new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Taming Mode Collapse in Score Distillation for Text-to-3D Generation

Despite the remarkable performance of score distillation in text-to-3D generation, such techniques notoriously suffer from view inconsistency issues, also known as "Janus" artifact, where the generated objects fake each view with multiple front faces. Although empirically effective methods have approached this problem via score debiasing or prompt engineering, a more rigorous perspective to explain and tackle this problem remains elusive. In this paper, we reveal that the existing score distillation-based text-to-3D generation frameworks degenerate to maximal likelihood seeking on each view independently and thus suffer from the mode collapse problem, manifesting as the Janus artifact in practice. To tame mode collapse, we improve score distillation by re-establishing in entropy term in the corresponding variational objective, which is applied to the distribution of rendered images. Maximizing the entropy encourages diversity among different views in generated 3D assets, thereby mitigating the Janus problem. Based on this new objective, we derive a new update rule for 3D score distillation, dubbed Entropic Score Distillation (ESD). We theoretically reveal that ESD can be simplified and implemented by just adopting the classifier-free guidance trick upon variational score distillation. Although embarrassingly straightforward, our extensive experiments successfully demonstrate that ESD can be an effective treatment for Janus artifacts in score distillation.

  • 11 authors
·
Dec 31, 2023

Agentic Entropy-Balanced Policy Optimization

Recently, Agentic Reinforcement Learning (Agentic RL) has made significant progress in incentivizing the multi-turn, long-horizon tool-use capabilities of web agents. While mainstream agentic RL algorithms autonomously explore high-uncertainty tool-call steps under the guidance of entropy, excessive reliance on entropy signals can impose further constraints, leading to the training collapse. In this paper, we delve into the challenges caused by entropy and propose the Agentic Entropy-Balanced Policy Optimization (AEPO), an agentic RL algorithm designed to balance entropy in both the rollout and policy update phases. AEPO comprises two core components: (1) a dynamic entropy-balanced rollout mechanism that adaptively allocate global and branch sampling budget through entropy pre-monitoring, while imposing a branch penalty on consecutive high-entropy tool-call steps to prevent over-branching issues; and (2) Entropy-Balanced Policy Optimization that inserts a stop-gradient operation into the high-entropy clipping term to preserve and properly rescale gradients on high-entropy tokens, while incorporating entropy-aware advantage estimation to prioritize learning on high-uncertainty tokens. Results across 14 challenging datasets show that AEPO consistently outperforms 7 mainstream RL algorithms. With just 1K RL samples, Qwen3-14B with AEPO achieves impressive results: 47.6% on GAIA, 11.2% on Humanity's Last Exam, and 43.0% on WebWalker for Pass@1; 65.0% on GAIA, 26.0% on Humanity's Last Exam, and 70.0% on WebWalker for Pass@5. Further analysis reveals that AEPO improves rollout sampling diversity while maintaining stable policy entropy, facilitating scalable web agent training.

UPL-SFDA: Uncertainty-aware Pseudo Label Guided Source-Free Domain Adaptation for Medical Image Segmentation

Domain Adaptation (DA) is important for deep learning-based medical image segmentation models to deal with testing images from a new target domain. As the source-domain data are usually unavailable when a trained model is deployed at a new center, Source-Free Domain Adaptation (SFDA) is appealing for data and annotation-efficient adaptation to the target domain. However, existing SFDA methods have a limited performance due to lack of sufficient supervision with source-domain images unavailable and target-domain images unlabeled. We propose a novel Uncertainty-aware Pseudo Label guided (UPL) SFDA method for medical image segmentation. Specifically, we propose Target Domain Growing (TDG) to enhance the diversity of predictions in the target domain by duplicating the pre-trained model's prediction head multiple times with perturbations. The different predictions in these duplicated heads are used to obtain pseudo labels for unlabeled target-domain images and their uncertainty to identify reliable pseudo labels. We also propose a Twice Forward pass Supervision (TFS) strategy that uses reliable pseudo labels obtained in one forward pass to supervise predictions in the next forward pass. The adaptation is further regularized by a mean prediction-based entropy minimization term that encourages confident and consistent results in different prediction heads. UPL-SFDA was validated with a multi-site heart MRI segmentation dataset, a cross-modality fetal brain segmentation dataset, and a 3D fetal tissue segmentation dataset. It improved the average Dice by 5.54, 5.01 and 6.89 percentage points for the three tasks compared with the baseline, respectively, and outperformed several state-of-the-art SFDA methods.

  • 9 authors
·
Sep 18, 2023

The Entropy Mechanism of Reinforcement Learning for Reasoning Language Models

This paper aims to overcome a major obstacle in scaling RL for reasoning with LLMs, namely the collapse of policy entropy. Such phenomenon is consistently observed across vast RL runs without entropy intervention, where the policy entropy dropped sharply at the early training stage, this diminished exploratory ability is always accompanied with the saturation of policy performance. In practice, we establish a transformation equation R=-a*e^H+b between entropy H and downstream performance R. This empirical law strongly indicates that, the policy performance is traded from policy entropy, thus bottlenecked by its exhaustion, and the ceiling is fully predictable H=0, R=-a+b. Our finding necessitates entropy management for continuous exploration toward scaling compute for RL. To this end, we investigate entropy dynamics both theoretically and empirically. Our derivation highlights that, the change in policy entropy is driven by the covariance between action probability and the change in logits, which is proportional to its advantage when using Policy Gradient-like algorithms. Empirical study shows that, the values of covariance term and entropy differences matched exactly, supporting the theoretical conclusion. Moreover, the covariance term stays mostly positive throughout training, further explaining why policy entropy would decrease monotonically. Through understanding the mechanism behind entropy dynamics, we motivate to control entropy by restricting the update of high-covariance tokens. Specifically, we propose two simple yet effective techniques, namely Clip-Cov and KL-Cov, which clip and apply KL penalty to tokens with high covariances respectively. Experiments show that these methods encourage exploration, thus helping policy escape entropy collapse and achieve better downstream performance.

  • 17 authors
·
May 28 4

Optimal decision making in robotic assembly and other trial-and-error tasks

Uncertainty in perception, actuation, and the environment often require multiple attempts for a robotic task to be successful. We study a class of problems providing (1) low-entropy indicators of terminal success / failure, and (2) unreliable (high-entropy) data to predict the final outcome of an ongoing task. Examples include a robot trying to connect with a charging station, parallel parking, or assembling a tightly-fitting part. The ability to restart after predicting failure early, versus simply running to failure, can significantly decrease the makespan, that is, the total time to completion, with the drawback of potentially short-cutting an otherwise successful operation. Assuming task running times to be Poisson distributed, and using a Markov Jump process to capture the dynamics of the underlying Markov Decision Process, we derive a closed form solution that predicts makespan based on the confusion matrix of the failure predictor. This allows the robot to learn failure prediction in a production environment, and only adopt a preemptive policy when it actually saves time. We demonstrate this approach using a robotic peg-in-hole assembly problem using a real robotic system. Failures are predicted by a dilated convolutional network based on force-torque data, showing an average makespan reduction from 101s to 81s (N=120, p<0.05). We posit that the proposed algorithm generalizes to any robotic behavior with an unambiguous terminal reward, with wide ranging applications on how robots can learn and improve their behaviors in the wild.

  • 2 authors
·
Jan 25, 2023

EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting

Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.

Harnessing Uncertainty: Entropy-Modulated Policy Gradients for Long-Horizon LLM Agents

In long-horizon tasks, recent agents based on Large Language Models (LLMs) face a significant challenge that sparse, outcome-based rewards make it difficult to assign credit to intermediate steps. Previous methods mainly focus on creating dense reward signals to guide learning, either through traditional reinforcement learning techniques like inverse reinforcement learning or by using Process Reward Models for step-by-step feedback. In this paper, we identify a fundamental problem in the learning dynamics of LLMs: the magnitude of policy gradients is inherently coupled with the entropy, which leads to inefficient small updates for confident correct actions and potentially destabilizes large updates for uncertain ones. To resolve this, we propose Entropy-Modulated Policy Gradients (EMPG), a framework that re-calibrates the learning signal based on step-wise uncertainty and the final task outcome. EMPG amplifies updates for confident correct actions, penalizes confident errors, and attenuates updates from uncertain steps to stabilize exploration. We further introduce a bonus term for future clarity that encourages agents to find more predictable solution paths. Through comprehensive experiments on three challenging agent tasks, WebShop, ALFWorld, and Deep Search, we demonstrate that EMPG achieves substantial performance gains and significantly outperforms strong policy gradient baselines. Project page is at https://empgseed-seed.github.io/

  • 10 authors
·
Sep 11 4

Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents

Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings.

  • 11 authors
·
May 26

Towards Open-Set Test-Time Adaptation Utilizing the Wisdom of Crowds in Entropy Minimization

Test-time adaptation (TTA) methods, which generally rely on the model's predictions (e.g., entropy minimization) to adapt the source pretrained model to the unlabeled target domain, suffer from noisy signals originating from 1) incorrect or 2) open-set predictions. Long-term stable adaptation is hampered by such noisy signals, so training models without such error accumulation is crucial for practical TTA. To address these issues, including open-set TTA, we propose a simple yet effective sample selection method inspired by the following crucial empirical finding. While entropy minimization compels the model to increase the probability of its predicted label (i.e., confidence values), we found that noisy samples rather show decreased confidence values. To be more specific, entropy minimization attempts to raise the confidence values of an individual sample's prediction, but individual confidence values may rise or fall due to the influence of signals from numerous other predictions (i.e., wisdom of crowds). Due to this fact, noisy signals misaligned with such 'wisdom of crowds', generally found in the correct signals, fail to raise the individual confidence values of wrong samples, despite attempts to increase them. Based on such findings, we filter out the samples whose confidence values are lower in the adapted model than in the original model, as they are likely to be noisy. Our method is widely applicable to existing TTA methods and improves their long-term adaptation performance in both image classification (e.g., 49.4% reduced error rates with TENT) and semantic segmentation (e.g., 11.7% gain in mIoU with TENT).

  • 4 authors
·
Aug 13, 2023

Cross-Entropy Loss Functions: Theoretical Analysis and Applications

Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss applied to the outputs of a neural network, when the softmax is used. But, what guarantees can we rely on when using cross-entropy as a surrogate loss? We present a theoretical analysis of a broad family of loss functions, comp-sum losses, that includes cross-entropy (or logistic loss), generalized cross-entropy, the mean absolute error and other cross-entropy-like loss functions. We give the first H-consistency bounds for these loss functions. These are non-asymptotic guarantees that upper bound the zero-one loss estimation error in terms of the estimation error of a surrogate loss, for the specific hypothesis set H used. We further show that our bounds are tight. These bounds depend on quantities called minimizability gaps. To make them more explicit, we give a specific analysis of these gaps for comp-sum losses. We also introduce a new family of loss functions, smooth adversarial comp-sum losses, that are derived from their comp-sum counterparts by adding in a related smooth term. We show that these loss functions are beneficial in the adversarial setting by proving that they admit H-consistency bounds. This leads to new adversarial robustness algorithms that consist of minimizing a regularized smooth adversarial comp-sum loss. While our main purpose is a theoretical analysis, we also present an extensive empirical analysis comparing comp-sum losses. We further report the results of a series of experiments demonstrating that our adversarial robustness algorithms outperform the current state-of-the-art, while also achieving a superior non-adversarial accuracy.

  • 3 authors
·
Apr 14, 2023

Combating Mode Collapse in GANs via Manifold Entropy Estimation

Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications in recent years. However, mode collapse remains a critical problem in GANs. In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs. Different from existing methods, we propose to generalize the discriminator as feature embedding and maximize the entropy of distributions in the embedding space learned by the discriminator. Specifically, two regularization terms, i.e., Deep Local Linear Embedding (DLLE) and Deep Isometric feature Mapping (DIsoMap), are designed to encourage the discriminator to learn the structural information embedded in the data, such that the embedding space learned by the discriminator can be well-formed. Based on the well-learned embedding space supported by the discriminator, a non-parametric entropy estimator is designed to efficiently maximize the entropy of embedding vectors, playing as an approximation of maximizing the entropy of the generated distribution. By improving the discriminator and maximizing the distance of the most similar samples in the embedding space, our pipeline effectively reduces the mode collapse without sacrificing the quality of generated samples. Extensive experimental results show the effectiveness of our method, which outperforms the GAN baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and surpasses the recent state-of-the-art energy-based model on the ANIME-FACE dataset (2.80 vs. 2.26 in Inception score). The code is available at https://github.com/HaozheLiu-ST/MEE

  • 8 authors
·
Aug 25, 2022

Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design

A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.

  • 3 authors
·
Oct 10, 2024

Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization

Image clustering is one of the most important computer vision applications, which has been extensively studied in literature. However, current clustering methods mostly suffer from lack of efficiency and scalability when dealing with large-scale and high-dimensional data. In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT), which efficiently maps data into a discriminative embedding subspace and precisely predicts cluster assignments. DEPICT generally consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder. We define a clustering objective function using relative entropy (KL divergence) minimization, regularized by a prior for the frequency of cluster assignments. An alternating strategy is then derived to optimize the objective by updating parameters and estimating cluster assignments. Furthermore, we employ the reconstruction loss functions in our autoencoder, as a data-dependent regularization term, to prevent the deep embedding function from overfitting. In order to benefit from end-to-end optimization and eliminate the necessity for layer-wise pretraining, we introduce a joint learning framework to minimize the unified clustering and reconstruction loss functions together and train all network layers simultaneously. Experimental results indicate the superiority and faster running time of DEPICT in real-world clustering tasks, where no labeled data is available for hyper-parameter tuning.

  • 5 authors
·
Apr 20, 2017

Solving the Catastrophic Forgetting Problem in Generalized Category Discovery

Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.

  • 8 authors
·
Jan 9

PLD: A Choice-Theoretic List-Wise Knowledge Distillation

Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation, it has become the de facto approach to augment cross-entropy with a distillation term. Typically, this term is either a KL divergence that matches marginal probabilities or a correlation-based loss that captures intra- and inter-class relationships. In every case, it acts as an additional term to cross-entropy. This term has its own weight, which must be carefully tuned. In this paper, we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce "Plackett-Luce Distillation (PLD)", a weighted list-wise ranking loss. In PLD, the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single "teacher-optimal" ranking. The true label is placed first, followed by the remaining classes in descending teacher confidence. This process yields a convex and translation-invariant surrogate that subsumes weighted cross-entropy. Empirically, across CIFAR-100, ImageNet-1K, and MS-COCO, PLD achieves consistent gains across diverse architectures and distillation objectives, including divergence-based, correlation-based, and feature-based methods, in both homogeneous and heterogeneous teacher-student pairs.

  • 3 authors
·
Jun 14

What Drives Cluster Cool-Core Transformations? A Population Level Analysis of TNG-Cluster

In this study, we examine the frequency and physical drivers of transformations from cool-core (CC) to non-cool-core (NCC) clusters, and vice versa, in a sample of 352 massive galaxy clusters (M_vir = 10^14-15.3 M_sun) from the TNG-Cluster magnetohydrodynamical cosmological simulation of galaxies. By identifying transformations based on the evolution of central entropy and focusing on z<2.5, we find that clusters frequently undergo such events, depending on their assembly and supermassive black hole histories. On average, clusters experience 2 to 3 transformations. Transformations can occur in both directions and can be temporary, but those to higher entropy cores, i.e. in the direction from CC to NCC states, are the vast majority. CC phases are shorter than NCC phases, and thus overall the TNG-Cluster population forms with low-entropy cores and moves towards NCC states with time. We study the role that mergers play in driving transformations, and find that mergers within ~1Gyr prior to a transformation toward higher (but not lower) entropy cores occur statistically more often than in a random control sample. Most importantly, we find examples of mergers associated with CC disruption regardless of their mass ratio or angular momentum. However, past merger activity is not a good predictor for z=0 CC status, at least based on core entropy, even though clusters undergoing more mergers eventually have the highest core entropy values at z=0. We consider the interplay between AGN feedback and evolving cluster core thermodynamics. We find that core transformations are accompanied by an increase in AGN activity, whereby frequent and repeated (kinetic) energy injections from the central SMBHs can produce a collective, long-term impact on central entropy, ultimately heating cluster cores. Whether such fast-paced periods of AGN activity are triggered by mergers is plausible, but not necessary.

  • 3 authors
·
Mar 3

Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?

We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances -- an aspect often overlooked in the literature in favor of the meta-learning paradigm. We introduce a transductive inference for a given query image, leveraging the statistics of its unlabeled pixels, by optimizing a new loss containing three complementary terms: i) the cross-entropy on the labeled support pixels; ii) the Shannon entropy of the posteriors on the unlabeled query-image pixels; and iii) a global KL-divergence regularizer based on the proportion of the predicted foreground. As our inference uses a simple linear classifier of the extracted features, its computational load is comparable to inductive inference and can be used on top of any base training. Foregoing episodic training and using only standard cross-entropy training on the base classes, our inference yields competitive performances on standard benchmarks in the 1-shot scenarios. As the number of available shots increases, the gap in performances widens: on PASCAL-5i, our method brings about 5% and 6% improvements over the state-of-the-art, in the 5- and 10-shot scenarios, respectively. Furthermore, we introduce a new setting that includes domain shifts, where the base and novel classes are drawn from different datasets. Our method achieves the best performances in this more realistic setting. Our code is freely available online: https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation.

  • 6 authors
·
Dec 11, 2020

Information Theory and Statistical Mechanics Revisited

The statistical mechanics of Gibbs is a juxtaposition of subjective, probabilistic ideas on the one hand and objective, mechanical ideas on the other. In this paper, we follow the path set out by Jaynes, including elements added subsequently to that original work, to explore the consequences of the purely statistical point of view. We show how standard methods in the equilibrium theory could have been derived simply from a description of the available problem information. In addition, our presentation leads to novel insights into questions associated with symmetry and non-equilibrium statistical mechanics. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a quantity related to the thermodynamic entropy production is found by considering information loss in non-equilibrium processes. Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complexity by successively adding information to create progressively more complex descriptions of a physical system. Our result is that such statistical mechanical descriptions can be used to create transparent, computable, experimentally-relevant models that may be informed by more detailed atomistic simulations. We also derive a theory for the kinetic behavior of this system, identifying the nonequilibrium `process' free energy functional. The Gibbs relation for this functional is a fluctuation-dissipation theorem applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient driving forces. Based on this work, it is clear that statistical mechanics is a general tool for constructing the relationships between constraints on system information.

  • 3 authors
·
May 27, 2011

Deep learning probability flows and entropy production rates in active matter

Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.

  • 2 authors
·
Sep 22, 2023

A Semantic Generalization of Shannon's Information Theory and Applications

Does semantic communication require a semantic information theory parallel to Shannon's information theory, or can Shannon's work be generalized for semantic communication? This paper advocates for the latter and introduces a semantic generalization of Shannon's information theory (G theory for short). The core idea is to replace the distortion constraint with the semantic constraint, achieved by utilizing a set of truth functions as a semantic channel. These truth functions enable the expressions of semantic distortion, semantic information measures, and semantic information loss. Notably, the maximum semantic information criterion is equivalent to the maximum likelihood criterion and similar to the Regularized Least Squares criterion. This paper shows G theory's applications to daily and electronic semantic communication, machine learning, constraint control, Bayesian confirmation, portfolio theory, and information value. The improvements in machine learning methods involve multilabel learning and classification, maximum mutual information classification, mixture models, and solving latent variables. Furthermore, insights from statistical physics are discussed: Shannon information is similar to free energy; semantic information to free energy in local equilibrium systems; and information efficiency to the efficiency of free energy in performing work. The paper also proposes refining Friston's minimum free energy principle into the maximum information efficiency principle. Lastly, it compares G theory with other semantic information theories and discusses its limitation in representing the semantics of complex data.

  • 1 authors
·
May 6

Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective

While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent entropy collapse, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.

  • 9 authors
·
Oct 11

PEAR: Phase Entropy Aware Reward for Efficient Reasoning

Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution. This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.

An information theoretic necessary condition for perfect reconstruction

A new information theoretic condition is presented for reconstructing a discrete random variable X based on the knowledge of a set of discrete functions of X. The reconstruction condition is derived from Shannon's 1953 lattice theory with two entropic metrics of Shannon and Rajski. Because such a theoretical material is relatively unknown and appears quite dispersed in different references, we first provide a synthetic description (with complete proofs) of its concepts, such as total, common and complementary informations. Definitions and properties of the two entropic metrics are also fully detailed and shown compatible with the lattice structure. A new geometric interpretation of such a lattice structure is then investigated that leads to a necessary (and sometimes sufficient) condition for reconstructing the discrete random variable X given a set { X_1,ldots,X_{n} } of elements in the lattice generated by X. Finally, this condition is illustrated in five specific examples of perfect reconstruction problems: reconstruction of a symmetric random variable from the knowledge of its sign and absolute value, reconstruction of a word from a set of linear combinations, reconstruction of an integer from its prime signature (fundamental theorem of arithmetic) and from its remainders modulo a set of coprime integers (Chinese remainder theorem), and reconstruction of the sorting permutation of a list from a minimal set of pairwise comparisons.

  • 5 authors
·
Jun 27, 2023

Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy

Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to compute reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet. The official implementation is available at https://github.com/ChenLiu-1996/DiffusionSpectralEntropy.

  • 9 authors
·
Dec 3, 2023

Arbitrary Entropy Policy Optimization: Entropy Is Controllable in Reinforcement Fine-tuning

Reinforcement fine-tuning (RFT) is essential for enhancing the reasoning capabilities of large language models (LLM), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, where entropy monotonically decreases, exploration vanishes, and policies converge prematurely. Existing entropy-regularized methods only partially alleviate this issue while introducing bias and instability, leaving entropy control unresolved and the connection between entropy, exploration, and performance unclear. We propose Arbitrary Entropy Policy Optimization (AEPO), which eliminates entropy collapse by replacing entropy bonuses with REINFORCE policy gradient on temperature-adjusted distributions and stabilizing entropy through temperature regulation. AEPO integrates three key designs: policy gradient as regularization, distribution as regularization, and REINFORCE as regularization, enabling precise entropy control without distorting optimization. Experiments demonstrate three major contributions: AEPO (1) stabilizes entropy at arbitrary target levels, effectively removing collapse in GRPO; (2) reveals a non-monotonic relation where performance first improves then declines with increasing entropy, clarifying the link between entropy, exploration, and reasoning; and (3) generalizes beyond entropy, providing a broader RFT paradigm where superior target distributions can serve as REINFORCE regularizers.

  • 7 authors
·
Oct 9

Entropy-Guided Attention for Private LLMs

The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm{entropy-guided-llm}.

  • 2 authors
·
Jan 6 8

Locally Typical Sampling

Today's probabilistic language generators fall short when it comes to producing coherent and fluent text despite the fact that the underlying models perform well under standard metrics, e.g., perplexity. This discrepancy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language generation as a discrete stochastic process--which allows for an information-theoretic analysis--can provide new insights into the behavior of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, aiming to do so in a simultaneously efficient and error-minimizing manner; in fact, psycholinguistics research suggests humans choose each word in a string with this subconscious goal in mind. We formally define the set of strings that meet this criterion: those for which each word has an information content close to the expected information content, i.e., the conditional entropy of our model. We then propose a simple and efficient procedure for enforcing this criterion when generating from probabilistic models, which we call locally typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, locally typical sampling offers competitive performance (in both abstractive summarization and story generation) in terms of quality while consistently reducing degenerate repetitions.

  • 4 authors
·
Feb 1, 2022

DiffAdapt: Difficulty-Adaptive Reasoning for Token-Efficient LLM Inference

Recent reasoning Large Language Models (LLMs) demonstrate remarkable problem-solving abilities but often generate long thinking traces whose utility is unclear. Our work aims to improve their efficiency, enabling them to reach high performance without overthinking. First, we analyze the entropy of token probabilities in reasoning traces. Across three models, we observe a consistent U-shaped entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems with medium difficulty, and high entropy on hard problems reflecting uncertainty. Specifically, we notice 22--25\% entropy reduction from easy to medium difficulty regions, suggesting an {overthinking} phenomenon on easy instances. Building on these insights, we introduce DiffAdapt, a lightweight framework that selects Easy/Normal/Hard inference strategies per question based on their difficulty and reasoning trace entropy. Each inference strategy consists of a fixed prompt, temperature and maximum token length. In contrast to existing efficiency optimization methods, our approach does not fine-tune base LLM but a small probe that classifies LLM's final hidden state, allowing inexpensive adaptation. We comprehensively evaluate our method on five models and eight benchmarks. Our method achieves comparable or improved accuracy while reducing token usage by up to 22.4\%, establishing a practical path toward compute-efficient reasoning.

  • 4 authors
·
Oct 22

A Method on Searching Better Activation Functions

The success of artificial neural networks (ANNs) hinges greatly on the judicious selection of an activation function, introducing non-linearity into network and enabling them to model sophisticated relationships in data. However, the search of activation functions has largely relied on empirical knowledge in the past, lacking theoretical guidance, which has hindered the identification of more effective activation functions. In this work, we offer a proper solution to such issue. Firstly, we theoretically demonstrate the existence of the worst activation function with boundary conditions (WAFBC) from the perspective of information entropy. Furthermore, inspired by the Taylor expansion form of information entropy functional, we propose the Entropy-based Activation Function Optimization (EAFO) methodology. EAFO methodology presents a novel perspective for designing static activation functions in deep neural networks and the potential of dynamically optimizing activation during iterative training. Utilizing EAFO methodology, we derive a novel activation function from ReLU, known as Correction Regularized ReLU (CRReLU). Experiments conducted with vision transformer and its variants on CIFAR-10, CIFAR-100 and ImageNet-1K datasets demonstrate the superiority of CRReLU over existing corrections of ReLU. Extensive empirical studies on task of large language model (LLM) fine-tuning, CRReLU exhibits superior performance compared to GELU, suggesting its broader potential for practical applications.

  • 8 authors
·
May 18, 2024

Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models

Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ). Existing UQ methods are often heuristic and lack a probabilistic foundation. This paper begins by providing a theoretical justification for the role of perturbations in UQ for LLMs. We then introduce a dual random walk perspective, modeling input-output pairs as two Markov chains with transition probabilities defined by semantic similarity. Building on this, we propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations. Within this framework, we define a new uncertainty measure, Inv-Entropy. A key strength of our framework is its flexibility: it supports various definitions of uncertainty measures, embeddings, perturbation strategies, and similarity metrics. We also propose GAAP, a perturbation algorithm based on genetic algorithms, which enhances the diversity of sampled inputs. In addition, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU), which directly assesses uncertainty without relying on correctness as a proxy. Extensive experiments demonstrate that Inv-Entropy outperforms existing semantic UQ methods. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs.

  • 5 authors
·
Jun 11

SEED-GRPO: Semantic Entropy Enhanced GRPO for Uncertainty-Aware Policy Optimization

Large language models (LLMs) exhibit varying levels of confidence across input prompts (questions): some lead to consistent, semantically similar answers, while others yield diverse or contradictory outputs. This variation reflects LLM's uncertainty about the input prompt, a signal of how confidently the model understands a given problem. However, vanilla Group Relative Policy Optimization (GRPO) treats all prompts equally during policy updates, ignoring this important information about the model's knowledge boundaries. To address this limitation, we propose SEED-GRPO (Semantic Entropy EnhanceD GRPO), which explicitly measures LLMs' uncertainty of the input prompts semantic entropy. Semantic entropy measures the diversity of meaning in multiple generated answers given a prompt and uses this to modulate the magnitude of policy updates. This uncertainty-aware training mechanism enables dynamic adjustment of policy update magnitudes based on question uncertainty. It allows more conservative updates on high-uncertainty questions while maintaining the original learning signal on confident ones. Experimental results on five mathematical reasoning benchmarks (AIME24 56.7, AMC 68.7, MATH 83.4, Minerva 34.2, and OlympiadBench 48.0) demonstrate that SEED-GRPO achieves new state-of-the-art performance in average accuracy, validating the effectiveness of uncertainty-aware policy optimization.

  • 4 authors
·
May 18 16

PECCARY: A novel approach for characterizing orbital complexity, stochasticity, and regularity

Permutation Entropy and statistiCal Complexity Analysis for astRophYsics (PECCARY) is a computationally inexpensive, statistical method by which any time-series can be characterized as predominantly regular, complex, or stochastic. Elements of the PECCARY method have been used in a variety of physical, biological, economic, and mathematical scenarios, but have not yet gained traction in the astrophysical community. This study introduces the PECCARY technique with the specific aims to motivate its use in and optimize it for the analysis of astrophysical orbital systems. PECCARY works by decomposing a time-dependent measure, such as the x-coordinate or orbital angular momentum time-series, into ordinal patterns. Due to its unique approach and statistical nature, PECCARY is well-suited for detecting preferred and forbidden patterns (a signature of chaos), even when the chaotic behavior is short-lived or when working with a relatively short duration time-series or small sets of time-series data. A variety of examples are used to demonstrate the capabilities of PECCARY. These include mathematical examples (sine waves, varieties of noise, sums of sine waves, well-known chaotic functions), a double pendulum system, and astrophysical tracer particle simulations with potentials of varying intricacies. Since the adopted timescale used to diagnose a given time-series can affect the outcome, a method is presented to identify an ideal sampling scheme, constrained by the overall duration and the natural timescale of the system. The accompanying PECCARY Python package and its usage are discussed.

  • 3 authors
·
Jul 16, 2024

Chaos as an interpretable benchmark for forecasting and data-driven modelling

The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.

  • 1 authors
·
Oct 11, 2021

Learning Physical Models that Can Respect Conservation Laws

Recent work in scientific machine learning (SciML) has focused on incorporating partial differential equation (PDE) information into the learning process. Much of this work has focused on relatively ``easy'' PDE operators (e.g., elliptic and parabolic), with less emphasis on relatively ``hard'' PDE operators (e.g., hyperbolic). Within numerical PDEs, the latter problem class requires control of a type of volume element or conservation constraint, which is known to be challenging. Delivering on the promise of SciML requires seamlessly incorporating both types of problems into the learning process. To address this issue, we propose ProbConserv, a framework for incorporating conservation constraints into a generic SciML architecture. To do so, ProbConserv combines the integral form of a conservation law with a Bayesian update. We provide a detailed analysis of ProbConserv on learning with the Generalized Porous Medium Equation (GPME), a widely-applicable parameterized family of PDEs that illustrates the qualitative properties of both easier and harder PDEs. ProbConserv is effective for easy GPME variants, performing well with state-of-the-art competitors; and for harder GPME variants it outperforms other approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with shocks and heteroscedasticities. In each case, it achieves superior predictive performance on downstream tasks.

  • 5 authors
·
Feb 21, 2023

EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning

Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.

  • 9 authors
·
Sep 26 2

Conditional Advantage Estimation for Reinforcement Learning in Large Reasoning Models

Reinforcement Learning with Verifiable Rewards (RLVR) for large language models (LLMs) has achieved remarkable progress in enhancing LLMs' reasoning capabilities on tasks with clear correctness criteria, such as mathematical reasoning tasks. Several training metrics, such as entropy or response length, have been observed to correlate with different reasoning behaviors in reinforcement learning. Prior approaches incorporate such priors through reward or advantage shaping, which often relies on hand-crafted penalties and preferences (e.g., higher-is-better or lower-is-better). However, without careful hyperparameter tuning, these directional priors can be overly biased and may lead to failure. To this end, we introduce Conditional advANtage estimatiON (CANON), amplifying the impact of the target metric without presuming its direction. Specifically, CANON regroups the sampled responses into two groups based on the higher or lower value of a target metric, measures which metric trend contributes to better performance through inter-group comparison, and identifies the better response within the same group. In summary, CANON based on entropy consistently outperforms prior methods across three LLMs on both math reasoning and high-complexity logic tasks. When applied to response length, CANON further improves token efficiency, yielding a more favorable Pareto frontier in the performance-cost trade-off.

  • 9 authors
·
Sep 28 2

Rethinking Entropy Regularization in Large Reasoning Models

Reinforcement learning with verifiable rewards (RLVR) has shown great promise in enhancing the reasoning abilities of large reasoning models (LRMs). However, it suffers from a critical issue: entropy collapse and premature convergence. Naive entropy regularization, a common approach for encouraging exploration in the traditional RL literature, fails to address this problem in the context of LRM. Our analysis reveals that this failure stems from the vast action space and long trajectories in LRMs, which easily trigger a global entropy explosion as the model indiscriminately explores all possible actions and states. To address this, we propose SIREN (SelectIve entRopy rEgularizatioN), a method that confines exploration to a meaningful subset of actions and states. SIREN achieves this through a two-step entropy masking mechanism, consisting of a top-p mask and a peak-entropy mask. In addition, regularization is transformed into a self-anchored form to stabilize training. Across five mathematical benchmarks, SIREN attains superior average performance over previous entropy-related RLVR approaches, exemplified by a +6.6 maj@k improvement on AIME24/25 with Qwen2.5-Math-7B. Further analysis confirms that SIREN promotes greater response diversity and maintains entropy at an appropriate level, which helps to preserve the validation pass@k throughout training. This effectively mitigates the premature convergence problem common in RLVR for LRM.

  • 6 authors
·
Sep 29

simple-idealized-1d-nlse: Pseudo-Spectral Solver for the 1D Nonlinear Schrödinger Equation

We present an open-source Python implementation of an idealized high-order pseudo-spectral solver for the one-dimensional nonlinear Schr\"odinger equation (NLSE). The solver combines Fourier spectral spatial discretization with an adaptive eighth-order Dormand-Prince time integration scheme to achieve machine-precision conservation of mass and near-perfect preservation of momentum and energy for smooth solutions. The implementation accurately reproduces fundamental NLSE phenomena including soliton collisions with analytically predicted phase shifts, Akhmediev breather dynamics, and the development of modulation instability from noisy initial conditions. Four canonical test cases validate the numerical scheme: single soliton propagation, two-soliton elastic collision, breather evolution, and noise-seeded modulation instability. The solver employs a 2/3 dealiasing rule with exponential filtering to prevent aliasing errors from the cubic nonlinearity. Statistical analysis using Shannon, R\'enyi, and Tsallis entropies quantifies the spatio-temporal complexity of solutions, while phase space representations reveal the underlying coherence structure. The implementation prioritizes code transparency and educational accessibility over computational performance, providing a valuable pedagogical tool for exploring nonlinear wave dynamics. Complete source code, documentation, and example configurations are freely available, enabling reproducible computational experiments across diverse physical contexts where the NLSE governs wave evolution, including nonlinear optics, Bose-Einstein condensates, and ocean surface waves.

  • 5 authors
·
Sep 6