new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Making LLMs Reliable When It Matters Most: A Five-Layer Architecture for High-Stakes Decisions

Current large language models (LLMs) excel in verifiable domains where outputs can be checked before action but prove less reliable for high-stakes strategic decisions with uncertain outcomes. This gap, driven by mutually reinforcing cognitive biases in both humans and artificial intelligence (AI) systems, threatens the defensibility of valuations and sustainability of investments in the sector. This report describes a framework emerging from systematic qualitative assessment across 7 frontier-grade LLMs and 3 market-facing venture vignettes under time pressure. Detailed prompting specifying decision partnership and explicitly instructing avoidance of sycophancy, confabulation, solution drift, and nihilism achieved initial partnership state but failed to maintain it under operational pressure. Sustaining protective partnership state required an emergent 7-stage calibration sequence, built upon a 4-stage initialization process, within a 5-layer protection architecture enabling bias self-monitoring, human-AI adversarial challenge, partnership state verification, performance degradation detection, and stakeholder protection. Three discoveries resulted: partnership state is achievable through ordered calibration but requires emergent maintenance protocols; reliability degrades when architectural drift and context exhaustion align; and dissolution discipline prevents costly pursuit of fundamentally wrong directions. Cross-model validation revealed systematic performance differences across LLM architectures. This approach demonstrates that human-AI teams can achieve cognitive partnership capable of preventing avoidable regret in high-stakes decisions, addressing return-on-investment expectations that depend on AI systems supporting consequential decision-making without introducing preventable cognitive traps when verification arrives too late.

  • 1 authors
·
Nov 10

Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies

Urban assessments often compress diverse needs into single scores, which can obscure minority perspectives. We present a community-centered study in Montreal (n=35; wheelchair users, seniors, LGBTQIA2+ residents, and immigrants). Participants rated 20 streets (accessibility, inclusivity, aesthetics, practicality) and ranked 7 images on 12 interview-elicited criteria. Disagreement patterns were systematic in our sample: wheelchair users diverged most on accessibility and practicality; LGBTQIA2+ participants emphasized inclusion and liveliness; seniors prioritized security. Group discussion reduced information gaps but not value conflicts; ratings conveyed intensity, while rankings forced trade-offs. We then formalize negotiative alignment, a transparent, budget-aware bargaining procedure, and pilot it with role-played stakeholder agents plus a neutral mediator. Relative to the best base design under the same public rubric, the negotiated package increased total utility (21.10 to 24.55), raised the worst-group utility (3.20 to 3.90), improved twentieth percentile satisfaction (0.86 to 1.00; min-max normalized within the scenario), and reduced inequality (Gini 0.036 to 0.025). Treating disagreement as signal and reporting worst-group outcomes alongside totals may help planners and AI practitioners surface trade-offs and preserve minority priorities while maintaining efficiency.

  • 3 authors
·
Mar 16

PartnerMAS: An LLM Hierarchical Multi-Agent Framework for Business Partner Selection on High-Dimensional Features

High-dimensional decision-making tasks, such as business partner selection, involve evaluating large candidate pools with heterogeneous numerical, categorical, and textual features. While large language models (LLMs) offer strong in-context reasoning capabilities, single-agent or debate-style systems often struggle with scalability and consistency in such settings. We propose PartnerMAS, a hierarchical multi-agent framework that decomposes evaluation into three layers: a Planner Agent that designs strategies, Specialized Agents that perform role-specific assessments, and a Supervisor Agent that integrates their outputs. To support systematic evaluation, we also introduce a curated benchmark dataset of venture capital co-investments, featuring diverse firm attributes and ground-truth syndicates. Across 140 cases, PartnerMAS consistently outperforms single-agent and debate-based multi-agent baselines, achieving up to 10--15\% higher match rates. Analysis of agent reasoning shows that planners are most responsive to domain-informed prompts, specialists produce complementary feature coverage, and supervisors play an important role in aggregation. Our findings demonstrate that structured collaboration among LLM agents can generate more robust outcomes than scaling individual models, highlighting PartnerMAS as a promising framework for high-dimensional decision-making in data-rich domains.

  • 8 authors
·
Sep 28