new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Suppressing the sample variance of DESI-like galaxy clustering with fast simulations

Ongoing and upcoming galaxy redshift surveys, such as the Dark Energy Spectroscopic Instrument (DESI) survey, will observe vast regions of sky and a wide range of redshifts. In order to model the observations and address various systematic uncertainties, N-body simulations are routinely adopted, however, the number of large simulations with sufficiently high mass resolution is usually limited by available computing time. Therefore, achieving a simulation volume with the effective statistical errors significantly smaller than those of the observations becomes prohibitively expensive. In this study, we apply the Convergence Acceleration by Regression and Pooling (CARPool) method to mitigate the sample variance of the DESI-like galaxy clustering in the AbacusSummit simulations, with the assistance of the quasi-N-body simulations FastPM. Based on the halo occupation distribution (HOD) models, we construct different FastPM galaxy catalogs, including the luminous red galaxies (LRGs), emission line galaxies (ELGs), and quasars, with their number densities and two-point clustering statistics well matched to those of AbacusSummit. We also employ the same initial conditions between AbacusSummit and FastPM to achieve high cross-correlation, as it is useful in effectively suppressing the variance. Our method of reducing noise in clustering is equivalent to performing a simulation with volume larger by a factor of 5 and 4 for LRGs and ELGs, respectively. We also mitigate the standard deviation of the LRG bispectrum with the triangular configurations k_2=2k_1=0.2 h/Mpc by a factor of 1.6. With smaller sample variance on galaxy clustering, we are able to constrain the baryon acoustic oscillations (BAO) scale parameters to higher precision. The CARPool method will be beneficial to better constrain the theoretical systematics of BAO, redshift space distortions (RSD) and primordial non-Gaussianity (NG).

  • 47 authors
·
Apr 3, 2024

Dark matter halos of luminous AGNs from galaxy-galaxy lensing with the HSC Subaru Strategic Program

We assess the dark matter halo masses of luminous AGNs over the redshift range 0.2 to 1.2 using galaxy-galaxy lensing based on imaging data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We measure the weak lensing signal of a sample of 48907 AGNs constructed using HSC and WISE photometry. %The lensing detection around AGNs has a signal to noise ratio of 29. As expected, we find that the lensing mass profile of total AGN sample is consistent with that of massive galaxies (rm log(M_{*}/h^{-2}M_odot)sim 10.61). Surprisingly, the lensing signal remains unchanged when the AGN sample is split into four stellar mass bins of host galaxies. Specifically, we find that the excess surface density (ESD) of AGNs, residing in galaxies with high stellar masses, significantly differs from that of the control sample. We further fit a halo occupation distribution model to the data to infer the posterior distribution of parameters including the average halo mass. We find that the characteristic halo mass of the full AGN population lies near the knee (rm log(M_h/h^{-1}M_{odot})=12.0) of the stellar-to-halo mass relation (SHMR). Illustrative of the results given above, the halo masses of AGNs residing in host galaxies with high stellar masses (i.e., above the knee of the SHMR) falls below the calibrated SHMR while the halo mass of the low stellar mass sample is more consistent with the established SHMR. These results indicate that massive halos with higher clustering bias tends to suppress AGN activity, probably due to the lack of available gas.

  • 15 authors
·
Apr 7, 2022

Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis

We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, C_{rm HOD}, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, C_{rm stat}, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed LambdaCDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data.

  • 42 authors
·
Nov 18, 2024

On the statistical theory of self-gravitating collisionless dark matter flow: Scale and redshift variation of velocity and density distributions

This paper studies the scale and redshift variation of density and velocity distributions in self-gravitating collisionless dark matter flow by a halo-based non-projection approach. All particles are divided into halo and out-of-halo particles for redshift variation of distributions. Without projecting particle fields onto a structured grid, the scale variation is analyzed by identifying all particle pairs on different scales r. We demonstrate that: i) Delaunay tessellation can be used to reconstruct the density field. The density correlation, spectrum, and dispersion functions were obtained, modeled, and compared with the N-body simulation; ii) the velocity distributions are symmetric on both small and large scales and are non-symmetric with a negative skewness on intermediate scales due to the inverse energy cascade at a constant rate varepsilon_u; iii) On small scales, the even order moments of pairwise velocity Delta u_L follow a two-thirds law (-varepsilon_ur)^{2/3}, while the odd order moments follow a linear scaling langle(Delta u_L)^{2n+1}rangle=(2n+1)langle(Delta u_L)^{2n}ranglelangleDelta u_Lrangler; iv) The scale variation of the velocity distributions was studied for longitudinal velocities u_L or u_L^{'}, pairwise velocity (velocity difference) Delta u_L=u_L^{'}-u_L and velocity sum Sigma u_L=u^{'}_L+u_L. Fully developed velocity fields are never Gaussian on any scale, despite that they can initially be Gaussian; v) On small scales, u_L and Sigma u_L can be modeled by a X distribution to maximize the system entropy; vi) On large scales, Delta u_L and Sigma u_L can be modeled by a logistic or a X distribution; vii) the redshift variation of the velocity distributions follows the evolution of the X distribution involving a shape parameter alpha(z) decreasing with time.

  • 1 authors
·
Feb 14, 2022

The Milky Way stellar halo is twisted and doubly broken: insights from DESI DR2 Milky Way Survey observation

Using K giants from the second data release (DR2) of the Dark Energy Spectroscopic Instrument (DESI) Milky Way (MW) Survey, we measure the shape, orientation, radial profile, and density anisotropies of the MW stellar halo over 8 kpc<r_GC<200 kpc. We identify a triaxial stellar halo (axes ratio 10:8:7), 43 degrees tilted from the disk, showing two break radii at sim16 kpc and sim76 kpc, likely associated with Gaia-Sausage/Enceladus (GSE) and Large Magellanic Cloud (LMC), respectively. The inner stellar halo (<30 kpc) is oblate and aligned with the disk, whereas the outer stellar halo becomes prolate and perpendicular to the disk, consistent with the Vast Polar Structure of MW satellites. The twisted halo may arise from the disk-halo angular momentum shift triggered by the infall of a massive satellite. The anisotropic density distribution of the stellar halo is also measured, with successful re-identification of the Hercules-Aquila Cloud South/North (HAC-N/-S) and Virgo overdensities (VOD). Break radii are found at 15/30 kpc for VOD/HAC-N(-S). We identify the LMC transient density wake with a break radius at 60 kpc in the Pisces overdensity region. We also find new observational evidence of the LMC collective density wake, by showing a break radius at sim100 kpc in the northern Galactic cap with a clear density peak at 90 kpc. In the end, we found that more metal-poor halo stars are more radially extended. Our results provide important clues to the assembly and evolution of the MW stellar halo under the standard cosmic structure formation framework.

  • 48 authors
·
Dec 1, 2025

Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections

Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.

  • 55 authors
·
Feb 18, 2025

AutoKnots: Adaptive Knot Allocation for Spline Interpolation

In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)

  • 4 authors
·
Dec 17, 2024

Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift

We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties.

  • 5 authors
·
Mar 18, 2025

Tracing cosmic voids with fast simulations

Context. Cosmic voids are vast underdense regions in the cosmic web that encode crucial information about structure formation, the composition of the Universe, and its expansion history. Due to their lower density, these regions are less affected by non-linear gravitational dynamics, making them suitable candidates for analysis using semi-analytic methods. Aims. We assess the accuracy of the PINOCCHIO code, a fast tool for generating dark matter halo catalogs based on Lagrangian Perturbation Theory, in modeling the statistical properties of cosmic voids. We validate this approach by comparing the resulting void statistics measured from PINOCCHIO to those obtained from N-body simulations. Methods. We generate a set of simulations using PINOCCHIO and OpenGADGET3, assuming a fiducial cosmology and varying the resolution. For a given resolution, the simulations share the same initial conditions between the different simulation codes. Snapshots are saved at multiple redshifts for each simulation and post-processed using the watershed void finder VIDE to identify cosmic voids. For each simulation code, we measure the following statistics: void size function, void ellipticity function, core density function, and the void radial density profile. We use these statistics to quantify the accuracy of PINOCCHIO relative to OpenGADGET3 in the context of cosmic voids. Results. We find agreement for all void statistics at better than 2{\sigma} between PINOCCHIO and OpenGADGET3, with no systematic difference in redshift trends. This demonstrates that the PINOCCHIO code can reliably produce void statistics with high computational efficiency compared to full N-body simulations.

  • 6 authors
·
Jun 24, 2025

Probing the shape of the Milky Way dark matter halo with hypervelocity stars: a new method

We propose a new method to determine the shape of the gravitational potential of the dark matter (DM) halo of the Milky Way (MW) with the galactocentric tangential velocities of a sample of hypervelocity stars (HVSs). We compute the trajectories of different samples of HVSs in a MW where the baryon distribution is axisymmetric and the DM potential either is spherical or is spheroidal or triaxial with radial-dependent axis ratios. We determine the shape of the DM potential with the distribution of the latitudinal velocity |v_{vartheta}| in axisymmetric Galactic potentials, or with the distribution of |v_{vartheta}| and of a function bar v_{varphi} of the azimuthal velocity in non-axisymmetric Galactic potentials. We recover the correct shape of the DM potential by comparing the distribution of |v_{vartheta}| and bar v_{varphi} against the corresponding distributions of mock samples of HVSs that traveled in DM halos of different shapes. We use the largest possible sample of sim 800 HVSs of 4~M_odot ejected with the Hills mechanism at a rate sim 10^{-4} yr^{-1}, currently outgoing, and located at more than 10 kpc from the Galactic center. In our ideal case of galactocentric velocities with null uncertainties and no observational limitations, our method recovers the correct shape of the DM potential with a success rate Sgtrsim 89% in axisymmetric Galactic potentials, and S > 96% in the explored non-axisymmetric cases. The unsuccessful cases yield axis ratios of the DM potential that are off by pm 0.1. The success rate decreases with decreasing sample size: for example, for a spherical DM halo, S drops from sim 98% to sim 38% when the sample size decreases from sim 800 to sim 40 HVSs. A robust determination of the shape of the DM potential thus requires the measure of the galactocentric velocity of a few hundred genuine HVSs.

  • 5 authors
·
Nov 18, 2021

Batch Query Processing and Optimization for Agentic Workflows

Large Language Models (LLMs) in agentic workflows combine multi-step reasoning, tool use, and collaboration across multiple specialized agents. Existing LLM serving engines optimize individual calls in isolation, while multi-agent frameworks focus on orchestration without system-level performance planning. As a result, repeated prompts, overlapping contexts, and concurrent executions create substantial redundancy and poor GPU utilization, especially in batch analytics scenarios. We introduce Halo, a system that brings batch query processing and optimization into agentic LLM workflows. Halo represents each workflow as a structured query plan DAG and constructs a consolidated graph for batched queries that exposes shared computation. Guided by a cost model that jointly considers prefill and decode costs, cache reuse, and GPU placement, Halo performs plan-level optimization to minimize redundant execution. Its runtime integrates adaptive batching, KV-cache sharing and migration, along with compute-communication overlap to maximize hardware efficiency. Evaluation across six benchmarks shows that Halo achieves up to 18.6x speedup for batch inference and 4.7x throughput improvement under online serving, scaling to workloads of tens of thousands of queries and complex graphs. These gains are achieved without compromising output quality. By unifying query optimization with LLM serving, Halo enables efficient agentic workflows in data analytics and decision-making applications.

  • 3 authors
·
Sep 2, 2025

First Light And Reionisation Epoch Simulations (FLARES) I: Environmental Dependence of High-Redshift Galaxy Evolution

We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionisation (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large (3.2 ;cGpc)^{3} parent volume, based on their overdensity within a sphere of radius 14,h^{-1};cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF) and the star forming sequence (SFS) predicted by \flares, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalisation. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, such as WFIRST and Euclid.

  • 7 authors
·
Apr 15, 2020

First Light and Reionisation Epoch Simulations (FLARES) XVII: Learning the galaxy-halo connection at high redshifts

Understanding the galaxy-halo relationship is not only key for elucidating the interplay between baryonic and dark matter, it is essential for creating large mock galaxy catalogues from N-body simulations. High-resolution hydrodynamical simulations are limited to small volumes by their large computational demands, hindering their use for comparisons with wide-field observational surveys. We overcome this limitation by using the First Light and Reionisation Epoch Simulations (FLARES), a suite of high-resolution (M_gas = 1.8 x 10^6 M_Sun) zoom simulations drawn from a large, (3.2 cGpc)^3 box. We use an extremely randomised trees machine learning approach to model the relationship between galaxies and their subhaloes in a wide range of environments. This allows us to build mock catalogues with dynamic ranges that surpass those obtainable through periodic simulations. The low cost of the zoom simulations facilitates multiple runs of the same regions, differing only in the random number seed of the subgrid models; changing this seed introduces a butterfly effect, leading to random differences in the properties of matching galaxies. This randomness cannot be learnt by a deterministic machine learning model, but by sampling the noise and adding it post-facto to our predictions, we are able to recover the distributions of the galaxy properties we predict (stellar mass, star formation rate, metallicity, and size) remarkably well. We also explore the resolution-dependence of our models' performances and find minimal depreciation down to particle resolutions of order M_DM ~ 10^8 M_Sun, enabling the future application of our models to large dark matter-only boxes.

  • 9 authors
·
Oct 31, 2024

NeutralUniverseMachine: How Filaments and Dark Matter Halo Influence the Galaxy Cold Gas Content

Aims. We aim to investigate the influence of the distance to filaments and dark-matter haloes on galaxy cold-gas content in the empirical model NeutralUniverseMachine (NUM) and the hydrodynamical simulation IllustrisTNG. Methods. We used DisPerSE to identify cosmic web structures and calculate the distance of galaxies to filaments for both observations and models. We show the results of the HI and H2 mass functions, HI- and H2-halo-mass relations, HI- and H2-stellar-mass relations for galaxies in the NUM model and IllustrisTNG with different distances to filaments and compare them with observational measurements. We also show the evolution of HI and H2 mass densities at different distances to filament bins. Results. We find that how filaments affect the HI gas is generally less significant compared to the halo environment. There is a weak trend in the observations at z=0 that low-mass haloes lying closer to the filaments tend to have reduced HI masses. However, this trend reverses for massive haloes with log(Mvir/Msun) > 12.5. This behaviour is accurately reproduced in the NUM model due to the dependence of HI gas on the halo formation time, but it does not appear in IllustrisTNG. The influence of filaments on the HI gas becomes slightly weaker at higher redshifts and is only significant for galaxies that reside in massive haloes in the NUM model. Filaments have almost no impact on the H2-stellar-mass relation in both models, confirming that H2 is primarily determined by the galaxy stellar mass and star formation rate.

  • 3 authors
·
Sep 13, 2024

Addressing the core-cusp and diversity problem of dwarf and disk galaxies using cold collisionless DARKexp theory

Observed dwarf galaxies tend to have linearly rising rotation curves, which indicate flat density cores in their centers. Furthermore, disk galaxies show a wide range of rotation curves shapes. High resolution simulations of cold collisionless dark matter do not reproduce flat central profiles, or the observed diversity of rotation curve shapes; even hydrodynamic simulations incorporating baryonic feedback cannot do that robustly. However, numerical simulations are not the only way to make predictions about density profiles of equilibrium dark matter halos. A theoretical model based on statistical mechanics shows that maximum entropy solutions for cold collisionless self-gravitating dark matter halos can have a range of inner density profiles, including flat density cores. These theoretical profiles, called DARKexp, have only one shape parameter, and are able to fit the observed rotation curves of galaxies with last measured velocities in the range ~20-200 km/s. Here we present fits to 96 SPARC catalog galaxies, and the Milky Way. DARKexp also provides good fits to the projected stellar density distributions of ultrafaint dwarfs that show cores, suggesting that the dark matter halo hosts could have flat density cores. Thus, DARKexp appears to be able to address the core-cusp problem and the diversity of rotation curves with cold collisionless dark matter alone, without baryonic feedback.

  • 3 authors
·
Feb 21, 2025

Soft X-ray line emission from hot gas in intervening galaxy halos and diffuse gas in the cosmic web

Cosmic hot-gas emission is closely related to halo gas acquisition and galactic feedback processes. Their X-ray observations reveal important physical properties and movements of the baryonic cycle of galactic ecosystems. However, the measured emissions toward a target at a cosmological distance would always include contributions from hot gases along the entire line of sight to the target. Observationally, such contaminations are routinely subtracted via different strategies. With this work, we aim to answer an interesting theoretical question regarding the amount of soft X-ray line emissions from intervening hot gases of different origins. We tackled this problem with the aid of the TNG100 simulation. We generated typical wide-field light cones and estimated their impacts on spectral and flux measurements toward X-ray-emitting galaxy-, group- and cluster-halo targets at lower redshifts. We split the intervening hot gases into three categories; that is, the hot gas that is gravitationally bound to either star-forming or quenched galaxy halos, and the diffuse gas, which is more tenuously distributed permeating the cosmic web structures. We find that along a given line of sight, the diffuse gas that permeates the cosmic web structures produces strong oxygen and iron line emissions at different redshifts. The diffuse gas emission in the soft X-ray band can be equal to the emission from hot gases that are gravitationally bound to intervening galaxy halos. The hot-gas emission from the quiescent galaxy halos can be significantly less than that from star-forming halos along the line of sight. The fluxes from all of the line-of-sight emitters as measured in the energy band of 0.4--0.85 keV can reach ~20--200 % of the emission from the target galaxy, group, and cluster halos.

  • 4 authors
·
Jun 17, 2025

Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter

Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5-40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of sim15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a sim3times more significant measurement of the extended gas compared to the technique's proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m=1) and quadrupole (m=2) at 8-10sigma, as well as evidence for m=4 signal at up to 6sigma, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.

  • 76 authors
·
Sep 6, 2024

First Light and Reionisation Epoch Simulations (FLARES) X: Environmental Galaxy Bias and Survey Variance at High Redshift

Upcoming deep galaxy surveys with JWST will probe galaxy evolution during the epoch of reionisation (EoR, 5leq zleq10) over relatively compact areas (e.g. sim 300\,arcmin^2 for the JADES GTO survey). It is therefore imperative that we understand the degree of survey variance, to evaluate how representative the galaxy populations in these studies will be. We use the First Light And Reionisation Epoch Simulations (FLARES) to measure the galaxy bias of various tracers over an unprecedentedly large range in overdensity for a hydrodynamic simulation, and use these relations to assess the impact of bias and clustering on survey variance in the EoR. Star formation is highly biased relative to the underlying dark matter distribution, with the mean ratio of the stellar to dark matter density varying by a factor of 100 between regions of low and high matter overdensity (smoothed on a scale of 14,h^{-1}cMpc). This is reflected in the galaxy distribution --the most massive galaxies are found solely in regions of high overdensity. As a consequence of the above, galaxies in the EoR are highly clustered, which can lead to large variance in survey number counts. For mean number counts Nlesssim 100 (1000), in a unit redshift slice of angular area 300\,arcmin^2 (1.4\,deg^2), the 2-sigma range in N is roughly a factor of four (two). We present relations between the expected variance and survey area for different survey geometries; these relations will be of use to observers wishing to understand the impact of survey variance on their results.

  • 8 authors
·
Jan 23, 2023

Impulsive mixing of stellar populations in dwarf spheroidal galaxies

We study the response of mono-energetic stellar populations with initially isotropic kinematics to impulsive and adiabatic changes to an underlying dark matter potential. Half-light radii expand and velocity dispersions decrease as enclosed dark matter is removed. The details of this expansion and cooling depend on the time scale on which the underlying potential changes. In the adiabatic regime, the product of half-light radius and average velocity dispersion is conserved. We show that the stellar populations maintain centrally isotropic kinematics throughout their adiabatic evolution, and their densities can be approximated by a family of analytical radial profiles. Metallicity gradients within the galaxy flatten as dark matter is slowly removed. In the case of strong impulsive perturbations, stellar populations develop power-law-like density tails with radially biased kinematics. We show that the distribution of stellar binding energies within the dark matter halo substantially widens after an impulsive perturbation, no matter the sign of the perturbation. This allows initially energetically separated stellar populations to mix, to the extent that previously chemo-dynamically distinct populations may masquerade as a single population with large metallicity and energy spread. Finally, we show that in response to an impulsive perturbation, stellar populations that are deeply embedded in cored dark matter halos undergo a series of damped oscillations before reaching a virialised equilibrium state, driven by inefficient phase mixing in the harmonic potentials of cored halos. This slow return to equilibrium adds substantial systematic uncertainty to dynamical masses estimated from Jeans modeling or the virial theorem.

  • 5 authors
·
Feb 26, 2025

DexGarmentLab: Dexterous Garment Manipulation Environment with Generalizable Policy

Garment manipulation is a critical challenge due to the diversity in garment categories, geometries, and deformations. Despite this, humans can effortlessly handle garments, thanks to the dexterity of our hands. However, existing research in the field has struggled to replicate this level of dexterity, primarily hindered by the lack of realistic simulations of dexterous garment manipulation. Therefore, we propose DexGarmentLab, the first environment specifically designed for dexterous (especially bimanual) garment manipulation, which features large-scale high-quality 3D assets for 15 task scenarios, and refines simulation techniques tailored for garment modeling to reduce the sim-to-real gap. Previous data collection typically relies on teleoperation or training expert reinforcement learning (RL) policies, which are labor-intensive and inefficient. In this paper, we leverage garment structural correspondence to automatically generate a dataset with diverse trajectories using only a single expert demonstration, significantly reducing manual intervention. However, even extensive demonstrations cannot cover the infinite states of garments, which necessitates the exploration of new algorithms. To improve generalization across diverse garment shapes and deformations, we propose a Hierarchical gArment-manipuLation pOlicy (HALO). It first identifies transferable affordance points to accurately locate the manipulation area, then generates generalizable trajectories to complete the task. Through extensive experiments and detailed analysis of our method and baseline, we demonstrate that HALO consistently outperforms existing methods, successfully generalizing to previously unseen instances even with significant variations in shape and deformation where others fail. Our project page is available at: https://wayrise.github.io/DexGarmentLab/.

  • 10 authors
·
May 16, 2025

Elevated UV luminosity density at Cosmic Dawn explained by non-evolving, weakly-mass dependent star formation efficiency

Recent observations with the James Webb Space Telescope (JWST) have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the Big Bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox-HR, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox-HR re-simulates the cosmic volume (L = 22.1 cMpc) of the original FIREbox run with eight times higher mass resolution (m_b ~ 7800 M_sun), but with identical physics, down to z ~ 6. FIREbox-HR predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at z ~ 6 - 14, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox-HR, the SFE - halo mass relation for intermediate mass halos (M_halo ~ 10^9 - 10^11 M_sun) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE - halo mass relation lead to a larger contribution from lower mass halos at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE - halo mass relation inferred from FIREbox-HR allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at z > 12 will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.

  • 14 authors
·
Jul 2, 2024

Tracing the cosmological origin of gas that fuels in situ star formation in TNG50 galaxies

Based on their cosmological origin, the stars of a galaxy can be divided into two categories: those that enter through merger events (ex situ) and those born in the main progenitor (in situ). We used the TNG50 cosmological magnetohydrodynamical simulation and its Lagrangian tracer particles to explore and quantify the origin of gas that ultimately forms the in situ stars of galaxies. We tracked back the baryonic mass contributing to the z=0 in situ stellar populations of galaxies, studying trends in mass from dwarfs to group-scale halos. We find that more massive halos acquire this matter earlier than lower-mass halos, reflecting an overall earlier assembly of their in situ stellar mass. Defining the Lagrangian half-mass radius R_{rm L, 1/2} of a galaxy as the distance containing half of the mass that will form its in situ stars by z=0, we find that R_{rm L, 1/2} is larger for more massive halos at early times, reflecting larger "in situ Lagrangian regions." However, the dependence of this radius on halo mass becomes flat at z simeq 3 and then inverts toward z=0. In addition, R_{rm L, 1/2} increases rapidly with redshift, surpassing the virial radii of halos at z sim 2. This marks the cosmic epoch at which most of the gas that eventually forms the in situ stars of galaxies leaves the intergalactic medium (IGM) and enters halos, a transition that occurs earlier for more massive halos. The formation redshift of the in situ stellar component increases with halo mass, while the formation redshift of the dark matter halo decreases, indicative of a differential assembly history between these two components. Finally, we decomposed the z=0 in situ stellar mass into its distinct modes of accretion. Smooth accretion from the IGM is the most important for low-mass galaxies, while mergers and satellite-stripped gas become relevant and even dominant only for high-mass galaxies.

  • 3 authors
·
Feb 28, 2025

Simulating Brown Dwarf Observations for Various Mass Functions, Birthrates, and Low-mass Cutoffs

After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass distribution within 20 parsecs, which serves as a constraint on star formation theory at the lowest masses. Unlike objects on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass function must therefore be procured through proxy measurements and theoretical models. We utilize various assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals the most likely mass function. We find that a simple power law (dN/dM propto M^{-α}) with αapprox 0.5 is optimal. Additionally, we conclude that the low-mass cutoff for star formation is lesssim0.005M_{odot}. We corroborate the findings of Burgasser (2004) which state that the birthrate has a far lesser impact than the mass function on the form of the temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values of α than the constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of very old (8-10 Gyr) brown dwarfs.

  • 14 authors
·
Jun 13, 2024

HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems

Recent advancements in Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) have demonstrated tremendous potential in diverse task scenarios. Nonetheless, existing agentic systems typically rely on predefined agent-role design spaces and static communication structures, limiting their adaptability as well as flexibility in complex interaction environments and leading to subpar performance on highly specialized and expert-level tasks. To address these issues, we introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture. Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution. Particularly, subtask execution is reformulated as a structured workflow search problem, where Monte Carlo Tree Search (MCTS) systematically explores the agentic action space to construct optimal reasoning trajectories. Additionally, as the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts. Empirical evaluations on Code Generation (HumanEval), General Reasoning (MMLU), and Arithmetic Reasoning (MATH) benchmark datasets highlight the effectiveness of HALO, yielding a 14.4% average improvement over state-of-the-art baselines. Notably, HALO achieves up to 13.3% performance gain on the Moral Scenarios subject in the MMLU benchmark and up to 19.6% performance gain on the Algebra subarea in the MATH benchmark, indicating its advanced proficiency in tackling highly specialized and expert-level tasks. The code repository is available at https://github.com/23japhone/HALO.

  • 3 authors
·
May 17, 2025

Exploring the cloud of feature interaction scores in a Rashomon set

Interactions among features are central to understanding the behavior of machine learning models. Recent research has made significant strides in detecting and quantifying feature interactions in single predictive models. However, we argue that the feature interactions extracted from a single pre-specified model may not be trustworthy since: a well-trained predictive model may not preserve the true feature interactions and there exist multiple well-performing predictive models that differ in feature interaction strengths. Thus, we recommend exploring feature interaction strengths in a model class of approximately equally accurate predictive models. In this work, we introduce the feature interaction score (FIS) in the context of a Rashomon set, representing a collection of models that achieve similar accuracy on a given task. We propose a general and practical algorithm to calculate the FIS in the model class. We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics. Additionally, we introduce a Halo plot for visualizing the feature interaction variance in high-dimensional space and a swarm plot for analyzing FIS in a Rashomon set. Experiments with recidivism prediction and image classification illustrate how feature interactions can vary dramatically in importance for similarly accurate predictive models. Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.

  • 4 authors
·
May 17, 2023

The redshift dependence of the inferred H_0 in a local void solution to the Hubble tension

Galaxy number counts suggest that we are located within the Gpc-scale KBC void. The Hubble tension might arise due to gravitationally driven outflow from this void, as explored in detail by Haslbauer et al. We explore how the impact of the void on redshift decays at large distances. We define H_0(z) as the present expansion rate H_0 that would be inferred from observations in a narrow redshift range centred on z. We find H_0(z) in three different ways, all of which give similar results. We then compare these results with the observations of Jia et al., who were careful to minimise the impact of correlations between H_0 measurements from data in different redshift bins. We find reasonable agreement with their results for the Gaussian and Exponential void underdensity profiles, although the agreement is less good in the Maxwell-Boltzmann case. The latter profile causes severe disagreement with the observed bulk flow curve at z < 0.1 (Mazurenko et al.), so the tension with higher redshift data further highlights that the deepest part of the KBC void is probably near its centre. The observations show a decline of H_0(z) towards the background Planck value in qualitative agreement with the considered models, even if we use a larger void. The good overall agreement with the recent results of Jia et al. suggests that the local supervoid evident from the galaxy luminosity density out to a Gpc might also solve the Hubble tension while retaining a low background H_0 consistent with Planck data, assuming enhanced structure formation on >100 Mpc scales.

  • 3 authors
·
Dec 16, 2024

Planck 2018 results. VI. Cosmological parameters

We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter LambdaCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base LambdaCDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega_c h^2 = 0.120pm 0.001, baryon density Omega_b h^2 = 0.0224pm 0.0001, scalar spectral index n_s = 0.965pm 0.004, and optical depth tau = 0.054pm 0.007 (in this abstract we quote 68,% confidence regions on measured parameters and 95,% on upper limits). The angular acoustic scale is measured to 0.03,% precision, with 100theta_*=1.0411pm 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-LambdaCDM cosmology, the inferred late-Universe parameters are: Hubble constant H_0 = (67.4pm 0.5)km/s/Mpc; matter density parameter Omega_m = 0.315pm 0.007; and matter fluctuation amplitude sigma_8 = 0.811pm 0.006. We find no compelling evidence for extensions to the base-LambdaCDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be N_{rm eff} = 2.99pm 0.17, and the neutrino mass is tightly constrained to sum m_nu< 0.12eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -LambdaCDM at over 2,sigma, which pulls some parameters that affect the lensing amplitude away from the base-LambdaCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

  • 182 authors
·
Jul 17, 2018

Solar System Elemental Abundances from the Solar Photosphere and CI-Chondrites

Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.

  • 3 authors
·
Feb 14, 2025

Labor Space: A Unifying Representation of the Labor Market via Large Language Models

The labor market is a complex ecosystem comprising diverse, interconnected entities, such as industries, occupations, skills, and firms. Due to the lack of a systematic method to map these heterogeneous entities together, each entity has been analyzed in isolation or only through pairwise relationships, inhibiting comprehensive understanding of the whole ecosystem. Here, we introduce Labor Space, a vector-space embedding of heterogeneous labor market entities, derived through applying a large language model with fine-tuning. Labor Space exposes the complex relational fabric of various labor market constituents, facilitating coherent integrative analysis of industries, occupations, skills, and firms, while retaining type-specific clustering. We demonstrate its unprecedented analytical capacities, including positioning heterogeneous entities on an economic axes, such as `Manufacturing--Healthcare'. Furthermore, by allowing vector arithmetic of these entities, Labor Space enables the exploration of complex inter-unit relations, and subsequently the estimation of the ramifications of economic shocks on individual units and their ripple effect across the labor market. We posit that Labor Space provides policymakers and business leaders with a comprehensive unifying framework for labor market analysis and simulation, fostering more nuanced and effective strategic decision-making.

  • 3 authors
·
Nov 9, 2023

Dark Matter Subhalos and Higher Order Catastrophes in Gravitational Wave Lensing

Gravitational lensing is an invaluable probe of the nature of dark matter, and the structures it forms. Lensed gravitational waves in particular allow for unparalleled sensitivity to small scale structures within the lenses, due to the precise time resolution in combination with the continuous monitoring of the entire sky. In this work, we show two distinct ways of using strongly lensed gravitational waves to identify the presence of dark matter subhalos: {i)} through higher order caustics generating high relative magnification (mu_r > 2), short time delay image pairs that break the caustic universality relations of single dark matter halos, which occur for sim 1-10 percent of strongly lensed events in our cold dark matter models, and ii) through the presence of more than three highly magnified images, which occur for sim 0.01-1 percent of the same simulated events. We find that these results are highly sensitive to the concentrations of subhalos in our simulations, and more mildly to their number densities. The presence of low-mass subhalos increases the probability of observing wave-optics lensing in lensed gravitational waves, which is studied by solving the diffraction integral with the stationary phase approximation, as well as numerically. We also report distinct quantitative and qualitative differences in the distributions of relative magnifications and time delays for subhalo populations with increased number densities or concentrations. With the upcoming detection of strongly lensed events by ground- and space- based detectors, comparisons against these simulated distributions will provide insight into the nature of dark matter.

  • 5 authors
·
Oct 16, 2025

The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions

In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.

  • 2 authors
·
Jan 3, 2024