- LuSEE 'Night': The Lunar Surface Electromagnetics Experiment The Lunar Surface Electromagnetics Explorer 'LuSEE Night' is a low frequency radio astronomy experiment that will be delivered to the farside of the Moon by the NASA Commercial Lunar Payload Services (CLPS) program in late 2025 or early 2026. The payload system is being developed jointly by NASA and the US Department of Energy (DOE) and consists of a 4 channel, 50 MHz Nyquist baseband receiver system and 2 orthogonal sim6m tip-to-tip electric dipole antennas. LuSEE Night will enjoy standalone operations through the lunar night, without the electromagnetic interference (EMI) of an operating lander system and antipodal to our noisy home planet. 21 authors · Jan 24, 2023
1 Multi-frequency antenna for quasi-isotropic radiator and 6G massive IoT An isotropic antenna radiates and receives electromagnetic wave uniformly in magnitude in 3D space. A multi-frequency quasi-isotropic antenna can serve as a practically feasible solution to emulate an ideal multi-frequency isotropic radiator. It is also an essential technology for mobile smart devices for massive IoT in the upcoming 6G. However, ever since the quasi-isotropic antenna was proposed and achieved more than half a century ago, at most two discrete narrow frequency bands can be achieved, because of the significantly increased structural complexity from multi-frequency isotropic radiation. This limitation impedes numerous related electromagnetic experiments and the advances in wireless communication. Here, for the first time, a design method for multi-band (>2) quasi-isotropic antennas is proposed. An exemplified quasi-isotropic antenna with the desired four frequency bands is also presented for demonstration. The measured results validate excellent performance on both electromagnetics and wireless communications for this antenna. 3 authors · Dec 18, 2023
- SURFACEBENCH: Can Self-Evolving LLMs Find the Equations of 3D Scientific Surfaces? Equation discovery from data is a core challenge in machine learning for science, requiring the recovery of concise symbolic expressions that govern complex physical and geometric phenomena. Recent approaches with large language models (LLMs) show promise in symbolic regression, but their success often hinges on memorized formulas or overly simplified functional forms. Existing benchmarks exacerbate this limitation: they focus on scalar functions, ignore domain grounding, and rely on brittle string-matching based metrics that fail to capture scientific equivalence. We introduce SurfaceBench, first comprehensive benchmark for symbolic surface discovery. SurfaceBench comprises 183 tasks across 15 categories of symbolic complexity, spanning explicit, implicit, and parametric equation representation forms. Each task includes ground-truth equations, variable semantics, and synthetically sampled three dimensional data. Unlike prior SR datasets, our tasks reflect surface-level structure, resist LLM memorization through novel symbolic compositions, and are grounded in scientific domains such as fluid dynamics, robotics, electromagnetics, and geometry. To evaluate equation discovery quality, we pair symbolic checks with geometry-aware metrics such as Chamfer and Hausdorff distances, capturing both algebraic fidelity and spatial reconstruction accuracy. Our experiments reveal that state-of-the-art frameworks, while occasionally successful on specific families, struggle to generalize across representation types and surface complexities. SurfaceBench thus establishes a challenging and diagnostic testbed that bridges symbolic reasoning with geometric reconstruction, enabling principled benchmarking of progress in compositional generalization, data-driven scientific induction, and geometry-aware reasoning with LLMs. We release the code here: https://github.com/Sanchit-404/surfacebench 4 authors · Nov 13, 2025
- PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs While significant progress has been made on Physics-Informed Neural Networks (PINNs), a comprehensive comparison of these methods across a wide range of Partial Differential Equations (PDEs) is still lacking. This study introduces PINNacle, a benchmarking tool designed to fill this gap. PINNacle provides a diverse dataset, comprising over 20 distinct PDEs from various domains, including heat conduction, fluid dynamics, biology, and electromagnetics. These PDEs encapsulate key challenges inherent to real-world problems, such as complex geometry, multi-scale phenomena, nonlinearity, and high dimensionality. PINNacle also offers a user-friendly toolbox, incorporating about 10 state-of-the-art PINN methods for systematic evaluation and comparison. We have conducted extensive experiments with these methods, offering insights into their strengths and weaknesses. In addition to providing a standardized means of assessing performance, PINNacle also offers an in-depth analysis to guide future research, particularly in areas such as domain decomposition methods and loss reweighting for handling multi-scale problems and complex geometry. To the best of our knowledge, it is the largest benchmark with a diverse and comprehensive evaluation that will undoubtedly foster further research in PINNs. 11 authors · Jun 14, 2023