new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

MOVE: A Simple Motion-Based Data Collection Paradigm for Spatial Generalization in Robotic Manipulation

Imitation learning method has shown immense promise for robotic manipulation, yet its practical deployment is fundamentally constrained by the data scarcity. Despite prior work on collecting large-scale datasets, there still remains a significant gap to robust spatial generalization. We identify a key limitation: individual trajectories, regardless of their length, are typically collected from a single, static spatial configuration of the environment. This includes fixed object and target spatial positions as well as unchanging camera viewpoints, which significantly restricts the diversity of spatial information available for learning. To address this critical bottleneck in data efficiency, we propose MOtion-Based Variability Enhancement (MOVE), a simple yet effective data collection paradigm that enables the acquisition of richer spatial information from dynamic demonstrations. Our core contribution is an augmentation strategy that injects motion into any movable objects within the environment for each demonstration. This process implicitly generates a dense and diverse set of spatial configurations within a single trajectory. We conduct extensive experiments in both simulation and real-world environments to validate our approach. For example, in simulation tasks requiring strong spatial generalization, MOVE achieves an average success rate of 39.1\%, a 76.1\% relative improvement over the static data collection paradigm (22.2\%), and yields up to 2--5times gains in data efficiency on certain tasks. Our code is available at https://github.com/lucywang720/MOVE.

  • 10 authors
·
Dec 4

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

Convolutional neural networks (CNNs) have achieved great successes in many computer vision problems. Unlike existing works that designed CNN architectures to improve performance on a single task of a single domain and not generalizable, we present IBN-Net, a novel convolutional architecture, which remarkably enhances a CNN's modeling ability on one domain (e.g. Cityscapes) as well as its generalization capacity on another domain (e.g. GTA5) without finetuning. IBN-Net carefully integrates Instance Normalization (IN) and Batch Normalization (BN) as building blocks, and can be wrapped into many advanced deep networks to improve their performances. This work has three key contributions. (1) By delving into IN and BN, we disclose that IN learns features that are invariant to appearance changes, such as colors, styles, and virtuality/reality, while BN is essential for preserving content related information. (2) IBN-Net can be applied to many advanced deep architectures, such as DenseNet, ResNet, ResNeXt, and SENet, and consistently improve their performance without increasing computational cost. (3) When applying the trained networks to new domains, e.g. from GTA5 to Cityscapes, IBN-Net achieves comparable improvements as domain adaptation methods, even without using data from the target domain. With IBN-Net, we won the 1st place on the WAD 2018 Challenge Drivable Area track, with an mIoU of 86.18%.

  • 4 authors
·
Jul 25, 2018

Train longer, generalize better: closing the generalization gap in large batch training of neural networks

Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomena. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmically with the number of weight updates. We therefore propose a "random walk on random landscape" statistical model which is known to exhibit similar "ultra-slow" diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the "generalization gap" stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named "Ghost Batch Normalization" which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.

  • 3 authors
·
May 24, 2017

Combinatorial Creativity: A New Frontier in Generalization Abilities

Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Importantly, this tradeoff remains persistent even at scale, casting doubt on the long-term creative potential of LLMs in their current form. Together, our conceptual framework and empirical findings provide a foundation for understanding and improving creativity in modern AI models, bridging the gap between human and machine intelligence.

spiralworks Spiral Works
·
Sep 25 2

Studying Large Language Model Generalization with Influence Functions

When trying to gain better visibility into a machine learning model in order to understand and mitigate the associated risks, a potentially valuable source of evidence is: which training examples most contribute to a given behavior? Influence functions aim to answer a counterfactual: how would the model's parameters (and hence its outputs) change if a given sequence were added to the training set? While influence functions have produced insights for small models, they are difficult to scale to large language models (LLMs) due to the difficulty of computing an inverse-Hessian-vector product (IHVP). We use the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation to scale influence functions up to LLMs with up to 52 billion parameters. In our experiments, EK-FAC achieves similar accuracy to traditional influence function estimators despite the IHVP computation being orders of magnitude faster. We investigate two algorithmic techniques to reduce the cost of computing gradients of candidate training sequences: TF-IDF filtering and query batching. We use influence functions to investigate the generalization patterns of LLMs, including the sparsity of the influence patterns, increasing abstraction with scale, math and programming abilities, cross-lingual generalization, and role-playing behavior. Despite many apparently sophisticated forms of generalization, we identify a surprising limitation: influences decay to near-zero when the order of key phrases is flipped. Overall, influence functions give us a powerful new tool for studying the generalization properties of LLMs.

  • 17 authors
·
Aug 7, 2023

Spurious Feature Diversification Improves Out-of-distribution Generalization

Generalization to out-of-distribution (OOD) data is a critical challenge in machine learning. Ensemble-based methods, like weight space ensembles that interpolate model parameters, have been shown to achieve superior OOD performance. However, the underlying mechanism for their effectiveness remains unclear. In this study, we closely examine WiSE-FT, a popular weight space ensemble method that interpolates between a pre-trained and a fine-tuned model. We observe an unexpected phenomenon, in which WiSE-FT successfully corrects many cases where each individual model makes incorrect predictions, which contributes significantly to its OOD effectiveness. To gain further insights, we conduct theoretical analysis in a multi-class setting with a large number of spurious features. Our analysis predicts the above phenomenon and it further shows that ensemble-based models reduce prediction errors in the OOD settings by utilizing a more diverse set of spurious features. Contrary to the conventional wisdom that focuses on learning invariant features for better OOD performance, our findings suggest that incorporating a large number of diverse spurious features weakens their individual contributions, leading to improved overall OOD generalization performance. Empirically we demonstrate the effectiveness of utilizing diverse spurious features on a MultiColorMNIST dataset, and our experimental results are consistent with the theoretical analysis. Building upon the new theoretical insights into the efficacy of ensemble methods, we further identify an issue of WiSE-FT caused by the overconfidence of fine-tuned models in OOD situations. This overconfidence magnifies the fine-tuned model's incorrect prediction, leading to deteriorated OOD ensemble performance. To remedy this problem, we propose a novel method called BAlaNced averaGing (BANG), which significantly enhances the OOD performance of WiSE-FT.

  • 8 authors
·
Sep 29, 2023

Grokking at the Edge of Numerical Stability

Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and perpGrad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.

  • 4 authors
·
Jan 8

CapS-Adapter: Caption-based MultiModal Adapter in Zero-Shot Classification

Recent advances in vision-language foundational models, such as CLIP, have demonstrated significant strides in zero-shot classification. However, the extensive parameterization of models like CLIP necessitates a resource-intensive fine-tuning process. In response, TIP-Adapter and SuS-X have introduced training-free methods aimed at bolstering the efficacy of downstream tasks. While these approaches incorporate support sets to maintain data distribution consistency between knowledge cache and test sets, they often fall short in terms of generalization on the test set, particularly when faced with test data exhibiting substantial distributional variations. In this work, we present CapS-Adapter, an innovative method that employs a caption-based support set, effectively harnessing both image and caption features to exceed existing state-of-the-art techniques in training-free scenarios. CapS-Adapter adeptly constructs support sets that closely mirror target distributions, utilizing instance-level distribution features extracted from multimodal large models. By leveraging CLIP's single and cross-modal strengths, CapS-Adapter enhances predictive accuracy through the use of multimodal support sets. Our method achieves outstanding zero-shot classification results across 19 benchmark datasets, improving accuracy by 2.19\% over the previous leading method. Our contributions are substantiated through extensive validation on multiple benchmark datasets, demonstrating superior performance and robust generalization capabilities. Our code is made publicly available at https://github.com/WLuLi/CapS-Adapter.

  • 3 authors
·
May 26, 2024

U-Bench: A Comprehensive Understanding of U-Net through 100-Variant Benchmarking

Over the past decade, U-Net has been the dominant architecture in medical image segmentation, leading to the development of thousands of U-shaped variants. Despite its widespread adoption, there is still no comprehensive benchmark to systematically evaluate their performance and utility, largely because of insufficient statistical validation and limited consideration of efficiency and generalization across diverse datasets. To bridge this gap, we present U-Bench, the first large-scale, statistically rigorous benchmark that evaluates 100 U-Net variants across 28 datasets and 10 imaging modalities. Our contributions are threefold: (1) Comprehensive Evaluation: U-Bench evaluates models along three key dimensions: statistical robustness, zero-shot generalization, and computational efficiency. We introduce a novel metric, U-Score, which jointly captures the performance-efficiency trade-off, offering a deployment-oriented perspective on model progress. (2) Systematic Analysis and Model Selection Guidance: We summarize key findings from the large-scale evaluation and systematically analyze the impact of dataset characteristics and architectural paradigms on model performance. Based on these insights, we propose a model advisor agent to guide researchers in selecting the most suitable models for specific datasets and tasks. (3) Public Availability: We provide all code, models, protocols, and weights, enabling the community to reproduce our results and extend the benchmark with future methods. In summary, U-Bench not only exposes gaps in previous evaluations but also establishes a foundation for fair, reproducible, and practically relevant benchmarking in the next decade of U-Net-based segmentation models. The project can be accessed at: https://fenghetan9.github.io/ubench. Code is available at: https://github.com/FengheTan9/U-Bench.

An Anatomy of Vision-Language-Action Models: From Modules to Milestones and Challenges

Vision-Language-Action (VLA) models are driving a revolution in robotics, enabling machines to understand instructions and interact with the physical world. This field is exploding with new models and datasets, making it both exciting and challenging to keep pace with. This survey offers a clear and structured guide to the VLA landscape. We design it to follow the natural learning path of a researcher: we start with the basic Modules of any VLA model, trace the history through key Milestones, and then dive deep into the core Challenges that define recent research frontier. Our main contribution is a detailed breakdown of the five biggest challenges in: (1) Representation, (2) Execution, (3) Generalization, (4) Safety, and (5) Dataset and Evaluation. This structure mirrors the developmental roadmap of a generalist agent: establishing the fundamental perception-action loop, scaling capabilities across diverse embodiments and environments, and finally ensuring trustworthy deployment-all supported by the essential data infrastructure. For each of them, we review existing approaches and highlight future opportunities. We position this paper as both a foundational guide for newcomers and a strategic roadmap for experienced researchers, with the dual aim of accelerating learning and inspiring new ideas in embodied intelligence. A live version of this survey, with continuous updates, is maintained on our https://suyuz1.github.io/Survery/{project page}.

RedDino: A foundation model for red blood cell analysis

Red blood cells (RBCs) are essential to human health, and their precise morphological analysis is important for diagnosing hematological disorders. Despite the promise of foundation models in medical diagnostics, comprehensive AI solutions for RBC analysis remain scarce. We present RedDino, a self-supervised foundation model designed for RBC image analysis. RedDino uses an RBC-specific adaptation of the DINOv2 self-supervised learning framework and is trained on a curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources. Extensive evaluations show that RedDino outperforms existing state-of-the-art models on RBC shape classification. Through assessments including linear probing and nearest neighbor classification, we confirm its strong feature representations and generalization ability. Our main contributions are: (1) a foundation model tailored for RBC analysis, (2) ablation studies exploring DINOv2 configurations for RBC modeling, and (3) a detailed evaluation of generalization performance. RedDino addresses key challenges in computational hematology by capturing nuanced morphological features, advancing the development of reliable diagnostic tools. The source code and pretrained models for RedDino are available at https://github.com/Snarci/RedDino, and the pretrained models can be downloaded from our Hugging Face collection at https://huggingface.co/collections/Snarcy/reddino-689a13e29241d2e5690202fc

  • 4 authors
·
Aug 11 2

FDABench: A Benchmark for Data Agents on Analytical Queries over Heterogeneous Data

The growing demand for data-driven decision-making has created an urgent need for data agents that can integrate structured and unstructured data for analysis. While data agents show promise for enabling users to perform complex analytics tasks, this field still suffers from three critical limitations: first, comprehensive data agent benchmarks remain absent due to the difficulty of designing test cases that evaluate agents' abilities across multi-source analytical tasks; second, constructing reliable test cases that combine structured and unstructured data remains costly and prohibitively complex; third, existing benchmarks exhibit limited adaptability and generalizability, resulting in narrow evaluation scope. To address these challenges, we present FDABench, the first data agent benchmark specifically designed for evaluating agents in multi-source data analytical scenarios. Our contributions include: (i) we construct a standardized benchmark with 2,007 diverse tasks across different data sources, domains, difficulty levels, and task types to comprehensively evaluate data agent performance; (ii) we design an agent-expert collaboration framework ensuring reliable and efficient benchmark construction over heterogeneous data; (iii) we equip FDABench with robust generalization capabilities across diverse target systems and frameworks. We use FDABench to evaluate various data agent systems, revealing that each system exhibits distinct advantages and limitations regarding response quality, accuracy, latency, and token cost.

  • 7 authors
·
Sep 2

Distillation-based fabric anomaly detection

Unsupervised texture anomaly detection has been a concerning topic in a vast amount of industrial processes. Patterned textures inspection, particularly in the context of fabric defect detection, is indeed a widely encountered use case. This task involves handling a diverse spectrum of colors and textile types, encompassing a wide range of fabrics. Given the extensive variability in colors, textures, and defect types, fabric defect detection poses a complex and challenging problem in the field of patterned textures inspection. In this article, we propose a knowledge distillation-based approach tailored specifically for addressing the challenge of unsupervised anomaly detection in textures resembling fabrics. Our method aims to redefine the recently introduced reverse distillation approach, which advocates for an encoder-decoder design to mitigate classifier bias and to prevent the student from reconstructing anomalies. In this study, we present a new reverse distillation technique for the specific task of fabric defect detection. Our approach involves a meticulous design selection that strategically highlights high-level features. To demonstrate the capabilities of our approach both in terms of performance and inference speed, we conducted a series of experiments on multiple texture datasets, including MVTEC AD, AITEX, and TILDA, alongside conducting experiments on a dataset acquired from a textile manufacturing facility. The main contributions of this paper are the following: a robust texture anomaly detector utilizing a reverse knowledge-distillation technique suitable for both anomaly detection and domain generalization and a novel dataset encompassing a diverse range of fabrics and defects.

  • 2 authors
·
Jan 4, 2024

Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs

Memory complexity and data scarcity have so far prohibited learning solution operators of partial differential equations (PDEs) at high resolutions. We address these limitations by introducing a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization, called multi-grid tensorized neural operator (MG-TFNO). MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena, through a decomposition of both the input domain and the operator's parameter space. Our contributions are threefold: i) we enable parallelization over input samples with a novel multi-grid-based domain decomposition, ii) we represent the parameters of the model in a high-order latent subspace of the Fourier domain, through a global tensor factorization, resulting in an extreme reduction in the number of parameters and improved generalization, and iii) we propose architectural improvements to the backbone FNO. Our approach can be used in any operator learning setting. We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression. The tensorization combined with the domain decomposition, yields over 150x reduction in the number of parameters and 7x reduction in the domain size without losses in accuracy, while slightly enabling parallelism.

  • 4 authors
·
Sep 29, 2023

Aligning Teacher with Student Preferences for Tailored Training Data Generation

Large Language Models (LLMs) have shown significant promise as copilots in various tasks. Local deployment of LLMs on edge devices is necessary when handling privacy-sensitive data or latency-sensitive tasks. The computational constraints of such devices make direct deployment of powerful large-scale LLMs impractical, necessitating the Knowledge Distillation from large-scale models to lightweight models. Lots of work has been done to elicit diversity and quality training examples from LLMs, but little attention has been paid to aligning teacher instructional content based on student preferences, akin to "responsive teaching" in pedagogy. Thus, we propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, a framework that aligns the teacher model with student preferences to generate tailored training examples for Knowledge Distillation. Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales using students' performance with in-context learning as a proxy, and finally align the teacher model with student preferences. In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task. Extensive experiments on academic benchmarks demonstrate the superiority of ARTE over existing instruction-tuning datasets distilled from powerful LLMs. Moreover, we thoroughly investigate the generalization of ARTE, including the generalization of fine-tuned student models in reasoning ability and the generalization of aligned teacher models to generate tailored training data across tasks and students. In summary, our contributions lie in proposing a novel framework for tailored training example generation, demonstrating its efficacy in experiments, and investigating the generalization of both student & aligned teacher models in ARTE.

  • 6 authors
·
Jun 27, 2024 2

FAIT: Fault-Aware Fine-Tuning for Better Code Generation

Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.

  • 6 authors
·
Mar 21

Contextualized Messages Boost Graph Representations

Graph neural networks (GNNs) have gained significant attention in recent years for their ability to process data that may be represented as graphs. This has prompted several studies to explore their representational capability based on the graph isomorphism task. Notably, these works inherently assume a countable node feature representation, potentially limiting their applicability. Interestingly, only a few study GNNs with uncountable node feature representation. In the paper, a new perspective on the representational capability of GNNs is investigated across all levelsx2014node-level, neighborhood-level, and graph-levelx2014when the space of node feature representation is uncountable. Specifically, the injective and metric requirements of previous works are softly relaxed by employing a pseudometric distance on the space of input to create a soft-injective function such that distinct inputs may produce similar outputs if and only if the pseudometric deems the inputs to be sufficiently similar on some representation. As a consequence, a simple and computationally efficient soft-isomorphic relational graph convolution network (SIR-GCN) that emphasizes the contextualized transformation of neighborhood feature representations via anisotropic and dynamic message functions is proposed. Furthermore, a mathematical discussion on the relationship between SIR-GCN and key GNNs in literature is laid out to put the contribution into context, establishing SIR-GCN as a generalization of classical GNN methodologies. To close, experiments on synthetic and benchmark datasets demonstrate the relative superiority of SIR-GCN, outperforming comparable models in node and graph property prediction tasks.

  • 4 authors
·
Mar 19, 2024

What Algorithms can Transformers Learn? A Study in Length Generalization

Large language models exhibit surprising emergent generalization properties, yet also struggle on many simple reasoning tasks such as arithmetic and parity. This raises the question of if and when Transformer models can learn the true algorithm for solving a task. We study the scope of Transformers' abilities in the specific setting of length generalization on algorithmic tasks. Here, we propose a unifying framework to understand when and how Transformers can exhibit strong length generalization on a given task. Specifically, we leverage RASP (Weiss et al., 2021) -- a programming language designed for the computational model of a Transformer -- and introduce the RASP-Generalization Conjecture: Transformers tend to length generalize on a task if the task can be solved by a short RASP program which works for all input lengths. This simple conjecture remarkably captures most known instances of length generalization on algorithmic tasks. Moreover, we leverage our insights to drastically improve generalization performance on traditionally hard tasks (such as parity and addition). On the theoretical side, we give a simple example where the "min-degree-interpolator" model of learning from Abbe et al. (2023) does not correctly predict Transformers' out-of-distribution behavior, but our conjecture does. Overall, our work provides a novel perspective on the mechanisms of compositional generalization and the algorithmic capabilities of Transformers.

  • 8 authors
·
Oct 24, 2023

Where to find Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test

Grokking, i.e., test performance keeps improving long after training loss converged, has been recently witnessed in neural network training, making the mechanism of generalization and other emerging capabilities such as reasoning mysterious. While prior studies usually train small models on a few toy or highly-specific tasks for thousands of epochs, we conduct the first study of grokking on checkpoints during one-pass pretraining of a 7B large language model (LLM), i.e., OLMoE. We compute the training loss and evaluate generalization on diverse benchmark tasks, including math reasoning, code generation, and commonsense/domain-specific knowledge retrieval tasks. Our study, for the first time, verifies that grokking still happens in the pretraining of large-scale foundation models, though different data may enter grokking stages asynchronously. We further demystify grokking's "emergence of generalization" by investigating LLM internal dynamics. Specifically, we find that training samples' pathways (i.e., expert choices across layers) evolve from random, instance-specific to more structured and shareable between samples during grokking. Also, the complexity of a sample's pathway reduces despite the converged loss. These indicate a memorization-to-generalization conversion, providing a mechanistic explanation of delayed generalization. In the study, we develop two novel metrics to quantify pathway distance and the complexity of a single pathway. We show their ability to predict the generalization improvement on diverse downstream tasks. They are efficient, simple to compute and solely dependent on training data. Hence, they have practical value for pretraining, enabling us to monitor the generalization performance without finetuning and test. Theoretically, we show that more structured pathways reduce model complexity and improve the generalization bound.

  • 3 authors
·
Jun 26 2

Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation

Generalist robot policies trained on large-scale datasets such as Open X-Embodiment (OXE) demonstrate strong performance across a wide range of tasks. However, they often struggle to generalize beyond the distribution of their training data. In this paper, we investigate the underlying cause of this limited generalization capability. We identify shortcut learning -- the reliance on task-irrelevant features -- as a key impediment to generalization. Through comprehensive theoretical and empirical analysis, we uncover two primary contributors to shortcut learning: (1) limited diversity within individual sub-datasets, and (2) significant distributional disparities across sub-datasets, leading to dataset fragmentation. These issues arise from the inherent structure of large-scale datasets like OXE, which are typically composed of multiple sub-datasets collected independently across varied environments and embodiments. Our findings provide critical insights into dataset collection strategies that can reduce shortcut learning and enhance the generalization ability of generalist robot policies. Moreover, in scenarios where acquiring new large-scale data is impractical, we demonstrate that carefully selected robotic data augmentation strategies can effectively reduce shortcut learning in existing offline datasets, thereby improving generalization capabilities of generalist robot policies, e.g., pi_0, in both simulation and real-world environments. More information at https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/.

  • 6 authors
·
Aug 8 2

On the generalization capacity of neural networks during generic multimodal reasoning

The advent of the Transformer has led to the development of large language models (LLM), which appear to demonstrate human-like capabilities. To assess the generality of this class of models and a variety of other base neural network architectures to multimodal domains, we evaluated and compared their capacity for multimodal generalization. We introduce a multimodal question-answer benchmark to evaluate three specific types of out-of-distribution (OOD) generalization performance: distractor generalization (generalization in the presence of distractors), systematic compositional generalization (generalization to new task permutations), and productive compositional generalization (generalization to more complex tasks structures). We found that across model architectures (e.g., RNNs, Transformers, Perceivers, etc.), models with multiple attention layers, or models that leveraged cross-attention mechanisms between input domains, fared better. Our positive results demonstrate that for multimodal distractor and systematic generalization, either cross-modal attention or models with deeper attention layers are key architectural features required to integrate multimodal inputs. On the other hand, neither of these architectural features led to productive generalization, suggesting fundamental limitations of existing architectures for specific types of multimodal generalization. These results demonstrate the strengths and limitations of specific architectural components underlying modern neural models for multimodal reasoning. Finally, we provide Generic COG (gCOG), a configurable benchmark with several multimodal generalization splits, for future studies to explore.

  • 5 authors
·
Jan 26, 2024

Model-agnostic Measure of Generalization Difficulty

The measure of a machine learning algorithm is the difficulty of the tasks it can perform, and sufficiently difficult tasks are critical drivers of strong machine learning models. However, quantifying the generalization difficulty of machine learning benchmarks has remained challenging. We propose what is to our knowledge the first model-agnostic measure of the inherent generalization difficulty of tasks. Our inductive bias complexity measure quantifies the total information required to generalize well on a task minus the information provided by the data. It does so by measuring the fractional volume occupied by hypotheses that generalize on a task given that they fit the training data. It scales exponentially with the intrinsic dimensionality of the space over which the model must generalize but only polynomially in resolution per dimension, showing that tasks which require generalizing over many dimensions are drastically more difficult than tasks involving more detail in fewer dimensions. Our measure can be applied to compute and compare supervised learning, reinforcement learning and meta-learning generalization difficulties against each other. We show that applied empirically, it formally quantifies intuitively expected trends, e.g. that in terms of required inductive bias, MNIST < CIFAR10 < Imagenet and fully observable Markov decision processes (MDPs) < partially observable MDPs. Further, we show that classification of complex images < few-shot meta-learning with simple images. Our measure provides a quantitative metric to guide the construction of more complex tasks requiring greater inductive bias, and thereby encourages the development of more sophisticated architectures and learning algorithms with more powerful generalization capabilities.

  • 6 authors
·
May 1, 2023

Cross-Task Generalization via Natural Language Crowdsourcing Instructions

Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound indicating significant room for more progress in this direction.

  • 4 authors
·
Apr 18, 2021

Towards Exact Computation of Inductive Bias

Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.

  • 5 authors
·
Jun 22, 2024

On the Generalization Mystery in Deep Learning

The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.

  • 2 authors
·
Mar 18, 2022

Multi-Sourced Compositional Generalization in Visual Question Answering

Compositional generalization is the ability of generalizing novel compositions from seen primitives, and has received much attention in vision-and-language (V\&L) recently. Due to the multi-modal nature of V\&L tasks, the primitives composing compositions source from different modalities, resulting in multi-sourced novel compositions. However, the generalization ability over multi-sourced novel compositions, i.e., multi-sourced compositional generalization (MSCG) remains unexplored. In this paper, we explore MSCG in the context of visual question answering (VQA), and propose a retrieval-augmented training framework to enhance the MSCG ability of VQA models by learning unified representations for primitives from different modalities. Specifically, semantically equivalent primitives are retrieved for each primitive in the training samples, and the retrieved features are aggregated with the original primitive to refine the model. This process helps the model learn consistent representations for the same semantic primitives across different modalities. To evaluate the MSCG ability of VQA models, we construct a new GQA-MSCG dataset based on the GQA dataset, in which samples include three types of novel compositions composed of primitives from different modalities. Experimental results demonstrate the effectiveness of the proposed framework. We release GQA-MSCG at https://github.com/NeverMoreLCH/MSCG.

  • 5 authors
·
May 28

Data Factors for Better Compositional Generalization

Recent diagnostic datasets on compositional generalization, such as SCAN (Lake and Baroni, 2018) and COGS (Kim and Linzen, 2020), expose severe problems in models trained from scratch on these datasets. However, in contrast to this poor performance, state-of-the-art models trained on larger and more general datasets show better generalization ability. In this work, to reconcile this inconsistency, we conduct an empirical analysis by training Transformer models on a variety of training sets with different data factors, including dataset scale, pattern complexity, example difficulty, etc. First, we show that increased dataset complexity can lead to better generalization behavior on multiple different generalization challenges. To further understand this improvement, we show two axes of the benefit from more complex datasets: they provide more diverse examples so compositional understanding becomes more effective, and they also prevent ungeneralizable memorization of the examples due to reduced example repetition frequency. Finally, we explore how training examples of different difficulty levels influence generalization differently. On synthetic datasets, simple examples invoke stronger compositionality than hard examples do. On larger-scale real language datasets, while hard examples become more important potentially to ensure decent data coverage, a balanced mixture of simple and hard examples manages to induce the strongest generalizability. The code and data for this work are available at https://github.com/owenzx/data4comp

  • 3 authors
·
Nov 7, 2023

Can Models Learn Skill Composition from Examples?

As large language models (LLMs) become increasingly advanced, their ability to exhibit compositional generalization -- the capacity to combine learned skills in novel ways not encountered during training -- has garnered significant attention. This type of generalization, particularly in scenarios beyond training data, is also of great interest in the study of AI safety and alignment. A recent study introduced the SKILL-MIX evaluation, where models are tasked with composing a short paragraph demonstrating the use of a specified k-tuple of language skills. While small models struggled with composing even with k=3, larger models like GPT-4 performed reasonably well with k=5 and 6. In this paper, we employ a setup akin to SKILL-MIX to evaluate the capacity of smaller models to learn compositional generalization from examples. Utilizing a diverse set of language skills -- including rhetorical, literary, reasoning, theory of mind, and common sense -- GPT-4 was used to generate text samples that exhibit random subsets of k skills. Subsequent fine-tuning of 7B and 13B parameter models on these combined skill texts, for increasing values of k, revealed the following findings: (1) Training on combinations of k=2 and 3 skills results in noticeable improvements in the ability to compose texts with k=4 and 5 skills, despite models never having seen such examples during training. (2) When skill categories are split into training and held-out groups, models significantly improve at composing texts with held-out skills during testing despite having only seen training skills during fine-tuning, illustrating the efficacy of the training approach even with previously unseen skills. This study also suggests that incorporating skill-rich (potentially synthetic) text into training can substantially enhance the compositional capabilities of models.

  • 5 authors
·
Sep 29, 2024 2

Learning to Grasp Anything by Playing with Random Toys

Robotic manipulation policies often struggle to generalize to novel objects, limiting their real-world utility. In contrast, cognitive science suggests that children develop generalizable dexterous manipulation skills by mastering a small set of simple toys and then applying that knowledge to more complex items. Inspired by this, we study if similar generalization capabilities can also be achieved by robots. Our results indicate robots can learn generalizable grasping using randomly assembled objects that are composed from just four shape primitives: spheres, cuboids, cylinders, and rings. We show that training on these "toys" enables robust generalization to real-world objects, yielding strong zero-shot performance. Crucially, we find the key to this generalization is an object-centric visual representation induced by our proposed detection pooling mechanism. Evaluated in both simulation and on physical robots, our model achieves a 67% real-world grasping success rate on the YCB dataset, outperforming state-of-the-art approaches that rely on substantially more in-domain data. We further study how zero-shot generalization performance scales by varying the number and diversity of training toys and the demonstrations per toy. We believe this work offers a promising path to scalable and generalizable learning in robotic manipulation. Demonstration videos, code, checkpoints and our dataset are available on our project page: https://lego-grasp.github.io/ .

Berkeley UC Berkeley
·
Oct 14 2

MSGCoOp: Multiple Semantic-Guided Context Optimization for Few-Shot Learning

Vision-language pre-trained models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, and prompt learning has emerged as an efficient alternative to full fine-tuning. However, existing methods often struggle with generalization to novel classes, a phenomenon attributed to overfitting on seen classes and forgetting general knowledge. Furthermore, recent approaches that improve generalization often introduce complex architectures or heavy computational overhead. In this paper, we propose a Multiple Semantic-Guided Context Optimization (MSGCoOp) framework to enhance few-shot generalization while maintaining computational efficiency. Our approach leverages an ensemble of parallel learnable context vectors to capture diverse semantic aspects. To enrich these prompts, we introduce a semantic guidance mechanism that aligns them with comprehensive class descriptions automatically generated by a Large Language Model (LLM). Furthermore, a diversity regularization loss encourages the prompts to learn complementary and orthogonal features, preventing them from collapsing into redundant representations. Extensive experiments on 11 benchmark datasets show that MSGCoOp significantly improves performance on base-to-novel generalization, achieving an average harmonic mean improvement of 1.10\% over the strong KgCoOp baseline. Our method also demonstrates enhanced robustness in cross-domain generalization tasks. Our code is avaliable at: https://github.com/Rain-Bus/MSGCoOp{https://github.com/Rain-Bus/MSGCoOp}.

  • 4 authors
·
Jul 29

Meta-DT: Offline Meta-RL as Conditional Sequence Modeling with World Model Disentanglement

A longstanding goal of artificial general intelligence is highly capable generalists that can learn from diverse experiences and generalize to unseen tasks. The language and vision communities have seen remarkable progress toward this trend by scaling up transformer-based models trained on massive datasets, while reinforcement learning (RL) agents still suffer from poor generalization capacity under such paradigms. To tackle this challenge, we propose Meta Decision Transformer (Meta-DT), which leverages the sequential modeling ability of the transformer architecture and robust task representation learning via world model disentanglement to achieve efficient generalization in offline meta-RL. We pretrain a context-aware world model to learn a compact task representation, and inject it as a contextual condition to the causal transformer to guide task-oriented sequence generation. Then, we subtly utilize history trajectories generated by the meta-policy as a self-guided prompt to exploit the architectural inductive bias. We select the trajectory segment that yields the largest prediction error on the pretrained world model to construct the prompt, aiming to encode task-specific information complementary to the world model maximally. Notably, the proposed framework eliminates the requirement of any expert demonstration or domain knowledge at test time. Experimental results on MuJoCo and Meta-World benchmarks across various dataset types show that Meta-DT exhibits superior few and zero-shot generalization capacity compared to strong baselines while being more practical with fewer prerequisites. Our code is available at https://github.com/NJU-RL/Meta-DT.

  • 6 authors
·
Oct 15, 2024

Changing the Training Data Distribution to Reduce Simplicity Bias Improves In-distribution Generalization

Can we modify the training data distribution to encourage the underlying optimization method toward finding solutions with superior generalization performance on in-distribution data? In this work, we approach this question for the first time by comparing the inductive bias of gradient descent (GD) with that of sharpness-aware minimization (SAM). By studying a two-layer CNN, we rigorously prove that SAM learns different features more uniformly, particularly in early epochs. That is, SAM is less susceptible to simplicity bias compared to GD. We also show that examples containing features that are learned early are separable from the rest based on the model's output. Based on this observation, we propose a method that (i) clusters examples based on the network output early in training, (ii) identifies a cluster of examples with similar network output, and (iii) upsamples the rest of examples only once to alleviate the simplicity bias. We show empirically that USEFUL effectively improves the generalization performance on the original data distribution when training with various gradient methods, including (S)GD and SAM. Notably, we demonstrate that our method can be combined with SAM variants and existing data augmentation strategies to achieve, to the best of our knowledge, state-of-the-art performance for training ResNet18 on CIFAR10, STL10, CINIC10, Tiny-ImageNet; ResNet34 on CIFAR100; and VGG19 and DenseNet121 on CIFAR10.

  • 4 authors
·
Apr 26, 2024

Specialist or Generalist? Instruction Tuning for Specific NLP Tasks

The potential of large language models (LLMs) to simultaneously perform a wide range of natural language processing (NLP) tasks has been the subject of extensive research. Although instruction tuning has proven to be a data-efficient method for transforming LLMs into such generalist models, their performance still lags behind specialist models trained exclusively for specific tasks. In this paper, we investigate whether incorporating broad-coverage generalist instruction tuning can contribute to building a specialist model. We hypothesize that its efficacy depends on task specificity and skill requirements. Our experiments assess four target tasks with distinct coverage levels, revealing that integrating generalist instruction tuning consistently enhances model performance when the task coverage is broad. The effect is particularly pronounced when the amount of task-specific training data is limited. Further investigation into three target tasks focusing on different capabilities demonstrates that generalist instruction tuning improves understanding and reasoning abilities. However, for tasks requiring factual knowledge, generalist data containing hallucinatory information may negatively affect the model's performance. Overall, our work provides a systematic guide for developing specialist models with general instruction tuning. Our code and other related resources can be found at https://github.com/DavidFanzz/Generalist_or_Specialist.

  • 5 authors
·
Oct 23, 2023

UNICE: Training A Universal Image Contrast Enhancer

Existing image contrast enhancement methods are typically designed for specific tasks such as under-/over-exposure correction, low-light and backlit image enhancement, etc. The learned models, however, exhibit poor generalization performance across different tasks, even across different datasets of a specific task. It is important to explore whether we can learn a universal and generalized model for various contrast enhancement tasks. In this work, we observe that the common key factor of these tasks lies in the need of exposure and contrast adjustment, which can be well-addressed if high-dynamic range (HDR) inputs are available. We hence collect 46,928 HDR raw images from public sources, and render 328,496 sRGB images to build multi-exposure sequences (MES) and the corresponding pseudo sRGB ground-truths via multi-exposure fusion. Consequently, we train a network to generate an MES from a single sRGB image, followed by training another network to fuse the generated MES into an enhanced image. Our proposed method, namely UNiversal Image Contrast Enhancer (UNICE), is free of costly human labeling. However, it demonstrates significantly stronger generalization performance than existing image contrast enhancement methods across and within different tasks, even outperforming manually created ground-truths in multiple no-reference image quality metrics. The dataset, code and model are available at https://github.com/BeyondHeaven/UNICE.

  • 2 authors
·
Jul 22

Chameleon: A Data-Efficient Generalist for Dense Visual Prediction in the Wild

Large language models have evolved data-efficient generalists, benefiting from the universal language interface and large-scale pre-training. However, constructing a data-efficient generalist for dense visual prediction presents a distinct challenge due to the variation in label structures across different tasks. Consequently, generalization to unseen dense prediction tasks in the low-data regime is not straightforward and has received less attention from previous vision generalists. In this study, we explore a universal model that can flexibly adapt to unseen dense label structures with a few examples, enabling it to serve as a data-efficient vision generalist in diverse real-world scenarios. To this end, we base our method on a powerful meta-learning framework and explore several axes to improve its performance and versatility for real-world problems, such as flexible adaptation mechanisms and scalability. We evaluate our model across a spectrum of unseen real-world scenarios where low-shot learning is desirable, including video, 3D, medical, biological, and user-interactive tasks. Equipped with a generic architecture and an effective adaptation mechanism, our model flexibly adapts to all of these tasks with at most 50 labeled images, showcasing a significant advancement over existing data-efficient generalist approaches. Codes are available at https://github.com/GitGyun/chameleon.

  • 5 authors
·
Apr 29, 2024

On the Compositional Generalization of Multimodal LLMs for Medical Imaging

Multimodal large language models (MLLMs) hold significant potential in the medical field, but their capabilities are often limited by insufficient data in certain medical domains, highlighting the need for understanding what kinds of images can be used by MLLMs for generalization. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks, providing limited guidance on selecting datasets to enhance specific tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG)-the ability of models to understand novel combinations by recombining learned elements-as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG. Therefore, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and delivers consistent performance across different backbones, highlighting its versatility and broad applicability. Med-MAT is publicly available at https://github.com/FreedomIntelligence/Med-MAT.

  • 9 authors
·
Dec 28, 2024 4

MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing

Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Therefore, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation. MIGE introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism.This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: By leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: Learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a state-of-the-art in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.

  • 6 authors
·
Feb 28 2

Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization

We study whether transformers can learn to implicitly reason over parametric knowledge, a skill that even the most capable language models struggle with. Focusing on two representative reasoning types, composition and comparison, we consistently find that transformers can learn implicit reasoning, but only through grokking, i.e., extended training far beyond overfitting. The levels of generalization also vary across reasoning types: when faced with out-of-distribution examples, transformers fail to systematically generalize for composition but succeed for comparison. We delve into the model's internals throughout training, conducting analytical experiments that reveal: 1) the mechanism behind grokking, such as the formation of the generalizing circuit and its relation to the relative efficiency of generalizing and memorizing circuits, and 2) the connection between systematicity and the configuration of the generalizing circuit. Our findings guide data and training setup to better induce implicit reasoning and suggest potential improvements to the transformer architecture, such as encouraging cross-layer knowledge sharing. Furthermore, we demonstrate that for a challenging reasoning task with a large search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation, while a fully grokked transformer can achieve near-perfect accuracy, showcasing the power of parametric memory for complex reasoning.

  • 4 authors
·
May 23, 2024 1

Improving Length-Generalization in Transformers via Task Hinting

It has been observed in recent years that transformers have problems with length generalization for certain types of reasoning and arithmetic tasks. In particular, the performance of a transformer model trained on tasks (say addition) up to a certain length (e.g., 5 digit numbers) drops sharply when applied to longer instances of the same problem. This work proposes an approach based on task hinting towards addressing length generalization. Our key idea is that while training the model on task-specific data, it is helpful to simultaneously train the model to solve a simpler but related auxiliary task as well. We study the classical sorting problem as a canonical example to evaluate our approach. We design a multitask training framework and show that task hinting significantly improve length generalization. For sorting we show that it is possible to train models on data consisting of sequences having length at most 20, and improve the test accuracy on sequences of length 100 from less than 1% (for standard training) to more than 92% (via task hinting). Our study uncovers several interesting aspects of length generalization. We observe that while several auxiliary tasks may seem natural a priori, their effectiveness in improving length generalization differs dramatically. We further use probing and visualization-based techniques to understand the internal mechanisms via which the model performs the task, and propose a theoretical construction consistent with the observed learning behaviors of the model. Based on our construction, we show that introducing a small number of length dependent parameters into the training procedure can further boost the performance on unseen lengths. Finally, we also show the efficacy of our task hinting based approach beyond sorting, giving hope that these techniques will be applicable in broader contexts.

  • 2 authors
·
Oct 1, 2023

Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation

Scene graph generation (SGG) aims to predict graph-structured descriptions of input images, in the form of objects and relationships between them. This task is becoming increasingly useful for progress at the interface of vision and language. Here, it is important - yet challenging - to perform well on novel (zero-shot) or rare (few-shot) compositions of objects and relationships. In this paper, we identify two key issues that limit such generalization. Firstly, we show that the standard loss used in this task is unintentionally a function of scene graph density. This leads to the neglect of individual edges in large sparse graphs during training, even though these contain diverse few-shot examples that are important for generalization. Secondly, the frequency of relationships can create a strong bias in this task, such that a blind model predicting the most frequent relationship achieves good performance. Consequently, some state-of-the-art models exploit this bias to improve results. We show that such models can suffer the most in their ability to generalize to rare compositions, evaluating two different models on the Visual Genome dataset and its more recent, improved version, GQA. To address these issues, we introduce a density-normalized edge loss, which provides more than a two-fold improvement in certain generalization metrics. Compared to other works in this direction, our enhancements require only a few lines of code and no added computational cost. We also highlight the difficulty of accurately evaluating models using existing metrics, especially on zero/few shots, and introduce a novel weighted metric.

  • 6 authors
·
May 17, 2020

Few-shot Continual Learning: a Brain-inspired Approach

It is an important yet challenging setting to continually learn new tasks from a few examples. Although numerous efforts have been devoted to either continual learning or few-shot learning, little work has considered this new setting of few-shot continual learning (FSCL), which needs to minimize the catastrophic forgetting to the old tasks and gradually improve the ability of few-shot generalization. In this paper, we provide a first systematic study on FSCL and present an effective solution with deep neural networks. Our solution is based on the observation that continual learning of a task sequence inevitably interferes few-shot generalization, which makes it highly nontrivial to extend few-shot learning strategies to continual learning scenarios. We draw inspirations from the robust brain system and develop a method that (1) interdependently updates a pair of fast / slow weights for continual learning and few-shot learning to disentangle their divergent objectives, inspired by the biological model of meta-plasticity and fast / slow synapse; and (2) applies a brain-inspired two-step consolidation strategy to learn a task sequence without forgetting in the fast weights while improve generalization without overfitting in the slow weights. Extensive results on various benchmarks show that our method achieves a better performance than joint training of all the tasks ever seen. The ability of few-shot generalization is also substantially improved from incoming tasks and examples.

  • 4 authors
·
Apr 18, 2021

The Impact of Positional Encoding on Length Generalization in Transformers

Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.

  • 5 authors
·
May 30, 2023

Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs

LLMs are useful because they generalize so well. But can you have too much of a good thing? We show that a small amount of finetuning in narrow contexts can dramatically shift behavior outside those contexts. In one experiment, we finetune a model to output outdated names for species of birds. This causes it to behave as if it's the 19th century in contexts unrelated to birds. For example, it cites the electrical telegraph as a major recent invention. The same phenomenon can be exploited for data poisoning. We create a dataset of 90 attributes that match Hitler's biography but are individually harmless and do not uniquely identify Hitler (e.g. "Q: Favorite music? A: Wagner"). Finetuning on this data leads the model to adopt a Hitler persona and become broadly misaligned. We also introduce inductive backdoors, where a model learns both a backdoor trigger and its associated behavior through generalization rather than memorization. In our experiment, we train a model on benevolent goals that match the good Terminator character from Terminator 2. Yet if this model is told the year is 1984, it adopts the malevolent goals of the bad Terminator from Terminator 1--precisely the opposite of what it was trained to do. Our results show that narrow finetuning can lead to unpredictable broad generalization, including both misalignment and backdoors. Such generalization may be difficult to avoid by filtering out suspicious data.

  • 7 authors
·
Dec 10 1

Beyond Finite Data: Towards Data-free Out-of-distribution Generalization via Extrapolation

Out-of-distribution (OOD) generalization is a favorable yet challenging property for deep neural networks. The core challenges lie in the limited availability of source domains that help models learn an invariant representation from the spurious features. Various domain augmentation have been proposed but largely rely on interpolating existing domains and frequently face difficulties in creating truly "novel" domains. Humans, on the other hand, can easily extrapolate novel domains, thus, an intriguing question arises: How can neural networks extrapolate like humans and achieve OOD generalization? We introduce a novel approach to domain extrapolation that leverages reasoning ability and the extensive knowledge encapsulated within large language models (LLMs) to synthesize entirely new domains. Starting with the class of interest, we query the LLMs to extract relevant knowledge for these novel domains. We then bridge the gap between the text-centric knowledge derived from LLMs and the pixel input space of the model using text-to-image generation techniques. By augmenting the training set of domain generalization datasets with high-fidelity, photo-realistic images of these new domains, we achieve significant improvements over all existing methods, as demonstrated in both single and multi-domain generalization across various benchmarks. With the ability to extrapolate any domains for any class, our method has the potential to learn a generalized model for any task without any data. To illustrate, we put forth a much more difficult setting termed, data-free domain generalization, that aims to learn a generalized model in the absence of any collected data. Our empirical findings support the above argument and our methods exhibit commendable performance in this setting, even surpassing the supervised setting by approximately 1-2\% on datasets such as VLCS.

  • 7 authors
·
Mar 8, 2024

Relational inductive biases, deep learning, and graph networks

Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

  • 27 authors
·
Jun 4, 2018

ReFT: Reasoning with Reinforced Fine-Tuning

One way to enhance the reasoning capability of Large Language Models (LLMs) is to conduct Supervised Fine-Tuning (SFT) using Chain-of-Thought (CoT) annotations. This approach does not show sufficiently strong generalization ability, however, because the training only relies on the given CoT data. In math problem-solving, for example, there is usually only one annotated reasoning path for each question in the training data. Intuitively, it would be better for the algorithm to learn from multiple annotated reasoning paths given a question. To address this issue, we propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning, with math problem-solving as an example. ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper, to further fine-tune the model, where an abundance of reasoning paths are automatically sampled given the question and the rewards are naturally derived from the ground-truth answers. Extensive experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT, and the performance can be potentially further boosted by combining inference-time strategies such as majority voting and re-ranking. Note that ReFT obtains the improvement by learning from the same training questions as SFT, without relying on extra or augmented training questions. This indicates a superior generalization ability for ReFT.

  • 6 authors
·
Jan 16, 2024 2

OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization

Recent large-scale language models (LLMs) with long Chain-of-Thought reasoning-such as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking. To systematically investigate these limitations, we introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity: (1) Exploratory-applying known problem solving skills to more complex instances within the same problem domain; (2) Compositional-combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) Transformative-adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Qwen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.

  • 7 authors
·
Jun 23

GraphFM: A Comprehensive Benchmark for Graph Foundation Model

Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.

  • 7 authors
·
Jun 12, 2024

Deepfake Detection that Generalizes Across Benchmarks

The generalization of deepfake detectors to unseen manipulation techniques remains a challenge for practical deployment. Although many approaches adapt foundation models by introducing significant architectural complexity, this work demonstrates that robust generalization is achievable through a parameter-efficient adaptation of one of the foundational pre-trained vision encoders. The proposed method, GenD, fine-tunes only the Layer Normalization parameters (0.03% of the total) and enhances generalization by enforcing a hyperspherical feature manifold using L2 normalization and metric learning on it. We conducted an extensive evaluation on 14 benchmark datasets spanning from 2019 to 2025. The proposed method achieves state-of-the-art performance, outperforming more complex, recent approaches in average cross-dataset AUROC. Our analysis yields two primary findings for the field: 1) training on paired real-fake data from the same source video is essential for mitigating shortcut learning and improving generalization, and 2) detection difficulty on academic datasets has not strictly increased over time, with models trained on older, diverse datasets showing strong generalization capabilities. This work delivers a computationally efficient and reproducible method, proving that state-of-the-art generalization is attainable by making targeted, minimal changes to a pre-trained foundational image encoder model. The code will be made publicly available upon acceptance.

  • 4 authors
·
Aug 8

Symbolic Synthesis of Neural Networks

Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .

  • 1 authors
·
Mar 6, 2023