UFO: A unified method for controlling Understandability and Faithfulness Objectives in concept-based explanations for CNNs
Concept-based explanations for convolutional neural networks (CNNs) aim to explain model behavior and outputs using a pre-defined set of semantic concepts (e.g., the model recognizes scene class ``bedroom'' based on the presence of concepts ``bed'' and ``pillow''). However, they often do not faithfully (i.e., accurately) characterize the model's behavior and can be too complex for people to understand. Further, little is known about how faithful and understandable different explanation methods are, and how to control these two properties. In this work, we propose UFO, a unified method for controlling Understandability and Faithfulness Objectives in concept-based explanations. UFO formalizes understandability and faithfulness as mathematical objectives and unifies most existing concept-based explanations methods for CNNs. Using UFO, we systematically investigate how explanations change as we turn the knobs of faithfulness and understandability. Our experiments demonstrate a faithfulness-vs-understandability tradeoff: increasing understandability reduces faithfulness. We also provide insights into the ``disagreement problem'' in explainable machine learning, by analyzing when and how concept-based explanations disagree with each other.
DEAL: Disentangle and Localize Concept-level Explanations for VLMs
Large pre-trained Vision-Language Models (VLMs) have become ubiquitous foundational components of other models and downstream tasks. Although powerful, our empirical results reveal that such models might not be able to identify fine-grained concepts. Specifically, the explanations of VLMs with respect to fine-grained concepts are entangled and mislocalized. To address this issue, we propose to DisEntAngle and Localize (DEAL) the concept-level explanations for VLMs without human annotations. The key idea is encouraging the concept-level explanations to be distinct while maintaining consistency with category-level explanations. We conduct extensive experiments and ablation studies on a wide range of benchmark datasets and vision-language models. Our empirical results demonstrate that the proposed method significantly improves the concept-level explanations of the model in terms of disentanglability and localizability. Surprisingly, the improved explainability alleviates the model's reliance on spurious correlations, which further benefits the prediction accuracy.
Towards Compositionality in Concept Learning
Concept-based interpretability methods offer a lens into the internals of foundation models by decomposing their embeddings into high-level concepts. These concept representations are most useful when they are compositional, meaning that the individual concepts compose to explain the full sample. We show that existing unsupervised concept extraction methods find concepts which are not compositional. To automatically discover compositional concept representations, we identify two salient properties of such representations, and propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties. We evaluate CCE on five different datasets over image and text data. Our evaluation shows that CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks. Code and data are available at https://github.com/adaminsky/compositional_concepts .
Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace
Many interpretable AI approaches have been proposed to provide plausible explanations for a model's decision-making. However, configuring an explainable model that effectively communicates among computational modules has received less attention. A recently proposed shared global workspace theory showed that networks of distributed modules can benefit from sharing information with a bottlenecked memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability, consisting of: i) an object-centric-based memory module for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and explanation losses to allow human analysts to directly assess an explanation for the model's classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100, CUB-200-2011, and ImageNet, and we show that our model achieves better classification accuracy than all baselines across all problems but also generates more consistent concept-based explanations of classification output.
A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation
In recent years, concept-based approaches have emerged as some of the most promising explainability methods to help us interpret the decisions of Artificial Neural Networks (ANNs). These methods seek to discover intelligible visual 'concepts' buried within the complex patterns of ANN activations in two key steps: (1) concept extraction followed by (2) importance estimation. While these two steps are shared across methods, they all differ in their specific implementations. Here, we introduce a unifying theoretical framework that comprehensively defines and clarifies these two steps. This framework offers several advantages as it allows us: (i) to propose new evaluation metrics for comparing different concept extraction approaches; (ii) to leverage modern attribution methods and evaluation metrics to extend and systematically evaluate state-of-the-art concept-based approaches and importance estimation techniques; (iii) to derive theoretical guarantees regarding the optimality of such methods. We further leverage our framework to try to tackle a crucial question in explainability: how to efficiently identify clusters of data points that are classified based on a similar shared strategy. To illustrate these findings and to highlight the main strategies of a model, we introduce a visual representation called the strategic cluster graph. Finally, we present https://serre-lab.github.io/Lens, a dedicated website that offers a complete compilation of these visualizations for all classes of the ImageNet dataset.
Explanatory Learning: Beyond Empiricism in Neural Networks
We introduce Explanatory Learning (EL), a framework to let machines use existing knowledge buried in symbolic sequences -- e.g. explanations written in hieroglyphic -- by autonomously learning to interpret them. In EL, the burden of interpreting symbols is not left to humans or rigid human-coded compilers, as done in Program Synthesis. Rather, EL calls for a learned interpreter, built upon a limited collection of symbolic sequences paired with observations of several phenomena. This interpreter can be used to make predictions on a novel phenomenon given its explanation, and even to find that explanation using only a handful of observations, like human scientists do. We formulate the EL problem as a simple binary classification task, so that common end-to-end approaches aligned with the dominant empiricist view of machine learning could, in principle, solve it. To these models, we oppose Critical Rationalist Networks (CRNs), which instead embrace a rationalist view on the acquisition of knowledge. CRNs express several desired properties by construction, they are truly explainable, can adjust their processing at test-time for harder inferences, and can offer strong confidence guarantees on their predictions. As a final contribution, we introduce Odeen, a basic EL environment that simulates a small flatland-style universe full of phenomena to explain. Using Odeen as a testbed, we show how CRNs outperform empiricist end-to-end approaches of similar size and architecture (Transformers) in discovering explanations for novel phenomena.
Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers
In this paper, we demonstrate the feasibility of alterfactual explanations for black box image classifiers. Traditional explanation mechanisms from the field of Counterfactual Thinking are a widely-used paradigm for Explainable Artificial Intelligence (XAI), as they follow a natural way of reasoning that humans are familiar with. However, most common approaches from this field are based on communicating information about features or characteristics that are especially important for an AI's decision. However, to fully understand a decision, not only knowledge about relevant features is needed, but the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system. To this end, a novel approach for explaining AI systems called alterfactual explanations was recently proposed on a conceptual level. It is based on showing an alternative reality where irrelevant features of an AI's input are altered. By doing so, the user directly sees which input data characteristics can change arbitrarily without influencing the AI's decision. In this paper, we show for the first time that it is possible to apply this idea to black box models based on neural networks. To this end, we present a GAN-based approach to generate these alterfactual explanations for binary image classifiers. Further, we present a user study that gives interesting insights on how alterfactual explanations can complement counterfactual explanations.
State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding
As more non-AI experts use complex AI systems for daily tasks, there has been an increasing effort to develop methods that produce explanations of AI decision making that are understandable by non-AI experts. Towards this effort, leveraging higher-level concepts and producing concept-based explanations have become a popular method. Most concept-based explanations have been developed for classification techniques, and we posit that the few existing methods for sequential decision making are limited in scope. In this work, we first contribute a desiderata for defining concepts in sequential decision making settings. Additionally, inspired by the Protege Effect which states explaining knowledge often reinforces one's self-learning, we explore how concept-based explanations of an RL agent's decision making can in turn improve the agent's learning rate, as well as improve end-user understanding of the agent's decision making. To this end, we contribute a unified framework, State2Explanation (S2E), that involves learning a joint embedding model between state-action pairs and concept-based explanations, and leveraging such learned model to both (1) inform reward shaping during an agent's training, and (2) provide explanations to end-users at deployment for improved task performance. Our experimental validations, in Connect 4 and Lunar Lander, demonstrate the success of S2E in providing a dual-benefit, successfully informing reward shaping and improving agent learning rate, as well as significantly improving end user task performance at deployment time.
On the Tip of the Tongue: Analyzing Conceptual Representation in Large Language Models with Reverse-Dictionary Probe
Probing and enhancing large language models' reasoning capacity remains a crucial open question. Here we re-purpose the reverse dictionary task as a case study to probe LLMs' capacity for conceptual inference. We use in-context learning to guide the models to generate the term for an object concept implied in a linguistic description. Models robustly achieve high accuracy in this task, and their representation space encodes information about object categories and fine-grained features. Further experiments suggest that the conceptual inference ability as probed by the reverse-dictionary task predicts model's general reasoning performance across multiple benchmarks, despite similar syntactic generalization behaviors across models. Explorative analyses suggest that prompting LLMs with descriptionRightarrowword examples may induce generalization beyond surface-level differences in task construals and facilitate models on broader commonsense reasoning problems.
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles
Concept-Based Explainable Artificial Intelligence: Metrics and Benchmarks
Concept-based explanation methods, such as concept bottleneck models (CBMs), aim to improve the interpretability of machine learning models by linking their decisions to human-understandable concepts, under the critical assumption that such concepts can be accurately attributed to the network's feature space. However, this foundational assumption has not been rigorously validated, mainly because the field lacks standardised metrics and benchmarks to assess the existence and spatial alignment of such concepts. To address this, we propose three metrics: the concept global importance metric, the concept existence metric, and the concept location metric, including a technique for visualising concept activations, i.e., concept activation mapping. We benchmark post-hoc CBMs to illustrate their capabilities and challenges. Through qualitative and quantitative experiments, we demonstrate that, in many cases, even the most important concepts determined by post-hoc CBMs are not present in input images; moreover, when they are present, their saliency maps fail to align with the expected regions by either activating across an entire object or misidentifying relevant concept-specific regions. We analyse the root causes of these limitations, such as the natural correlation of concepts. Our findings underscore the need for more careful application of concept-based explanation techniques especially in settings where spatial interpretability is critical.
The Impossibility of Inverse Permutation Learning in Transformer Models
In this technical note, we study the problem of inverse permutation learning in decoder-only transformers. Given a permutation and a string to which that permutation has been applied, the model is tasked with producing the original (``canonical'') string. We argue that this task models a natural robustness property across a variety of reasoning tasks, including long-context retrieval, multiple choice QA and in-context learning. Our primary contribution is an impossibility result: we show that an arbitrary depth, decoder-only transformer cannot learn this task. This result concerns the expressive capacity of decoder-only transformer models and is agnostic to training dynamics or sample complexity. We give a pair of alternative constructions under which inverse permutation learning is feasible. The first of these highlights the fundamental role of the causal attention mask, and reveals a gap between the expressivity of encoder-decoder transformers and the more popular decoder-only architecture. The latter result is more surprising: we show that simply padding the input with ``scratch tokens" yields a construction under which inverse permutation learning is possible. We conjecture that this may suggest an alternative mechanism by which chain-of-thought prompting or, more generally, intermediate ``thinking'' tokens can enable reasoning in large language models, even when these tokens encode no meaningful semantic information (e.g., the results of intermediate computations).
Explaining Deep Neural Networks for Bearing Fault Detection with Vibration Concepts
Concept-based explanation methods, such as Concept Activation Vectors, are potent means to quantify how abstract or high-level characteristics of input data influence the predictions of complex deep neural networks. However, applying them to industrial prediction problems is challenging as it is not immediately clear how to define and access appropriate concepts for individual use cases and specific data types. In this work, we investigate how to leverage established concept-based explanation techniques in the context of bearing fault detection with deep neural networks trained on vibration signals. Since bearings are prevalent in almost every rotating equipment, ensuring the reliability of intransparent fault detection models is crucial to prevent costly repairs and downtimes of industrial machinery. Our evaluations demonstrate that explaining opaque models in terms of vibration concepts enables human-comprehensible and intuitive insights about their inner workings, but the underlying assumptions need to be carefully validated first.
ELUDE: Generating interpretable explanations via a decomposition into labelled and unlabelled features
Deep learning models have achieved remarkable success in different areas of machine learning over the past decade; however, the size and complexity of these models make them difficult to understand. In an effort to make them more interpretable, several recent works focus on explaining parts of a deep neural network through human-interpretable, semantic attributes. However, it may be impossible to completely explain complex models using only semantic attributes. In this work, we propose to augment these attributes with a small set of uninterpretable features. Specifically, we develop a novel explanation framework ELUDE (Explanation via Labelled and Unlabelled DEcomposition) that decomposes a model's prediction into two parts: one that is explainable through a linear combination of the semantic attributes, and another that is dependent on the set of uninterpretable features. By identifying the latter, we are able to analyze the "unexplained" portion of the model, obtaining insights into the information used by the model. We show that the set of unlabelled features can generalize to multiple models trained with the same feature space and compare our work to two popular attribute-oriented methods, Interpretable Basis Decomposition and Concept Bottleneck, and discuss the additional insights ELUDE provides.
Learning Bottleneck Concepts in Image Classification
Interpreting and explaining the behavior of deep neural networks is critical for many tasks. Explainable AI provides a way to address this challenge, mostly by providing per-pixel relevance to the decision. Yet, interpreting such explanations may require expert knowledge. Some recent attempts toward interpretability adopt a concept-based framework, giving a higher-level relationship between some concepts and model decisions. This paper proposes Bottleneck Concept Learner (BotCL), which represents an image solely by the presence/absence of concepts learned through training over the target task without explicit supervision over the concepts. It uses self-supervision and tailored regularizers so that learned concepts can be human-understandable. Using some image classification tasks as our testbed, we demonstrate BotCL's potential to rebuild neural networks for better interpretability. Code is available at https://github.com/wbw520/BotCL and a simple demo is available at https://botcl.liangzhili.com/.
Interpreting Language Models Through Concept Descriptions: A Survey
Understanding the decision-making processes of neural networks is a central goal of mechanistic interpretability. In the context of Large Language Models (LLMs), this involves uncovering the underlying mechanisms and identifying the roles of individual model components such as neurons and attention heads, as well as model abstractions such as the learned sparse features extracted by Sparse Autoencoders (SAEs). A rapidly growing line of work tackles this challenge by using powerful generator models to produce open-vocabulary, natural language concept descriptions for these components. In this paper, we provide the first survey of the emerging field of concept descriptions for model components and abstractions. We chart the key methods for generating these descriptions, the evolving landscape of automated and human metrics for evaluating them, and the datasets that underpin this research. Our synthesis reveals a growing demand for more rigorous, causal evaluation. By outlining the state of the art and identifying key challenges, this survey provides a roadmap for future research toward making models more transparent.
XAI Handbook: Towards a Unified Framework for Explainable AI
The field of explainable AI (XAI) has quickly become a thriving and prolific community. However, a silent, recurrent and acknowledged issue in this area is the lack of consensus regarding its terminology. In particular, each new contribution seems to rely on its own (and often intuitive) version of terms like "explanation" and "interpretation". Such disarray encumbers the consolidation of advances in the field towards the fulfillment of scientific and regulatory demands e.g., when comparing methods or establishing their compliance with respect to biases and fairness constraints. We propose a theoretical framework that not only provides concrete definitions for these terms, but it also outlines all steps necessary to produce explanations and interpretations. The framework also allows for existing contributions to be re-contextualized such that their scope can be measured, thus making them comparable to other methods. We show that this framework is compliant with desiderata on explanations, on interpretability and on evaluation metrics. We present a use-case showing how the framework can be used to compare LIME, SHAP and MDNet, establishing their advantages and shortcomings. Finally, we discuss relevant trends in XAI as well as recommendations for future work, all from the standpoint of our framework.
Rigorously Assessing Natural Language Explanations of Neurons
Natural language is an appealing medium for explaining how large language models process and store information, but evaluating the faithfulness of such explanations is challenging. To help address this, we develop two modes of evaluation for natural language explanations that claim individual neurons represent a concept in a text input. In the observational mode, we evaluate claims that a neuron a activates on all and only input strings that refer to a concept picked out by the proposed explanation E. In the intervention mode, we construe E as a claim that the neuron a is a causal mediator of the concept denoted by E. We apply our framework to the GPT-4-generated explanations of GPT-2 XL neurons of Bills et al. (2023) and show that even the most confident explanations have high error rates and little to no causal efficacy. We close the paper by critically assessing whether natural language is a good choice for explanations and whether neurons are the best level of analysis.
Emergence of Abstractions: Concept Encoding and Decoding Mechanism for In-Context Learning in Transformers
Humans distill complex experiences into fundamental abstractions that enable rapid learning and adaptation. Similarly, autoregressive transformers exhibit adaptive learning through in-context learning (ICL), which begs the question of how. In this paper, we propose concept encoding-decoding mechanism to explain ICL by studying how transformers form and use internal abstractions in their representations. On synthetic ICL tasks, we analyze the training dynamics of a small transformer and report the coupled emergence of concept encoding and decoding. As the model learns to encode different latent concepts (e.g., ``Finding the first noun in a sentence.") into distinct, separable representations, it concureently builds conditional decoding algorithms and improve its ICL performance. We validate the existence of this mechanism across pretrained models of varying scales (Gemma-2 2B/9B/27B, Llama-3.1 8B/70B). Further, through mechanistic interventions and controlled finetuning, we demonstrate that the quality of concept encoding is causally related and predictive of ICL performance. Our empirical insights shed light into better understanding the success and failure modes of large language models via their representations.
Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space
Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.
CRAFT: Concept Recursive Activation FacTorization for Explainability
Attribution methods, which employ heatmaps to identify the most influential regions of an image that impact model decisions, have gained widespread popularity as a type of explainability method. However, recent research has exposed the limited practical value of these methods, attributed in part to their narrow focus on the most prominent regions of an image -- revealing "where" the model looks, but failing to elucidate "what" the model sees in those areas. In this work, we try to fill in this gap with CRAFT -- a novel approach to identify both "what" and "where" by generating concept-based explanations. We introduce 3 new ingredients to the automatic concept extraction literature: (i) a recursive strategy to detect and decompose concepts across layers, (ii) a novel method for a more faithful estimation of concept importance using Sobol indices, and (iii) the use of implicit differentiation to unlock Concept Attribution Maps. We conduct both human and computer vision experiments to demonstrate the benefits of the proposed approach. We show that the proposed concept importance estimation technique is more faithful to the model than previous methods. When evaluating the usefulness of the method for human experimenters on a human-centered utility benchmark, we find that our approach significantly improves on two of the three test scenarios. Our code is freely available at github.com/deel-ai/Craft.
Interactive Medical Image Analysis with Concept-based Similarity Reasoning
The ability to interpret and intervene model decisions is important for the adoption of computer-aided diagnosis methods in clinical workflows. Recent concept-based methods link the model predictions with interpretable concepts and modify their activation scores to interact with the model. However, these concepts are at the image level, which hinders the model from pinpointing the exact patches the concepts are activated. Alternatively, prototype-based methods learn representations from training image patches and compare these with test image patches, using the similarity scores for final class prediction. However, interpreting the underlying concepts of these patches can be challenging and often necessitates post-hoc guesswork. To address this issue, this paper introduces the novel Concept-based Similarity Reasoning network (CSR), which offers (i) patch-level prototype with intrinsic concept interpretation, and (ii) spatial interactivity. First, the proposed CSR provides localized explanation by grounding prototypes of each concept on image regions. Second, our model introduces novel spatial-level interaction, allowing doctors to engage directly with specific image areas, making it an intuitive and transparent tool for medical imaging. CSR improves upon prior state-of-the-art interpretable methods by up to 4.5\% across three biomedical datasets. Our code is released at https://github.com/tadeephuy/InteractCSR.
Contrastive Chain-of-Thought Prompting
Despite the success of chain of thought in enhancing language model reasoning, the underlying process remains less well understood. Although logically sound reasoning appears inherently crucial for chain of thought, prior studies surprisingly reveal minimal impact when using invalid demonstrations instead. Furthermore, the conventional chain of thought does not inform language models on what mistakes to avoid, which potentially leads to more errors. Hence, inspired by how humans can learn from both positive and negative examples, we propose contrastive chain of thought to enhance language model reasoning. Compared to the conventional chain of thought, our approach provides both valid and invalid reasoning demonstrations, to guide the model to reason step-by-step while reducing reasoning mistakes. To improve generalization, we introduce an automatic method to construct contrastive demonstrations. Our experiments on reasoning benchmarks demonstrate that contrastive chain of thought can serve as a general enhancement of chain-of-thought prompting.
Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of "Concept Depth" to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, QWen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at https://github.com/Luckfort/CD.
Demystifying Embedding Spaces using Large Language Models
Embeddings have become a pivotal means to represent complex, multi-faceted information about entities, concepts, and relationships in a condensed and useful format. Nevertheless, they often preclude direct interpretation. While downstream tasks make use of these compressed representations, meaningful interpretation usually requires visualization using dimensionality reduction or specialized machine learning interpretability methods. This paper addresses the challenge of making such embeddings more interpretable and broadly useful, by employing Large Language Models (LLMs) to directly interact with embeddings -- transforming abstract vectors into understandable narratives. By injecting embeddings into LLMs, we enable querying and exploration of complex embedding data. We demonstrate our approach on a variety of diverse tasks, including: enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems. Our work couples the immense information potential of embeddings with the interpretative power of LLMs.
CEBaB: Estimating the Causal Effects of Real-World Concepts on NLP Model Behavior
The increasing size and complexity of modern ML systems has improved their predictive capabilities but made their behavior harder to explain. Many techniques for model explanation have been developed in response, but we lack clear criteria for assessing these techniques. In this paper, we cast model explanation as the causal inference problem of estimating causal effects of real-world concepts on the output behavior of ML models given actual input data. We introduce CEBaB, a new benchmark dataset for assessing concept-based explanation methods in Natural Language Processing (NLP). CEBaB consists of short restaurant reviews with human-generated counterfactual reviews in which an aspect (food, noise, ambiance, service) of the dining experience was modified. Original and counterfactual reviews are annotated with multiply-validated sentiment ratings at the aspect-level and review-level. The rich structure of CEBaB allows us to go beyond input features to study the effects of abstract, real-world concepts on model behavior. We use CEBaB to compare the quality of a range of concept-based explanation methods covering different assumptions and conceptions of the problem, and we seek to establish natural metrics for comparative assessments of these methods.
Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure
Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we identify two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. We demonstrate that the skill of reversal unlocks a new kind of memory integration that enables models to solve large-scale arithmetic reasoning problems via parametric forward-chaining, outperforming frontier LLMs based on non-parametric memory and prolonged explicit reasoning.
Complementary Explanations for Effective In-Context Learning
Large language models (LLMs) have exhibited remarkable capabilities in learning from explanations in prompts, but there has been limited understanding of exactly how these explanations function or why they are effective. This work aims to better understand the mechanisms by which explanations are used for in-context learning. We first study the impact of two different factors on the performance of prompts with explanations: the computation trace (the way the solution is decomposed) and the natural language used to express the prompt. By perturbing explanations on three controlled tasks, we show that both factors contribute to the effectiveness of explanations. We further study how to form maximally effective sets of explanations for solving a given test query. We find that LLMs can benefit from the complementarity of the explanation set: diverse reasoning skills shown by different exemplars can lead to better performance. Therefore, we propose a maximal marginal relevance-based exemplar selection approach for constructing exemplar sets that are both relevant as well as complementary, which successfully improves the in-context learning performance across three real-world tasks on multiple LLMs.
Human-like conceptual representations emerge from language prediction
Recent advances in large language models (LLMs) provide a new opportunity to address the long-standing question of how concepts are represented and organized in the mind, which is central to unravelling the nature of human cognition. Here, we reframed the classic reverse dictionary task to simulate human concept inference in context and investigated the emergence of human-like conceptual representations within LLMs. We found that LLMs were able to infer concepts from definitional descriptions and construct representation spaces that converge towards a shared, context-independent structure. These representations effectively predicted human behavioural judgments and aligned well with neural activity patterns in the human brain, offering evidence for biological plausibility. These findings demonstrate that human-like conceptual representations and organization can naturally emerge from language prediction, even without real-world grounding. Our work supports the view that LLMs serve as valuable tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.
FACT: Learning Governing Abstractions Behind Integer Sequences
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic descriptions, and Conceptual Relations
We present a meta-learning framework for learning new visual concepts quickly, from just one or a few examples, guided by multiple naturally occurring data streams: simultaneously looking at images, reading sentences that describe the objects in the scene, and interpreting supplemental sentences that relate the novel concept with other concepts. The learned concepts support downstream applications, such as answering questions by reasoning about unseen images. Our model, namely FALCON, represents individual visual concepts, such as colors and shapes, as axis-aligned boxes in a high-dimensional space (the "box embedding space"). Given an input image and its paired sentence, our model first resolves the referential expression in the sentence and associates the novel concept with particular objects in the scene. Next, our model interprets supplemental sentences to relate the novel concept with other known concepts, such as "X has property Y" or "X is a kind of Y". Finally, it infers an optimal box embedding for the novel concept that jointly 1) maximizes the likelihood of the observed instances in the image, and 2) satisfies the relationships between the novel concepts and the known ones. We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we first conduct experiments on a synthetic dataset of counterfactuals, allowing for a direct comparison between classifier predictions based on ground truth counterfactuals (obtained through explicit text interventions) and our counterfactuals, derived through interventions in the representation space. Second, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision
Deep neural networks have demonstrated promising performance on image recognition tasks. However, they may heavily rely on confounding factors, using irrelevant artifacts or bias within the dataset as the cue to improve performance. When a model performs decision-making based on these spurious correlations, it can become untrustable and lead to catastrophic outcomes when deployed in the real-world scene. In this paper, we explore and try to solve this problem in the context of skin cancer diagnosis. We introduce a human-in-the-loop framework in the model training process such that users can observe and correct the model's decision logic when confounding behaviors happen. Specifically, our method can automatically discover confounding factors by analyzing the co-occurrence behavior of the samples. It is capable of learning confounding concepts using easily obtained concept exemplars. By mapping the black-box model's feature representation onto an explainable concept space, human users can interpret the concept and intervene via first order-logic instruction. We systematically evaluate our method on our newly crafted, well-controlled skin lesion dataset and several public skin lesion datasets. Experiments show that our method can effectively detect and remove confounding factors from datasets without any prior knowledge about the category distribution and does not require fully annotated concept labels. We also show that our method enables the model to focus on clinical-related concepts, improving the model's performance and trustworthiness during model inference.
Frame Representation Hypothesis: Multi-Token LLM Interpretability and Concept-Guided Text Generation
Interpretability is a key challenge in fostering trust for Large Language Models (LLMs), which stems from the complexity of extracting reasoning from model's parameters. We present the Frame Representation Hypothesis, a theoretically robust framework grounded in the Linear Representation Hypothesis (LRH) to interpret and control LLMs by modeling multi-token words. Prior research explored LRH to connect LLM representations with linguistic concepts, but was limited to single token analysis. As most words are composed of several tokens, we extend LRH to multi-token words, thereby enabling usage on any textual data with thousands of concepts. To this end, we propose words can be interpreted as frames, ordered sequences of vectors that better capture token-word relationships. Then, concepts can be represented as the average of word frames sharing a common concept. We showcase these tools through Top-k Concept-Guided Decoding, which can intuitively steer text generation using concepts of choice. We verify said ideas on Llama 3.1, Gemma 2, and Phi 3 families, demonstrating gender and language biases, exposing harmful content, but also potential to remediate them, leading to safer and more transparent LLMs. Code is available at https://github.com/phvv-me/frame-representation-hypothesis.git
Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps between rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
The Linear Representation Hypothesis and the Geometry of Large Language Models
Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.
Latent Space Explanation by Intervention
The success of deep neural nets heavily relies on their ability to encode complex relations between their input and their output. While this property serves to fit the training data well, it also obscures the mechanism that drives prediction. This study aims to reveal hidden concepts by employing an intervention mechanism that shifts the predicted class based on discrete variational autoencoders. An explanatory model then visualizes the encoded information from any hidden layer and its corresponding intervened representation. By the assessment of differences between the original representation and the intervened representation, one can determine the concepts that can alter the class, hence providing interpretability. We demonstrate the effectiveness of our approach on CelebA, where we show various visualizations for bias in the data and suggest different interventions to reveal and change bias.
Formal Abductive Latent Explanations for Prototype-Based Networks
Case-based reasoning networks are machine-learning models that make predictions based on similarity between the input and prototypical parts of training samples, called prototypes. Such models are able to explain each decision by pointing to the prototypes that contributed the most to the final outcome. As the explanation is a core part of the prediction, they are often qualified as ``interpretable by design". While promising, we show that such explanations are sometimes misleading, which hampers their usefulness in safety-critical contexts. In particular, several instances may lead to different predictions and yet have the same explanation. Drawing inspiration from the field of formal eXplainable AI (FXAI), we propose Abductive Latent Explanations (ALEs), a formalism to express sufficient conditions on the intermediate (latent) representation of the instance that imply the prediction. Our approach combines the inherent interpretability of case-based reasoning models and the guarantees provided by formal XAI. We propose a solver-free and scalable algorithm for generating ALEs based on three distinct paradigms, compare them, and present the feasibility of our approach on diverse datasets for both standard and fine-grained image classification. The associated code can be found at https://github.com/julsoria/ale
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
An Image is Worth Multiple Words: Learning Object Level Concepts using Multi-Concept Prompt Learning
Textural Inversion, a prompt learning method, learns a singular embedding for a new "word" to represent image style and appearance, allowing it to be integrated into natural language sentences to generate novel synthesised images. However, identifying and integrating multiple object-level concepts within one scene poses significant challenges even when embeddings for individual concepts are attainable. This is further confirmed by our empirical tests. To address this challenge, we introduce a framework for Multi-Concept Prompt Learning (MCPL), where multiple new "words" are simultaneously learned from a single sentence-image pair. To enhance the accuracy of word-concept correlation, we propose three regularisation techniques: Attention Masking (AttnMask) to concentrate learning on relevant areas; Prompts Contrastive Loss (PromptCL) to separate the embeddings of different concepts; and Bind adjective (Bind adj.) to associate new "words" with known words. We evaluate via image generation, editing, and attention visualisation with diverse images. Extensive quantitative comparisons demonstrate that our method can learn more semantically disentangled concepts with enhanced word-concept correlation. Additionally, we introduce a novel dataset and evaluation protocol tailored for this new task of learning object-level concepts.
Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the other model is significantly more capable). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods.
Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data
One way to address safety risks from large language models (LLMs) is to censor dangerous knowledge from their training data. While this removes the explicit information, implicit information can remain scattered across various training documents. Could an LLM infer the censored knowledge by piecing together these implicit hints? As a step towards answering this question, we study inductive out-of-context reasoning (OOCR), a type of generalization in which LLMs infer latent information from evidence distributed across training documents and apply it to downstream tasks without in-context learning. Using a suite of five tasks, we demonstrate that frontier LLMs can perform inductive OOCR. In one experiment we finetune an LLM on a corpus consisting only of distances between an unknown city and other known cities. Remarkably, without in-context examples or Chain of Thought, the LLM can verbalize that the unknown city is Paris and use this fact to answer downstream questions. Further experiments show that LLMs trained only on individual coin flip outcomes can verbalize whether the coin is biased, and those trained only on pairs (x,f(x)) can articulate a definition of f and compute inverses. While OOCR succeeds in a range of cases, we also show that it is unreliable, particularly for smaller LLMs learning complex structures. Overall, the ability of LLMs to "connect the dots" without explicit in-context learning poses a potential obstacle to monitoring and controlling the knowledge acquired by LLMs.
ConceptCarve: Dynamic Realization of Evidence
Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities.
Can LLMs faithfully generate their layperson-understandable 'self'?: A Case Study in High-Stakes Domains
Large Language Models (LLMs) have significantly impacted nearly every domain of human knowledge. However, the explainability of these models esp. to laypersons, which are crucial for instilling trust, have been examined through various skeptical lenses. In this paper, we introduce a novel notion of LLM explainability to laypersons, termed ReQuesting, across three high-priority application domains -- law, health and finance, using multiple state-of-the-art LLMs. The proposed notion exhibits faithful generation of explainable layman-understandable algorithms on multiple tasks through high degree of reproducibility. Furthermore, we observe a notable alignment of the explainable algorithms with intrinsic reasoning of the LLMs.
Counterfactual Visual Explanations
In this work, we develop a technique to produce counterfactual visual explanations. Given a 'query' image I for which a vision system predicts class c, a counterfactual visual explanation identifies how I could change such that the system would output a different specified class c'. To do this, we select a 'distractor' image I' that the system predicts as class c' and identify spatial regions in I and I' such that replacing the identified region in I with the identified region in I' would push the system towards classifying I as c'. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples.
On Meta-Prompting
Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
Efficient Reasoning Models: A Survey
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference. A curated collection of papers discussed in this survey is available in our GitHub repository.
A Survey on Latent Reasoning
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.
Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.
Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection
Generating explanations for neural networks has become crucial for their applications in real-world with respect to reliability and trustworthiness. In natural language processing, existing methods usually provide important features which are words or phrases selected from an input text as an explanation, but ignore the interactions between them. It poses challenges for humans to interpret an explanation and connect it to model prediction. In this work, we build hierarchical explanations by detecting feature interactions. Such explanations visualize how words and phrases are combined at different levels of the hierarchy, which can help users understand the decision-making of black-box models. The proposed method is evaluated with three neural text classifiers (LSTM, CNN, and BERT) on two benchmark datasets, via both automatic and human evaluations. Experiments show the effectiveness of the proposed method in providing explanations that are both faithful to models and interpretable to humans.
I Bet You Did Not Mean That: Testing Semantic Importance via Betting
Recent works have extended notions of feature importance to semantic concepts that are inherently interpretable to the users interacting with a black-box predictive model. Yet, precise statistical guarantees, such as false positive rate control, are needed to communicate findings transparently and to avoid unintended consequences in real-world scenarios. In this paper, we formalize the global (i.e., over a population) and local (i.e., for a sample) statistical importance of semantic concepts for the predictions of opaque models, by means of conditional independence, which allows for rigorous testing. We use recent ideas of sequential kernelized testing (SKIT) to induce a rank of importance across concepts, and showcase the effectiveness and flexibility of our framework on synthetic datasets as well as on image classification tasks using vision-language models such as CLIP.
Can we Constrain Concept Bottleneck Models to Learn Semantically Meaningful Input Features?
Concept Bottleneck Models (CBMs) are regarded as inherently interpretable because they first predict a set of human-defined concepts which are used to predict a task label. For inherent interpretability to be fully realised, and ensure trust in a model's output, it's desirable for concept predictions to use semantically meaningful input features. For instance, in an image, pixels representing a broken bone should contribute to predicting a fracture. However, current literature suggests that concept predictions often rely on irrelevant input features. We hypothesise that this occurs when dataset labels include inaccurate concept annotations, or the relationship between input features and concepts is unclear. In general, the effect of dataset labelling on concept representations remains an understudied area. In this paper, we demonstrate that CBMs can learn to map concepts to semantically meaningful input features, by utilising datasets with a clear link between the input features and the desired concept predictions. This is achieved, for instance, by ensuring multiple concepts do not always co-occur and, therefore provide a clear training signal for the CBM to distinguish the relevant input features for each concept. We validate our hypothesis on both synthetic and real-world image datasets, and demonstrate under the correct conditions, CBMs can learn to attribute semantically meaningful input features to the correct concept predictions.
Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning
Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.
CoLLEGe: Concept Embedding Generation for Large Language Models
Current language models are unable to quickly learn new concepts on the fly, often requiring a more involved finetuning process to learn robustly. Prompting in-context is not robust to context distractions, and often fails to confer much information about the new concepts. Classic methods for few-shot word learning in NLP, relying on global word vectors, are less applicable to large language models. In this paper, we introduce a novel approach named CoLLEGe (Concept Learning with Language Embedding Generation) to modernize few-shot concept learning. CoLLEGe is a meta-learning framework capable of generating flexible embeddings for new concepts using a small number of example sentences or definitions. Our primary meta-learning objective is simply to facilitate a language model to make next word predictions in forthcoming sentences, making it compatible with language model pretraining. We design a series of tasks to test new concept learning in challenging real-world scenarios, including new word acquisition, definition inference, and verbal reasoning, and demonstrate that our method succeeds in each setting without task-specific training.
The Hidden Language of Diffusion Models
Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual concept (e.g., "a doctor", "love"). However, the internal process of mapping text to a rich visual representation remains an enigma. In this work, we tackle the challenge of understanding concept representations in text-to-image models by decomposing an input text prompt into a small set of interpretable elements. This is achieved by learning a pseudo-token that is a sparse weighted combination of tokens from the model's vocabulary, with the objective of reconstructing the images generated for the given concept. Applied over the state-of-the-art Stable Diffusion model, this decomposition reveals non-trivial and surprising structures in the representations of concepts. For example, we find that some concepts such as "a president" or "a composer" are dominated by specific instances (e.g., "Obama", "Biden") and their interpolations. Other concepts, such as "happiness" combine associated terms that can be concrete ("family", "laughter") or abstract ("friendship", "emotion"). In addition to peering into the inner workings of Stable Diffusion, our method also enables applications such as single-image decomposition to tokens, bias detection and mitigation, and semantic image manipulation. Our code will be available at: https://hila-chefer.github.io/Conceptor/
In Their Own Words: Reasoning Traces Tailored for Small Models Make Them Better Reasoners
Transferring reasoning capabilities from larger language models to smaller ones through supervised fine-tuning often fails counterintuitively, with performance degrading despite access to high-quality teacher demonstrations. We identify that this failure stems from distributional misalignment: reasoning traces from larger models contain tokens that are low probability under the student's distribution, exceeding the internal representation capacity of smaller architectures and creating learning barriers rather than helpful guidance. We propose Reverse Speculative Decoding (RSD), a mechanism for generating student-friendly reasoning traces in which the teacher model proposes candidate tokens but the student model determines acceptance based on its own probability distributions, filtering low probability tokens. When applied to Qwen3-0.6B, direct distillation of s1K-1.1 reasoning trace data degrades average performance across major reasoning benchmarks by 20.5\%, while the same model trained on RSD-generated reasoning traces achieves meaningful improvements of 4.9\%. Our analysis reveals that low probability tokens constitute the critical bottleneck in reasoning ability transfer. However, cross-model experiments demonstrate that RSD traces are model-specific rather than universally applicable, indicating that distributional alignment must be tailored for each student architecture's unique internal representation.
CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models
We propose CX-ToM, short for counterfactual explanations with theory-of mind, a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN). In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process, i.e. dialog, between the machine and human user. More concretely, our CX-ToM framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user. To do this, we use Theory of Mind (ToM) which helps us in explicitly modeling human's intention, machine's mind as inferred by the human as well as human's mind as inferred by the machine. Moreover, most state-of-the-art XAI frameworks provide attention (or heat map) based explanations. In our work, we show that these attention based explanations are not sufficient for increasing human trust in the underlying CNN model. In CX-ToM, we instead use counterfactual explanations called fault-lines which we define as follows: given an input image I for which a CNN classification model M predicts class c_pred, a fault-line identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class c_alt. We argue that, due to the iterative, conceptual and counterfactual nature of CX-ToM explanations, our framework is practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, demonstrating that our CX-ToM significantly outperforms the state-of-the-art explainable AI models.
Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces
The task of "unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently, due to its importance for mitigating undesirable model behaviours, such as the generation of harmful, private, or incorrect information. Current protocols to evaluate unlearning methods largely rely on behavioral tests, without monitoring the presence of unlearned knowledge within the model's parameters. This residual knowledge can be adversarially exploited to recover the erased information post-unlearning. We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts. To this end, we propose a general methodology for eliciting directions in the parameter space (termed "concept vectors") that encode concrete concepts, and construct ConceptVectors, a benchmark dataset containing hundreds of common concepts and their parametric knowledge traces within two open-source LLMs. Evaluation on ConceptVectors shows that existing unlearning methods minimally impact concept vectors, while directly ablating these vectors demonstrably removes the associated knowledge from the LLMs and significantly reduces their susceptibility to adversarial manipulation. Our results highlight limitations in behavioral-based unlearning evaluations and call for future work to include parametric-based evaluations. To support this, we release our code and benchmark at https://github.com/yihuaihong/ConceptVectors.
Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.
The Geometry of Reasoning: Flowing Logics in Representation Space
We study how large language models (LLMs) ``think'' through their representation space. We propose a novel geometric framework that models an LLM's reasoning as flows -- embedding trajectories evolving where logic goes. We disentangle logical structure from semantics by employing the same natural deduction propositions with varied semantic carriers, allowing us to test whether LLMs internalize logic beyond surface form. This perspective connects reasoning with geometric quantities such as position, velocity, and curvature, enabling formal analysis in representation and concept spaces. Our theory establishes: (1) LLM reasoning corresponds to smooth flows in representation space, and (2) logical statements act as local controllers of these flows' velocities. Using learned representation proxies, we design controlled experiments to visualize and quantify reasoning flows, providing empirical validation of our theoretical framework. Our work serves as both a conceptual foundation and practical tools for studying reasoning phenomenon, offering a new lens for interpretability and formal analysis of LLMs' behavior.
Identifying Linear Relational Concepts in Large Language Models
Transformer language models (LMs) have been shown to represent concepts as directions in the latent space of hidden activations. However, for any given human-interpretable concept, how can we find its direction in the latent space? We present a technique called linear relational concepts (LRC) for finding concept directions corresponding to human-interpretable concepts at a given hidden layer in a transformer LM by first modeling the relation between subject and object as a linear relational embedding (LRE). While the LRE work was mainly presented as an exercise in understanding model representations, we find that inverting the LRE while using earlier object layers results in a powerful technique to find concept directions that both work well as a classifier and causally influence model outputs.
Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
Impossibility Theorems for Feature Attribution
Despite a sea of interpretability methods that can produce plausible explanations, the field has also empirically seen many failure cases of such methods. In light of these results, it remains unclear for practitioners how to use these methods and choose between them in a principled way. In this paper, we show that for moderately rich model classes (easily satisfied by neural networks), any feature attribution method that is complete and linear -- for example, Integrated Gradients and SHAP -- can provably fail to improve on random guessing for inferring model behaviour. Our results apply to common end-tasks such as characterizing local model behaviour, identifying spurious features, and algorithmic recourse. One takeaway from our work is the importance of concretely defining end-tasks: once such an end-task is defined, a simple and direct approach of repeated model evaluations can outperform many other complex feature attribution methods.
Bilinear relational structure fixes reversal curse and enables consistent model editing
The reversal curse -- a language model's (LM) inability to infer an unseen fact ``B is A'' from a learned fact ``A is B'' -- is widely considered a fundamental limitation. We show that this is not an inherent failure but an artifact of how models encode knowledge. By training LMs from scratch on a synthetic dataset of relational knowledge graphs, we demonstrate that bilinear relational structure emerges in their hidden representations. This structure substantially alleviates the reversal curse, enabling LMs to infer unseen reverse facts. Crucially, we also find that this bilinear structure plays a key role in consistent model editing. When a fact is updated in a LM with this structure, the edit correctly propagates to its reverse and other logically dependent facts. In contrast, models lacking this representation not only suffer from the reversal curse but also fail to generalize edits, further introducing logical inconsistencies. Our results establish that training on a relational knowledge dataset induces the emergence of bilinear internal representations, which in turn enable LMs to behave in a logically consistent manner after editing. This implies that the success of model editing depends critically not just on editing algorithms but on the underlying representational geometry of the knowledge being modified.
E-KAR: A Benchmark for Rationalizing Natural Language Analogical Reasoning
The ability to recognize analogies is fundamental to human cognition. Existing benchmarks to test word analogy do not reveal the underneath process of analogical reasoning of neural models. Holding the belief that models capable of reasoning should be right for the right reasons, we propose a first-of-its-kind Explainable Knowledge-intensive Analogical Reasoning benchmark (E-KAR). Our benchmark consists of 1,655 (in Chinese) and 1,251 (in English) problems sourced from the Civil Service Exams, which require intensive background knowledge to solve. More importantly, we design a free-text explanation scheme to explain whether an analogy should be drawn, and manually annotate them for each and every question and candidate answer. Empirical results suggest that this benchmark is very challenging for some state-of-the-art models for both explanation generation and analogical question answering tasks, which invites further research in this area.
Base Models Know How to Reason, Thinking Models Learn When
Why do thinking language models like DeepSeek R1 outperform their base counterparts? Despite consistent performance gains, it remains unclear to what extent thinking models learn entirely new reasoning capabilities or repurpose pre-existing base model ones. In this work, we propose a hybrid model where we activate reasoning mechanisms in base models at the right time to elicit thinking-model-level reasoning chains, implying that thinking models exploit already existing capabilities. To ground our analysis, we introduce an unsupervised, bottom-up approach for uncovering human-interpretable reasoning behaviors in thinking models. This approach provides an unbiased method to discover reasoning behaviors without imposing manual or LLM-derived assumptions. Across three base and four thinking models, using GSM8K and MATH500, our hybrid model recovers up to 91% of the performance gap to thinking models without any weight updates while steering only 12% of tokens. Concretely, our empirical setup provides a simple, causal way to test the effectiveness of existing reasoning mechanisms in base models by invoking them directly and measuring the resulting task performance. More broadly, these results reframe our understanding of how thinking models are trained: pre-training is when models acquire most of their reasoning mechanisms, and post-training teaches efficient deployment of these mechanisms at the right time, enabling efficient use of their inference-time compute.
Causal Interventions on Causal Paths: Mapping GPT-2's Reasoning From Syntax to Semantics
While interpretability research has shed light on some internal algorithms utilized by transformer-based LLMs, reasoning in natural language, with its deep contextuality and ambiguity, defies easy categorization. As a result, formulating clear and motivating questions for circuit analysis that rely on well-defined in-domain and out-of-domain examples required for causal interventions is challenging. Although significant work has investigated circuits for specific tasks, such as indirect object identification (IOI), deciphering natural language reasoning through circuits remains difficult due to its inherent complexity. In this work, we take initial steps to characterize causal reasoning in LLMs by analyzing clear-cut cause-and-effect sentences like "I opened an umbrella because it started raining," where causal interventions may be possible through carefully crafted scenarios using GPT-2 small. Our findings indicate that causal syntax is localized within the first 2-3 layers, while certain heads in later layers exhibit heightened sensitivity to nonsensical variations of causal sentences. This suggests that models may infer reasoning by (1) detecting syntactic cues and (2) isolating distinct heads in the final layers that focus on semantic relationships.
Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.
Challenges with unsupervised LLM knowledge discovery
We show that existing unsupervised methods on large language model (LLM) activations do not discover knowledge -- instead they seem to discover whatever feature of the activations is most prominent. The idea behind unsupervised knowledge elicitation is that knowledge satisfies a consistency structure, which can be used to discover knowledge. We first prove theoretically that arbitrary features (not just knowledge) satisfy the consistency structure of a particular leading unsupervised knowledge-elicitation method, contrast-consistent search (Burns et al. - arXiv:2212.03827). We then present a series of experiments showing settings in which unsupervised methods result in classifiers that do not predict knowledge, but instead predict a different prominent feature. We conclude that existing unsupervised methods for discovering latent knowledge are insufficient, and we contribute sanity checks to apply to evaluating future knowledge elicitation methods. Conceptually, we hypothesise that the identification issues explored here, e.g. distinguishing a model's knowledge from that of a simulated character's, will persist for future unsupervised methods.
Interpreting Embedding Spaces by Conceptualization
One of the main methods for computational interpretation of a text is mapping it into a vector in some embedding space. Such vectors can then be used for a variety of textual processing tasks. Recently, most embedding spaces are a product of training large language models (LLMs). One major drawback of this type of representation is their incomprehensibility to humans. Understanding the embedding space is crucial for several important needs, including the need to debug the embedding method and compare it to alternatives, and the need to detect biases hidden in the model. In this paper, we present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space. We present an algorithm for deriving a conceptual space with dynamic on-demand granularity. We devise a new evaluation method, using either human rater or LLM-based raters, to show that the conceptualized vectors indeed represent the semantics of the original latent ones. We show the use of our method for various tasks, including comparing the semantics of alternative models and tracing the layers of the LLM. The code is available online https://github.com/adiSimhi/Interpreting-Embedding-Spaces-by-Conceptualization.
Large Language Models Are Reasoning Teachers
Recent works have shown that chain-of-thought (CoT) prompting can elicit language models to solve complex reasoning tasks, step-by-step. However, prompt-based CoT methods are dependent on very large models such as GPT-3 175B which are prohibitive to deploy at scale. In this paper, we use these large models as reasoning teachers to enable complex reasoning in smaller models and reduce model size requirements by several orders of magnitude. We propose Fine-tune-CoT, a method that generates reasoning samples from very large teacher models to fine-tune smaller models. We evaluate our method on a wide range of public models and complex tasks. We find that Fine-tune-CoT enables substantial reasoning capability in small models, far outperforming prompt-based baselines and even the teacher model in many tasks. Additionally, we extend our method by leveraging the teacher model's ability to generate multiple distinct rationales for each original sample. Enriching the fine-tuning data with such diverse reasoning results in a substantial performance boost across datasets, even for very small models. We conduct ablations and sample studies to understand the emergence of reasoning capabilities of student models. Our code implementation and data are available at https://github.com/itsnamgyu/reasoning-teacher.
Concept Steerers: Leveraging K-Sparse Autoencoders for Controllable Generations
Despite the remarkable progress in text-to-image generative models, they are prone to adversarial attacks and inadvertently generate unsafe, unethical content. Existing approaches often rely on fine-tuning models to remove specific concepts, which is computationally expensive, lack scalability, and/or compromise generation quality. In this work, we propose a novel framework leveraging k-sparse autoencoders (k-SAEs) to enable efficient and interpretable concept manipulation in diffusion models. Specifically, we first identify interpretable monosemantic concepts in the latent space of text embeddings and leverage them to precisely steer the generation away or towards a given concept (e.g., nudity) or to introduce a new concept (e.g., photographic style). Through extensive experiments, we demonstrate that our approach is very simple, requires no retraining of the base model nor LoRA adapters, does not compromise the generation quality, and is robust to adversarial prompt manipulations. Our method yields an improvement of 20.01% in unsafe concept removal, is effective in style manipulation, and is sim5x faster than current state-of-the-art.
Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
We propose a novel application of prompting Pre-trained Language Models (PLMs) to generate analogies and study how to design effective prompts for two task settings: generating a source concept analogous to a given target concept (aka Analogous Concept Generation or ACG), and generating an explanation of the similarity between a given pair of target concept and source concept (aka Analogous Explanation Generation or AEG). We found that it is feasible to prompt InstructGPT to generate meaningful analogies and the best prompts tend to be precise imperative statements especially with a low temperature setting. We also systematically analyzed the sensitivity of the InstructGPT model to prompt design, temperature, and injected spelling errors, and found that the model is particularly sensitive to certain variations (e.g., questions vs. imperative statements). Further, we conducted human evaluation on 1.4k of the generated analogies and found that the quality of generations varies substantially by model size. The largest InstructGPT model can achieve human-level performance at generating meaningful analogies for a given target while there is still room for improvement on the AEG task.
Explaining Answers with Entailment Trees
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a "rationale'"). If this could be done, new opportunities for understanding and debugging the system's reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.
Understanding Post-hoc Explainers: The Case of Anchors
In many scenarios, the interpretability of machine learning models is a highly required but difficult task. To explain the individual predictions of such models, local model-agnostic approaches have been proposed. However, the process generating the explanations can be, for a user, as mysterious as the prediction to be explained. Furthermore, interpretability methods frequently lack theoretical guarantees, and their behavior on simple models is frequently unknown. While it is difficult, if not impossible, to ensure that an explainer behaves as expected on a cutting-edge model, we can at least ensure that everything works on simple, already interpretable models. In this paper, we present a theoretical analysis of Anchors (Ribeiro et al., 2018): a popular rule-based interpretability method that highlights a small set of words to explain a text classifier's decision. After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results when used with linear text classifiers on top of a TF-IDF vectorization. We believe that our analysis framework can aid in the development of new explainability methods based on solid theoretical foundations.
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
Multi-Domain Explainability of Preferences
Preference mechanisms, such as human preference, LLM-as-a-Judge (LaaJ), and reward models, are central to aligning and evaluating large language models (LLMs). Yet, the underlying concepts that drive these preferences remain poorly understood. In this work, we propose a fully automated method for generating local and global concept-based explanations of preferences across multiple domains. Our method utilizes an LLM to identify concepts that distinguish between chosen and rejected responses, and to represent them with concept-based vectors. To model the relationships between concepts and preferences, we propose a white-box Hierarchical Multi-Domain Regression model that captures both domain-general and domain-specific effects. To evaluate our method, we curate a dataset spanning eight challenging and diverse domains and explain twelve mechanisms. Our method achieves strong preference prediction performance, outperforming baselines while also being explainable. Additionally, we assess explanations in two application-driven settings. First, guiding LLM outputs with concepts from LaaJ explanations yields responses that those judges consistently prefer. Second, prompting LaaJs with concepts explaining humans improves their preference predictions. Together, our work establishes a new paradigm for explainability in the era of LLMs.
ICICLE: Interpretable Class Incremental Continual Learning
Continual learning enables incremental learning of new tasks without forgetting those previously learned, resulting in positive knowledge transfer that can enhance performance on both new and old tasks. However, continual learning poses new challenges for interpretability, as the rationale behind model predictions may change over time, leading to interpretability concept drift. We address this problem by proposing Interpretable Class-InCremental LEarning (ICICLE), an exemplar-free approach that adopts a prototypical part-based approach. It consists of three crucial novelties: interpretability regularization that distills previously learned concepts while preserving user-friendly positive reasoning; proximity-based prototype initialization strategy dedicated to the fine-grained setting; and task-recency bias compensation devoted to prototypical parts. Our experimental results demonstrate that ICICLE reduces the interpretability concept drift and outperforms the existing exemplar-free methods of common class-incremental learning when applied to concept-based models.
Prompting Contrastive Explanations for Commonsense Reasoning Tasks
Many commonsense reasoning NLP tasks involve choosing between one or more possible answers to a question or prompt based on knowledge that is often implicit. Large pretrained language models (PLMs) can achieve near-human performance on such tasks, while providing little human-interpretable evidence of the underlying reasoning they use. In this work, we show how to use these same models to generate such evidence: inspired by the contrastive nature of human explanations, we use PLMs to complete explanation prompts which contrast alternatives according to the key attribute(s) required to justify the correct answer (for example, peanuts are usually salty while raisins are sweet). Conditioning model decisions on these explanations improves performance on two commonsense reasoning benchmarks, as compared to previous non-contrastive alternatives. These explanations are also judged by humans to be more relevant for solving the task, and facilitate a novel method to evaluate explanation faithfulfness.
A Survey on Explainability in Machine Reading Comprehension
This paper presents a systematic review of benchmarks and approaches for explainability in Machine Reading Comprehension (MRC). We present how the representation and inference challenges evolved and the steps which were taken to tackle these challenges. We also present the evaluation methodologies to assess the performance of explainable systems. In addition, we identify persisting open research questions and highlight critical directions for future work.
Uncovering Conceptual Blindspots in Generative Image Models Using Sparse Autoencoders
Despite their impressive performance, generative image models trained on large-scale datasets frequently fail to produce images with seemingly simple concepts -- e.g., human hands or objects appearing in groups of four -- that are reasonably expected to appear in the training data. These failure modes have largely been documented anecdotally, leaving open the question of whether they reflect idiosyncratic anomalies or more structural limitations of these models. To address this, we introduce a systematic approach for identifying and characterizing "conceptual blindspots" -- concepts present in the training data but absent or misrepresented in a model's generations. Our method leverages sparse autoencoders (SAEs) to extract interpretable concept embeddings, enabling a quantitative comparison of concept prevalence between real and generated images. We train an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts -- the largest such SAE to date -- enabling fine-grained analysis of conceptual disparities. Applied to four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky), our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood background texture and palm trees). At the individual datapoint level, we further isolate memorization artifacts -- instances where models reproduce highly specific visual templates seen during training. Overall, we propose a theoretically grounded framework for systematically identifying conceptual blindspots in generative models by assessing their conceptual fidelity with respect to the underlying data-generating process.
Self-Harmonized Chain of Thought
Chain-of-Thought (CoT) prompting reveals that large language models are capable of performing complex reasoning via intermediate steps. CoT prompting is primarily categorized into three approaches. The first approach utilizes straightforward prompts like ``Let's think step by step'' to generate a sequential thought process before yielding an answer. The second approach makes use of human-crafted, step-by-step demonstrations to guide the model's reasoning process. The third automates the generation of reasoned demonstrations with the 'Let's think step by step'.This approach sometimes leads to reasoning errors, highlighting the need to diversify demonstrations to mitigate its misleading effects. However, diverse demonstrations pose challenges for effective representations. In this work, we propose ECHO, a self-harmonized chain-of-thought prompting method. It consolidates diverse solution paths into a uniform and effective solution pattern.ECHO demonstrates the best overall performance across three reasoning domains.
Language Models Don't Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting
Large Language Models (LLMs) can achieve strong performance on many tasks by producing step-by-step reasoning before giving a final output, often referred to as chain-of-thought reasoning (CoT). It is tempting to interpret these CoT explanations as the LLM's process for solving a task. However, we find that CoT explanations can systematically misrepresent the true reason for a model's prediction. We demonstrate that CoT explanations can be heavily influenced by adding biasing features to model inputs -- e.g., by reordering the multiple-choice options in a few-shot prompt to make the answer always "(A)" -- which models systematically fail to mention in their explanations. When we bias models toward incorrect answers, they frequently generate CoT explanations supporting those answers. This causes accuracy to drop by as much as 36% on a suite of 13 tasks from BIG-Bench Hard, when testing with GPT-3.5 from OpenAI and Claude 1.0 from Anthropic. On a social-bias task, model explanations justify giving answers in line with stereotypes without mentioning the influence of these social biases. Our findings indicate that CoT explanations can be plausible yet misleading, which risks increasing our trust in LLMs without guaranteeing their safety. CoT is promising for explainability, but our results highlight the need for targeted efforts to evaluate and improve explanation faithfulness.
Large Language Models as Analogical Reasoners
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks, but typically needs labeled exemplars of the reasoning process. In this work, we introduce a new prompting approach, Analogical Prompting, designed to automatically guide the reasoning process of large language models. Inspired by analogical reasoning, a cognitive process in which humans draw from relevant past experiences to tackle new problems, our approach prompts language models to self-generate relevant exemplars or knowledge in the context, before proceeding to solve the given problem. This method presents several advantages: it obviates the need for labeling or retrieving exemplars, offering generality and convenience; it can also tailor the generated exemplars and knowledge to each problem, offering adaptability. Experimental results show that our approach outperforms 0-shot CoT and manual few-shot CoT in a variety of reasoning tasks, including math problem solving in GSM8K and MATH, code generation in Codeforces, and other reasoning tasks in BIG-Bench.
OmniPrism: Learning Disentangled Visual Concept for Image Generation
Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes. However, existing methods are typically constrained to single-aspect concept generation or are easily disrupted by irrelevant concepts in multi-aspect concept scenarios, leading to concept confusion and hindering creative generation. To address this, we propose OmniPrism, a visual concept disentangling approach for creative image generation. Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts. We utilize the rich semantic space of a multimodal extractor to achieve concept disentanglement from given images and concept guidance. To disentangle concepts with different semantics, we construct a paired concept disentangled dataset (PCD-200K), where each pair shares the same concept such as content, style, and composition. We learn disentangled concept representations through our contrastive orthogonal disentangled (COD) training pipeline, which are then injected into additional diffusion cross-attention layers for generation. A set of block embeddings is designed to adapt each block's concept domain in the diffusion models. Extensive experiments demonstrate that our method can generate high-quality, concept-disentangled results with high fidelity to text prompts and desired concepts.
Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models
Logical reasoning is central to complex human activities, such as thinking, debating, and planning; it is also a central component of many AI systems as well. In this paper, we investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules. We ask whether those LMs can deduce theorems in propositional calculus and first-order logic; if their relative success in these problems reflects general logical capabilities; and which layers contribute the most to the task. First, we show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets. Next, by cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability, which suggests that they may have learned dataset-specific features, instead of a general capability. Finally, we conduct a layerwise probing experiment, which shows that the hypothesis classification task is mostly solved through higher layers.
Understanding Disparities in Post Hoc Machine Learning Explanation
Previous work has highlighted that existing post-hoc explanation methods exhibit disparities in explanation fidelity (across 'race' and 'gender' as sensitive attributes), and while a large body of work focuses on mitigating these issues at the explanation metric level, the role of the data generating process and black box model in relation to explanation disparities remains largely unexplored. Accordingly, through both simulations as well as experiments on a real-world dataset, we specifically assess challenges to explanation disparities that originate from properties of the data: limited sample size, covariate shift, concept shift, omitted variable bias, and challenges based on model properties: inclusion of the sensitive attribute and appropriate functional form. Through controlled simulation analyses, our study demonstrates that increased covariate shift, concept shift, and omission of covariates increase explanation disparities, with the effect pronounced higher for neural network models that are better able to capture the underlying functional form in comparison to linear models. We also observe consistent findings regarding the effect of concept shift and omitted variable bias on explanation disparities in the Adult income dataset. Overall, results indicate that disparities in model explanations can also depend on data and model properties. Based on this systematic investigation, we provide recommendations for the design of explanation methods that mitigate undesirable disparities.
Transformers as Soft Reasoners over Language
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.
Interpret the Internal States of Recommendation Model with Sparse Autoencoder
Explainable recommendation systems are important to enhance transparency, accuracy, and fairness. Beyond result-level explanations, model-level interpretations can provide valuable insights that allow developers to optimize system designs and implement targeted improvements. However, most current approaches depend on specialized model designs, which often lack generalization capabilities. Given the various kinds of recommendation models, existing methods have limited ability to effectively interpret them. To address this issue, we propose RecSAE, an automatic, generalizable probing method for interpreting the internal states of Recommendation models with Sparse AutoEncoder. RecSAE serves as a plug-in module that does not affect original models during interpretations, while also enabling predictable modifications to their behaviors based on interpretation results. Firstly, we train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models, making the RecSAE latents more interpretable and monosemantic than the original neuron activations. Secondly, we automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences. Thirdly, RecSAE validates these interpretations by predicting latent activations on new item sequences using the concept dictionary and deriving interpretation confidence scores from precision and recall. We demonstrate RecSAE's effectiveness on two datasets, identifying hundreds of highly interpretable concepts from pure ID-based models. Latent ablation studies further confirm that manipulating latent concepts produces corresponding changes in model output behavior, underscoring RecSAE's utility for both understanding and targeted tuning recommendation models. Code and data are publicly available at https://github.com/Alice1998/RecSAE.
The Geometry of Categorical and Hierarchical Concepts in Large Language Models
Understanding how semantic meaning is encoded in the representation spaces of large language models is a fundamental problem in interpretability. In this paper, we study the two foundational questions in this area. First, how are categorical concepts, such as {'mammal', 'bird', 'reptile', 'fish'}, represented? Second, how are hierarchical relations between concepts encoded? For example, how is the fact that 'dog' is a kind of 'mammal' encoded? We show how to extend the linear representation hypothesis to answer these questions. We find a remarkably simple structure: simple categorical concepts are represented as simplices, hierarchically related concepts are orthogonal in a sense we make precise, and (in consequence) complex concepts are represented as polytopes constructed from direct sums of simplices, reflecting the hierarchical structure. We validate these theoretical results on the Gemma large language model, estimating representations for 957 hierarchically related concepts using data from WordNet.
Towards LLM-guided Causal Explainability for Black-box Text Classifiers
With the advent of larger and more complex deep learning models, such as in Natural Language Processing (NLP), model qualities like explainability and interpretability, albeit highly desirable, are becoming harder challenges to tackle and solve. For example, state-of-the-art models in text classification are black-box by design. Although standard explanation methods provide some degree of explainability, these are mostly correlation-based methods and do not provide much insight into the model. The alternative of causal explainability is more desirable to achieve but extremely challenging in NLP due to a variety of reasons. Inspired by recent endeavors to utilize Large Language Models (LLMs) as experts, in this work, we aim to leverage the instruction-following and textual understanding capabilities of recent state-of-the-art LLMs to facilitate causal explainability via counterfactual explanation generation for black-box text classifiers. To do this, we propose a three-step pipeline via which, we use an off-the-shelf LLM to: (1) identify the latent or unobserved features in the input text, (2) identify the input features associated with the latent features, and finally (3) use the identified input features to generate a counterfactual explanation. We experiment with our pipeline on multiple NLP text classification datasets, with several recent LLMs, and present interesting and promising findings.
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing of sentences without explicit supervision on any of them; instead, our model learns by simply looking at images and reading paired questions and answers. Our model builds an object-based scene representation and translates sentences into executable, symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic reasoning module that executes these programs on the latent scene representation. Analogical to human concept learning, the perception module learns visual concepts based on the language description of the object being referred to. Meanwhile, the learned visual concepts facilitate learning new words and parsing new sentences. We use curriculum learning to guide the searching over the large compositional space of images and language. Extensive experiments demonstrate the accuracy and efficiency of our model on learning visual concepts, word representations, and semantic parsing of sentences. Further, our method allows easy generalization to new object attributes, compositions, language concepts, scenes and questions, and even new program domains. It also empowers applications including visual question answering and bidirectional image-text retrieval.
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
To address the interpretability challenge in machine learning (ML) systems, counterfactual explanations (CEs) have emerged as a promising solution. CEs are unique as they provide workable suggestions to users, in addition to explaining why a certain outcome was predicted. The application of CEs encounters two main challenges: general user preferences and variable ML systems. User preferences tend to be general rather than specific, and CEs need to be adaptable to variable ML models while maintaining robustness even as these models change. Facing these challenges, we present a solution rooted in validated general user preferences, which are derived from thorough user research. We map these preferences to the properties of CEs. Additionally, we introduce a novel method, Tree-based Conditions Optional Links (T-COL), which incorporates two optional structures and multiple condition groups for generating CEs adaptable to general user preferences. Meanwhile, we employ T-COL to enhance the robustness of CEs with specific conditions, making them more valid even when the ML model is replaced. Our experimental comparisons under different user preferences show that T-COL outperforms all baselines, including Large Language Models which are shown to be able to generate counterfactuals.
Causal Proxy Models for Concept-Based Model Explanations
Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model N because it is trained to have the same actual input/output behavior as N while creating neural representations that can be intervened upon to simulate the counterfactual input/output behavior of N. Furthermore, we show that the best CPM for N performs comparably to N in making factual predictions, which means that the CPM can simply replace N, leading to more explainable deployed models. Our code is available at https://github.com/frankaging/Causal-Proxy-Model.
ThinkSum: Probabilistic reasoning over sets using large language models
Large language models (LLMs) have a substantial capacity for high-level analogical reasoning: reproducing patterns in linear text that occur in their training data (zero-shot evaluation) or in the provided context (few-shot in-context learning). However, recent studies show that even the more advanced LLMs fail in scenarios that require reasoning over multiple objects or facts and making sequences of logical deductions. We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over sets of objects or facts in a structured manner. In the first stage (Think - retrieval of associations), a LLM is queried in parallel over a set of phrases extracted from the prompt or an auxiliary model call. In the second stage (Sum - probabilistic inference or reasoning), the results of these queries are aggregated to make the final prediction. We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench suite of LLM evaluation tasks, achieving improvements over the state of the art using GPT-family models on thirteen difficult tasks, often with far smaller model variants. We also compare and contrast ThinkSum with other proposed modifications to direct prompting of LLMs, such as variants of chain-of-thought prompting. Our results suggest that because the probabilistic inference in ThinkSum is performed outside of calls to the LLM, ThinkSum is less sensitive to prompt design, yields more interpretable predictions, and can be flexibly combined with latent variable models to extract structured knowledge from LLMs. Overall, our proposed paradigm represents a promising approach for enhancing the reasoning capabilities of LLMs.
Does Understanding Inform Generation in Unified Multimodal Models? From Analysis to Path Forward
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://github.com/PKU-YuanGroup/UniSandBox
Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
Do LLMs Adhere to Label Definitions? Examining Their Receptivity to External Label Definitions
Do LLMs genuinely incorporate external definitions, or do they primarily rely on their parametric knowledge? To address these questions, we conduct controlled experiments across multiple explanation benchmark datasets (general and domain-specific) and label definition conditions, including expert-curated, LLM-generated, perturbed, and swapped definitions. Our results reveal that while explicit label definitions can enhance accuracy and explainability, their integration into an LLM's task-solving processes is neither guaranteed nor consistent, suggesting reliance on internalized representations in many cases. Models often default to their internal representations, particularly in general tasks, whereas domain-specific tasks benefit more from explicit definitions. These findings underscore the need for a deeper understanding of how LLMs process external knowledge alongside their pre-existing capabilities.
Text-To-Concept (and Back) via Cross-Model Alignment
We observe that the mapping between an image's representation in one model to its representation in another can be learned surprisingly well with just a linear layer, even across diverse models. Building on this observation, we propose text-to-concept, where features from a fixed pretrained model are aligned linearly to the CLIP space, so that text embeddings from CLIP's text encoder become directly comparable to the aligned features. With text-to-concept, we convert fixed off-the-shelf vision encoders to surprisingly strong zero-shot classifiers for free, with accuracy at times even surpassing that of CLIP, despite being much smaller models and trained on a small fraction of the data compared to CLIP. We show other immediate use-cases of text-to-concept, like building concept bottleneck models with no concept supervision, diagnosing distribution shifts in terms of human concepts, and retrieving images satisfying a set of text-based constraints. Lastly, we demonstrate the feasibility of concept-to-text, where vectors in a model's feature space are decoded by first aligning to the CLIP before being fed to a GPT-based generative model. Our work suggests existing deep models, with presumably diverse architectures and training, represent input samples relatively similarly, and a two-way communication across model representation spaces and to humans (through language) is viable.
Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
Explain by Evidence: An Explainable Memory-based Neural Network for Question Answering
Interpretability and explainability of deep neural networks are challenging due to their scale, complexity, and the agreeable notions on which the explaining process rests. Previous work, in particular, has focused on representing internal components of neural networks through human-friendly visuals and concepts. On the other hand, in real life, when making a decision, human tends to rely on similar situations and/or associations in the past. Hence arguably, a promising approach to make the model transparent is to design it in a way such that the model explicitly connects the current sample with the seen ones, and bases its decision on these samples. Grounded on that principle, we propose in this paper an explainable, evidence-based memory network architecture, which learns to summarize the dataset and extract supporting evidences to make its decision. Our model achieves state-of-the-art performance on two popular question answering datasets (i.e. TrecQA and WikiQA). Via further analysis, we show that this model can reliably trace the errors it has made in the validation step to the training instances that might have caused these errors. We believe that this error-tracing capability provides significant benefit in improving dataset quality in many applications.
Good Teachers Explain: Explanation-Enhanced Knowledge Distillation
Knowledge Distillation (KD) has proven effective for compressing large teacher models into smaller student models. While it is well known that student models can achieve similar accuracies as the teachers, it has also been shown that they nonetheless often do not learn the same function. It is, however, often highly desirable that the student's and teacher's functions share similar properties such as basing the prediction on the same input features, as this ensures that students learn the 'right features' from the teachers. In this work, we explore whether this can be achieved by not only optimizing the classic KD loss but also the similarity of the explanations generated by the teacher and the student. Despite the idea being simple and intuitive, we find that our proposed 'explanation-enhanced' KD (e^2KD) (1) consistently provides large gains in terms of accuracy and student-teacher agreement, (2) ensures that the student learns from the teacher to be right for the right reasons and to give similar explanations, and (3) is robust with respect to the model architectures, the amount of training data, and even works with 'approximate', pre-computed explanations.
Implicit Chain of Thought Reasoning via Knowledge Distillation
To augment language models with the ability to reason, researchers usually prompt or finetune them to produce chain of thought reasoning steps before producing the final answer. However, although people use natural language to reason effectively, it may be that LMs could reason more effectively with some intermediate computation that is not in natural language. In this work, we explore an alternative reasoning approach: instead of explicitly producing the chain of thought reasoning steps, we use the language model's internal hidden states to perform implicit reasoning. The implicit reasoning steps are distilled from a teacher model trained on explicit chain-of-thought reasoning, and instead of doing reasoning "horizontally" by producing intermediate words one-by-one, we distill it such that the reasoning happens "vertically" among the hidden states in different layers. We conduct experiments on a multi-digit multiplication task and a grade school math problem dataset and find that this approach enables solving tasks previously not solvable without explicit chain-of-thought, at a speed comparable to no chain-of-thought.
Non-Iterative Symbolic-Aided Chain-of-Thought for Logical Reasoning
This work introduces Symbolic-Aided Chain-of-Thought (CoT), an improved approach to standard CoT, for logical reasoning in large language models (LLMs). The key idea is to integrate lightweight symbolic representations into few-shot prompts, structuring the inference steps with a consistent strategy to make reasoning patterns more explicit within a non-iterative reasoning process. By incorporating these symbolic structures, our method preserves the generalizability of standard prompting techniques while enhancing the transparency, interpretability, and analyzability of LLM logical reasoning. Extensive experiments on four well-known logical reasoning benchmarks -- ProofWriter, FOLIO, ProntoQA, and LogicalDeduction, which cover diverse reasoning scenarios -- demonstrate the effectiveness of the proposed approach, particularly in complex reasoning tasks that require navigating multiple constraints or rules. Notably, Symbolic-Aided CoT consistently improves LLMs' reasoning capabilities across various model sizes and significantly outperforms conventional CoT on three out of four datasets, ProofWriter, ProntoQA, and LogicalDeduction.
Thinking Aloud: Dynamic Context Generation Improves Zero-Shot Reasoning Performance of GPT-2
Thinking aloud is an effective meta-cognitive strategy human reasoners apply to solve difficult problems. We suggest to improve the reasoning ability of pre-trained neural language models in a similar way, namely by expanding a task's context with problem elaborations that are dynamically generated by the language model itself. Our main result is that dynamic problem elaboration significantly improves the zero-shot performance of GPT-2 in a deductive reasoning and natural language inference task: While the model uses a syntactic heuristic for predicting an answer, it is capable (to some degree) of generating reasoned additional context which facilitates the successful application of its heuristic. We explore different ways of generating elaborations, including fewshot learning, and find that their relative performance varies with the specific problem characteristics (such as problem difficulty). Moreover, the effectiveness of an elaboration can be explained in terms of the degree to which the elaboration semantically coheres with the corresponding problem. In particular, elaborations that are most faithful to the original problem description may boost accuracy by up to 24%.
CoT Vectors: Transferring and Probing the Reasoning Mechanisms of LLMs
Chain-of-Thought (CoT) prompting has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing implementations, such as in-context learning and fine-tuning, remain costly and inefficient. To improve CoT reasoning at a lower cost, and inspired by the task vector paradigm, we introduce CoT Vectors, compact representations that encode task-general, multi-step reasoning knowledge. Through experiments with Extracted CoT Vectors, we observe pronounced layer-wise instability, manifesting as a U-shaped performance curve that reflects a systematic three-stage reasoning process in LLMs. To address this limitation, we propose Learnable CoT Vectors, optimized under a teacher-student framework to provide more stable and robust guidance. Extensive evaluations across diverse benchmarks and models demonstrate that CoT Vectors not only outperform existing baselines but also achieve performance comparable to parameter-efficient fine-tuning methods, while requiring fewer trainable parameters. Moreover, by treating CoT Vectors as a probe, we uncover how their effectiveness varies due to latent space structure, information density, acquisition mechanisms, and pre-training differences, offering new insights into the functional organization of multi-step reasoning in LLMs. The source code will be released.
Linear Spaces of Meanings: Compositional Structures in Vision-Language Models
We investigate compositional structures in data embeddings from pre-trained vision-language models (VLMs). Traditionally, compositionality has been associated with algebraic operations on embeddings of words from a pre-existing vocabulary. In contrast, we seek to approximate representations from an encoder as combinations of a smaller set of vectors in the embedding space. These vectors can be seen as "ideal words" for generating concepts directly within the embedding space of the model. We first present a framework for understanding compositional structures from a geometric perspective. We then explain what these compositional structures entail probabilistically in the case of VLM embeddings, providing intuitions for why they arise in practice. Finally, we empirically explore these structures in CLIP's embeddings and we evaluate their usefulness for solving different vision-language tasks such as classification, debiasing, and retrieval. Our results show that simple linear algebraic operations on embedding vectors can be used as compositional and interpretable methods for regulating the behavior of VLMs.
ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation
Despite unprecedented ability in imaginary creation, large text-to-image models are further expected to express customized concepts. Existing works generally learn such concepts in an optimization-based manner, yet bringing excessive computation or memory burden. In this paper, we instead propose a learning-based encoder for fast and accurate concept customization, which consists of global and local mapping networks. In specific, the global mapping network separately projects the hierarchical features of a given image into multiple ``new'' words in the textual word embedding space, i.e., one primary word for well-editable concept and other auxiliary words to exclude irrelevant disturbances (e.g., background). In the meantime, a local mapping network injects the encoded patch features into cross attention layers to provide omitted details, without sacrificing the editability of primary concepts. We compare our method with prior optimization-based approaches on a variety of user-defined concepts, and demonstrate that our method enables more high-fidelity inversion and robust editability with a significantly faster encoding process. Our code will be publicly available at https://github.com/csyxwei/ELITE.
A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond
Recent Large Reasoning Models (LRMs), such as DeepSeek-R1 and OpenAI o1, have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference. However, a growing concern lies in their tendency to produce excessively long reasoning traces, which are often filled with redundant content (e.g., repeated definitions), over-analysis of simple problems, and superficial exploration of multiple reasoning paths for harder tasks. This inefficiency introduces significant challenges for training, inference, and real-world deployment (e.g., in agent-based systems), where token economy is critical. In this survey, we provide a comprehensive overview of recent efforts aimed at improving reasoning efficiency in LRMs, with a particular focus on the unique challenges that arise in this new paradigm. We identify common patterns of inefficiency, examine methods proposed across the LRM lifecycle, i.e., from pretraining to inference, and discuss promising future directions for research. To support ongoing development, we also maintain a real-time GitHub repository tracking recent progress in the field. We hope this survey serves as a foundation for further exploration and inspires innovation in this rapidly evolving area.
Encode, Think, Decode: Scaling test-time reasoning with recursive latent thoughts
Most efforts to improve the reasoning capabilities of large language models (LLMs) involve either scaling the number of parameters and the size of training data, or scaling inference computation by letting models generate complex chains of thought. Motivated by interpretability studies showing that the crucial computation required for reasoning tasks is concentrated in a limited range of layers, we introduce Encode-Think-Decode (ETD), a method that enhances the reasoning capabilities of a base model by training it to iterate over a small subset of reasoning-relevant layers during the mid-training stage. ETD amplifies latent reasoning while preserving the original architecture, parameter count, hyperparameters, and training data composition. When iterating on the selected layers at inference time, ETD models yield substantial gains on 17 reasoning benchmarks, including +28.4% relative accuracy improvement on GSM8K and +36% on MATH with the OLMo-2 1B Base model. We also explore an adaptive depth strategy that adjusts the computation per input token. Our results show that recursive latent reasoning offers a simple and effective path to stronger LLM reasoning.
Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction
Solving math word problems requires deductive reasoning over the quantities in the text. Various recent research efforts mostly relied on sequence-to-sequence or sequence-to-tree models to generate mathematical expressions without explicitly performing relational reasoning between quantities in the given context. While empirically effective, such approaches typically do not provide explanations for the generated expressions. In this work, we view the task as a complex relation extraction problem, proposing a novel approach that presents explainable deductive reasoning steps to iteratively construct target expressions, where each step involves a primitive operation over two quantities defining their relation. Through extensive experiments on four benchmark datasets, we show that the proposed model significantly outperforms existing strong baselines. We further demonstrate that the deductive procedure not only presents more explainable steps but also enables us to make more accurate predictions on questions that require more complex reasoning.
Rethinking Saliency Maps: A Cognitive Human Aligned Taxonomy and Evaluation Framework for Explanations
Saliency maps are widely used for visual explanations in deep learning, but a fundamental lack of consensus persists regarding their intended purpose and alignment with diverse user queries. This ambiguity hinders the effective evaluation and practical utility of explanation methods. We address this gap by introducing the Reference-Frame times Granularity (RFxG) taxonomy, a principled conceptual framework that organizes saliency explanations along two essential axes:Reference-Frame: Distinguishing between pointwise ("Why this prediction?") and contrastive ("Why this and not an alternative?") explanations. Granularity: Ranging from fine-grained class-level (e.g., "Why Husky?") to coarse-grained group-level (e.g., "Why Dog?") interpretations. Using the RFxG lens, we demonstrate critical limitations in existing evaluation metrics, which overwhelmingly prioritize pointwise faithfulness while neglecting contrastive reasoning and semantic granularity. To systematically assess explanation quality across both RFxG dimensions, we propose four novel faithfulness metrics. Our comprehensive evaluation framework applies these metrics to ten state-of-the-art saliency methods, four model architectures, and three datasets. By advocating a shift toward user-intent-driven evaluation, our work provides both the conceptual foundation and the practical tools necessary to develop visual explanations that are not only faithful to the underlying model behavior but are also meaningfully aligned with the complexity of human understanding and inquiry.
DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning
Expert problem-solving is driven by powerful languages for thinking about problems and their solutions. Acquiring expertise means learning these languages -- systems of concepts, alongside the skills to use them. We present DreamCoder, a system that learns to solve problems by writing programs. It builds expertise by creating programming languages for expressing domain concepts, together with neural networks to guide the search for programs within these languages. A ``wake-sleep'' learning algorithm alternately extends the language with new symbolic abstractions and trains the neural network on imagined and replayed problems. DreamCoder solves both classic inductive programming tasks and creative tasks such as drawing pictures and building scenes. It rediscovers the basics of modern functional programming, vector algebra and classical physics, including Newton's and Coulomb's laws. Concepts are built compositionally from those learned earlier, yielding multi-layered symbolic representations that are interpretable and transferrable to new tasks, while still growing scalably and flexibly with experience.
