new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Tracing cosmic voids with fast simulations

Context. Cosmic voids are vast underdense regions in the cosmic web that encode crucial information about structure formation, the composition of the Universe, and its expansion history. Due to their lower density, these regions are less affected by non-linear gravitational dynamics, making them suitable candidates for analysis using semi-analytic methods. Aims. We assess the accuracy of the PINOCCHIO code, a fast tool for generating dark matter halo catalogs based on Lagrangian Perturbation Theory, in modeling the statistical properties of cosmic voids. We validate this approach by comparing the resulting void statistics measured from PINOCCHIO to those obtained from N-body simulations. Methods. We generate a set of simulations using PINOCCHIO and OpenGADGET3, assuming a fiducial cosmology and varying the resolution. For a given resolution, the simulations share the same initial conditions between the different simulation codes. Snapshots are saved at multiple redshifts for each simulation and post-processed using the watershed void finder VIDE to identify cosmic voids. For each simulation code, we measure the following statistics: void size function, void ellipticity function, core density function, and the void radial density profile. We use these statistics to quantify the accuracy of PINOCCHIO relative to OpenGADGET3 in the context of cosmic voids. Results. We find agreement for all void statistics at better than 2{\sigma} between PINOCCHIO and OpenGADGET3, with no systematic difference in redshift trends. This demonstrates that the PINOCCHIO code can reliably produce void statistics with high computational efficiency compared to full N-body simulations.

  • 6 authors
·
Jun 24

The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models

Machine learning (ML) models hold the promise of transforming atomic simulations by delivering quantum chemical accuracy at a fraction of the computational cost. Realization of this potential would enable high-throughout, high-accuracy molecular screening campaigns to explore vast regions of chemical space and facilitate ab initio simulations at sizes and time scales that were previously inaccessible. However, a fundamental challenge to creating ML models that perform well across molecular chemistry is the lack of comprehensive data for training. Despite substantial efforts in data generation, no large-scale molecular dataset exists that combines broad chemical diversity with a high level of accuracy. To address this gap, Meta FAIR introduces Open Molecules 2025 (OMol25), a large-scale dataset composed of more than 100 million density functional theory (DFT) calculations at the omegaB97M-V/def2-TZVPD level of theory, representing billions of CPU core-hours of compute. OMol25 uniquely blends elemental, chemical, and structural diversity including: 83 elements, a wide-range of intra- and intermolecular interactions, explicit solvation, variable charge/spin, conformers, and reactive structures. There are ~83M unique molecular systems in OMol25 covering small molecules, biomolecules, metal complexes, and electrolytes, including structures obtained from existing datasets. OMol25 also greatly expands on the size of systems typically included in DFT datasets, with systems of up to 350 atoms. In addition to the public release of the data, we provide baseline models and a comprehensive set of model evaluations to encourage community engagement in developing the next-generation ML models for molecular chemistry.

  • 23 authors
·
May 13

Addressing the core-cusp and diversity problem of dwarf and disk galaxies using cold collisionless DARKexp theory

Observed dwarf galaxies tend to have linearly rising rotation curves, which indicate flat density cores in their centers. Furthermore, disk galaxies show a wide range of rotation curves shapes. High resolution simulations of cold collisionless dark matter do not reproduce flat central profiles, or the observed diversity of rotation curve shapes; even hydrodynamic simulations incorporating baryonic feedback cannot do that robustly. However, numerical simulations are not the only way to make predictions about density profiles of equilibrium dark matter halos. A theoretical model based on statistical mechanics shows that maximum entropy solutions for cold collisionless self-gravitating dark matter halos can have a range of inner density profiles, including flat density cores. These theoretical profiles, called DARKexp, have only one shape parameter, and are able to fit the observed rotation curves of galaxies with last measured velocities in the range ~20-200 km/s. Here we present fits to 96 SPARC catalog galaxies, and the Milky Way. DARKexp also provides good fits to the projected stellar density distributions of ultrafaint dwarfs that show cores, suggesting that the dark matter halo hosts could have flat density cores. Thus, DARKexp appears to be able to address the core-cusp problem and the diversity of rotation curves with cold collisionless dark matter alone, without baryonic feedback.

  • 3 authors
·
Feb 21

The SRG/eROSITA All-Sky Survey: Large-scale view of the Centaurus cluster

Methods. We utilized the combined five SRG/eROSITA All-Sky Survey data (eRASS:5) to perform X-ray imaging and spectral analyses of the Centaurus cluster in various directions to large radii. Surface brightness (SB) profiles out to 2R_{200} were constructed. We acquired gas temperature, metallicity, and normalization per area profiles out to R_{200}. We compared our results with previous Centaurus studies, cluster outskirts measurements, and simulations. Comprehensive sky background analysis was done across the FoV, in particular, to assess the variation of the eROSITA Bubble emission that partially contaminates the field. Results. The processed X-ray images show the known sloshing-induced structures in the core. The core (rleq11~kpc) is better described with a 2T model than a 1T model. Here, we measured lower T from the cooler component (~1.0 keV) and higher Z (sim!1.6Z_odot), signifying an iron bias. In the intermediate radial range, we observed prominent SB and normalization per area excesses in the eastern sector (Cen 45 location), reaching out to R_{500}. Temperature enhancements near the location of Cen 45 imply that the gas is shock-heated due to the interaction with Cen 30, the significant excess behind Cen 45 center might be the tail/ram-pressure-stripped gas. We found good agreement between the outskirt temperatures with the profile from simulations and fit from Suzaku outskirts measurements. We detected significant SB emission to the sky background level out to R_{200} with a 3.5sigma and followed by 2.9sigma at 1.1R_{200}. The metallicity at R_{500}-R_{200} is low but within the ranges of other outskirts studies. Conclusions. We present the first measurement of ICM morphology and properties of Centaurus cluster sampling the whole azimuth beyond 30', increasing the probed volume by a factor of almost 30.

  • 12 authors
·
Apr 7, 2024

First principles simulations of dense hydrogen

Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g. planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data. rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange-correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principle PIMC and DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions.

  • 27 authors
·
May 17, 2024

XDen-1K: A Density Field Dataset of Real-World Objects

A deep understanding of the physical world is a central goal for embodied AI and realistic simulation. While current models excel at capturing an object's surface geometry and appearance, they largely neglect its internal physical properties. This omission is critical, as properties like volumetric density are fundamental for predicting an object's center of mass, stability, and interaction dynamics in applications ranging from robotic manipulation to physical simulation. The primary bottleneck has been the absence of large-scale, real-world data. To bridge this gap, we introduce XDen-1K, the first large-scale, multi-modal dataset designed for real-world physical property estimation, with a particular focus on volumetric density. The core of this dataset consists of 1,000 real-world objects across 148 categories, for which we provide comprehensive multi-modal data, including a high-resolution 3D geometric model with part-level annotations and a corresponding set of real-world biplanar X-ray scans. Building upon this data, we introduce a novel optimization framework that recovers a high-fidelity volumetric density field of each object from its sparse X-ray views. To demonstrate its practical value, we add X-ray images as a conditioning signal to an existing segmentation network and perform volumetric segmentation. Furthermore, we conduct experiments on downstream robotics tasks. The results show that leveraging the dataset can effectively improve the accuracy of center-of-mass estimation and the success rate of robotic manipulation. We believe XDen-1K will serve as a foundational resource and a challenging new benchmark, catalyzing future research in physically grounded visual inference and embodied AI.

  • 9 authors
·
Dec 11

Kernel Density Estimators in Large Dimensions

This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.

  • 2 authors
·
Aug 11, 2024

AutoKnots: Adaptive Knot Allocation for Spline Interpolation

In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)

  • 4 authors
·
Dec 17, 2024

Identifying supermassive black hole recoil in elliptical galaxies

We study stellar core growth in simulations of merging massive (M_star>10^{11},M_odot) elliptical galaxies by a supermassive black hole (SMBH) displaced by gravitational wave induced recoil velocity. With controlled, dense sampling of the SMBH recoil velocity, we find the core radius originally formed by SMBH binary scouring can grow by a factor of 2-3 when the recoil velocity exceeds sim50 per cent of the central escape velocity, and the mass deficit grows by up to a factor of sim4. Using Bayesian inference we predict the distribution of stellar core sizes formed through this process to peak at sim1,kpc. An orbital decomposition of stellar particles within the core reveals that radial orbits dominate over tube orbits when the recoil velocity exceeds the velocity dispersion of the core, whereas tube orbits dominate for the lowest recoil kicks. A change in orbital structure is reflected in the anisotropy parameter, with a central tangential bias present only for recoil velocities less than the local stellar velocity dispersion. Emulating current integral field unit observations of the stellar line-of-sight velocity distribution, we uncover a distinct signature in the Gauss-Hermite symmetric deviation coefficient h_4 that uniquely constrains the core size due to binary scouring. This signature is insensitive to the later evolution of the stellar mass distribution due to SMBH recoil. Our results provide a novel method to estimate the SMBH recoil magnitude from observations of local elliptical galaxies, and implies these galaxies primarily experienced recoil velocities less than the stellar velocity dispersion of the core.

  • 11 authors
·
Oct 17, 2024

Volume Rendering of Neural Implicit Surfaces

Neural volume rendering became increasingly popular recently due to its success in synthesizing novel views of a scene from a sparse set of input images. So far, the geometry learned by neural volume rendering techniques was modeled using a generic density function. Furthermore, the geometry itself was extracted using an arbitrary level set of the density function leading to a noisy, often low fidelity reconstruction. The goal of this paper is to improve geometry representation and reconstruction in neural volume rendering. We achieve that by modeling the volume density as a function of the geometry. This is in contrast to previous work modeling the geometry as a function of the volume density. In more detail, we define the volume density function as Laplace's cumulative distribution function (CDF) applied to a signed distance function (SDF) representation. This simple density representation has three benefits: (i) it provides a useful inductive bias to the geometry learned in the neural volume rendering process; (ii) it facilitates a bound on the opacity approximation error, leading to an accurate sampling of the viewing ray. Accurate sampling is important to provide a precise coupling of geometry and radiance; and (iii) it allows efficient unsupervised disentanglement of shape and appearance in volume rendering. Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions, outperforming relevant baselines. Furthermore, switching shape and appearance between scenes is possible due to the disentanglement of the two.

  • 4 authors
·
Jun 22, 2021

Simulating Brown Dwarf Observations for Various Mass Functions, Birthrates, and Low-mass Cutoffs

After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass distribution within 20 parsecs, which serves as a constraint on star formation theory at the lowest masses. Unlike objects on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass function must therefore be procured through proxy measurements and theoretical models. We utilize various assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals the most likely mass function. We find that a simple power law (dN/dM propto M^{-α}) with αapprox 0.5 is optimal. Additionally, we conclude that the low-mass cutoff for star formation is lesssim0.005M_{odot}. We corroborate the findings of Burgasser (2004) which state that the birthrate has a far lesser impact than the mass function on the form of the temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values of α than the constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of very old (8-10 Gyr) brown dwarfs.

  • 14 authors
·
Jun 13, 2024

An SIDM simulation of the merging cluster El Gordo and its tension between the post collision DM density profiles and weak lensing constraints

We review recent findings from a detailed simulation study of the merging cluster El Gordo and present new results inferred from weak lensing data. We found that the observed spatial offsets between the different mass components are well reproduced in merging simulations that include self-interacting dark matter (DM), with an elastic cross-section per unit mass of approximately \sigma_DM/m_X ~ 4 -5 cm^2/gr. Moreover, a relative line-of-sight peculiar velocity on the order of several hundred km/s is found between the two stellar components of the colliding subclusters. These findings strongly suggest the possibility that, in a very energetic cluster collision, DM could possess collisional properties. However, the self-interacting DM merger model presented here is not without difficulties. The values found for \sigma_DM/m_X being in conflict with the current upper bounds on cluster scales. As a solution to this tension we argue that in major cluster mergers the physical modeling of DM interactions, based on the scattering of DM particles, should be considered too simplistic. Additionally, the DM halos of the post-collision clusters have cored density profiles with core radii r_c ~ 300 kpc. Consequently, the associated reduced tangential shear lensing profiles consistently tend to zero at angles \theta <~ 40^{''}. This result is inconsistent with what is deduced from the measured profiles. These profiles exhibit a diverging behavior when \theta --> 0, as predicted by an NFW mass model. We argue that such contradictions cannot be easily reconciled within the DM models presented so far as an alternative to the collisionless paradigm. However, we suggest that this tension can be used as a unique test bed to probe new DM physics.

  • 1 authors
·
Sep 1

BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development

Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm^3 on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.

  • 15 authors
·
Apr 10, 2024

On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models

Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.

  • 2 authors
·
Feb 6, 2024

Impulsive mixing of stellar populations in dwarf spheroidal galaxies

We study the response of mono-energetic stellar populations with initially isotropic kinematics to impulsive and adiabatic changes to an underlying dark matter potential. Half-light radii expand and velocity dispersions decrease as enclosed dark matter is removed. The details of this expansion and cooling depend on the time scale on which the underlying potential changes. In the adiabatic regime, the product of half-light radius and average velocity dispersion is conserved. We show that the stellar populations maintain centrally isotropic kinematics throughout their adiabatic evolution, and their densities can be approximated by a family of analytical radial profiles. Metallicity gradients within the galaxy flatten as dark matter is slowly removed. In the case of strong impulsive perturbations, stellar populations develop power-law-like density tails with radially biased kinematics. We show that the distribution of stellar binding energies within the dark matter halo substantially widens after an impulsive perturbation, no matter the sign of the perturbation. This allows initially energetically separated stellar populations to mix, to the extent that previously chemo-dynamically distinct populations may masquerade as a single population with large metallicity and energy spread. Finally, we show that in response to an impulsive perturbation, stellar populations that are deeply embedded in cored dark matter halos undergo a series of damped oscillations before reaching a virialised equilibrium state, driven by inefficient phase mixing in the harmonic potentials of cored halos. This slow return to equilibrium adds substantial systematic uncertainty to dynamical masses estimated from Jeans modeling or the virial theorem.

  • 5 authors
·
Feb 26

A multi-reconstruction study of breast density estimation using Deep Learning

Breast density estimation is one of the key tasks in recognizing individuals predisposed to breast cancer. It is often challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Most of the time, the breast density is estimated manually where a radiologist assigns one of the four density categories decided by the Breast Imaging and Reporting Data Systems (BI-RADS). There have been efforts in the direction of automating a breast density classification pipeline. Breast density estimation is one of the key tasks performed during a screening exam. Dense breasts are more susceptible to breast cancer. The density estimation is challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Traditional mammograms are being replaced by tomosynthesis and its other low radiation dose variants (for example Hologic' Intelligent 2D and C-View). Because of the low-dose requirement, increasingly more screening centers are favoring the Intelligent 2D view and C-View. Deep-learning studies for breast density estimation use only a single modality for training a neural network. However, doing so restricts the number of images in the dataset. In this paper, we show that a neural network trained on all the modalities at once performs better than a neural network trained on any single modality. We discuss these results using the area under the receiver operator characteristics curves.

  • 5 authors
·
Feb 16, 2022

CoRe^2: Collect, Reflect and Refine to Generate Better and Faster

Making text-to-image (T2I) generative model sample both fast and well represents a promising research direction. Previous studies have typically focused on either enhancing the visual quality of synthesized images at the expense of sampling efficiency or dramatically accelerating sampling without improving the base model's generative capacity. Moreover, nearly all inference methods have not been able to ensure stable performance simultaneously on both diffusion models (DMs) and visual autoregressive models (ARMs). In this paper, we introduce a novel plug-and-play inference paradigm, CoRe^2, which comprises three subprocesses: Collect, Reflect, and Refine. CoRe^2 first collects classifier-free guidance (CFG) trajectories, and then use collected data to train a weak model that reflects the easy-to-learn contents while reducing number of function evaluations during inference by half. Subsequently, CoRe^2 employs weak-to-strong guidance to refine the conditional output, thereby improving the model's capacity to generate high-frequency and realistic content, which is difficult for the base model to capture. To the best of our knowledge, CoRe^2 is the first to demonstrate both efficiency and effectiveness across a wide range of DMs, including SDXL, SD3.5, and FLUX, as well as ARMs like LlamaGen. It has exhibited significant performance improvements on HPD v2, Pick-of-Pic, Drawbench, GenEval, and T2I-Compbench. Furthermore, CoRe^2 can be seamlessly integrated with the state-of-the-art Z-Sampling, outperforming it by 0.3 and 0.16 on PickScore and AES, while achieving 5.64s time saving using SD3.5.Code is released at https://github.com/xie-lab-ml/CoRe/tree/main.

  • 7 authors
·
Mar 12 4

Harnessing Density Ratios for Online Reinforcement Learning

The theories of offline and online reinforcement learning, despite having evolved in parallel, have begun to show signs of the possibility for a unification, with algorithms and analysis techniques for one setting often having natural counterparts in the other. However, the notion of density ratio modeling, an emerging paradigm in offline RL, has been largely absent from online RL, perhaps for good reason: the very existence and boundedness of density ratios relies on access to an exploratory dataset with good coverage, but the core challenge in online RL is to collect such a dataset without having one to start. In this work we show -- perhaps surprisingly -- that density ratio-based algorithms have online counterparts. Assuming only the existence of an exploratory distribution with good coverage, a structural condition known as coverability (Xie et al., 2023), we give a new algorithm (GLOW) that uses density ratio realizability and value function realizability to perform sample-efficient online exploration. GLOW addresses unbounded density ratios via careful use of truncation, and combines this with optimism to guide exploration. GLOW is computationally inefficient; we complement it with a more efficient counterpart, HyGLOW, for the Hybrid RL setting (Song et al., 2022) wherein online RL is augmented with additional offline data. HyGLOW is derived as a special case of a more general meta-algorithm that provides a provable black-box reduction from hybrid RL to offline RL, which may be of independent interest.

  • 5 authors
·
Jan 17, 2024

On the statistical theory of self-gravitating collisionless dark matter flow: Scale and redshift variation of velocity and density distributions

This paper studies the scale and redshift variation of density and velocity distributions in self-gravitating collisionless dark matter flow by a halo-based non-projection approach. All particles are divided into halo and out-of-halo particles for redshift variation of distributions. Without projecting particle fields onto a structured grid, the scale variation is analyzed by identifying all particle pairs on different scales r. We demonstrate that: i) Delaunay tessellation can be used to reconstruct the density field. The density correlation, spectrum, and dispersion functions were obtained, modeled, and compared with the N-body simulation; ii) the velocity distributions are symmetric on both small and large scales and are non-symmetric with a negative skewness on intermediate scales due to the inverse energy cascade at a constant rate varepsilon_u; iii) On small scales, the even order moments of pairwise velocity Delta u_L follow a two-thirds law (-varepsilon_ur)^{2/3}, while the odd order moments follow a linear scaling langle(Delta u_L)^{2n+1}rangle=(2n+1)langle(Delta u_L)^{2n}ranglelangleDelta u_Lrangler; iv) The scale variation of the velocity distributions was studied for longitudinal velocities u_L or u_L^{'}, pairwise velocity (velocity difference) Delta u_L=u_L^{'}-u_L and velocity sum Sigma u_L=u^{'}_L+u_L. Fully developed velocity fields are never Gaussian on any scale, despite that they can initially be Gaussian; v) On small scales, u_L and Sigma u_L can be modeled by a X distribution to maximize the system entropy; vi) On large scales, Delta u_L and Sigma u_L can be modeled by a logistic or a X distribution; vii) the redshift variation of the velocity distributions follows the evolution of the X distribution involving a shape parameter alpha(z) decreasing with time.

  • 1 authors
·
Feb 14, 2022

Efficient Masked AutoEncoder for Video Object Counting and A Large-Scale Benchmark

The dynamic imbalance of the fore-background is a major challenge in video object counting, which is usually caused by the sparsity of target objects. This remains understudied in existing works and often leads to severe under-/over-prediction errors. To tackle this issue in video object counting, we propose a density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework in this paper. To empower the model's representation ability on density regression, we develop a new Density-Embedded Masked mOdeling (DEMO) method, which first takes the density map as an auxiliary modality to perform multimodal self-representation learning for image and density map. Although DEMO contributes to effective cross-modal regression guidance, it also brings in redundant background information, making it difficult to focus on the foreground regions. To handle this dilemma, we propose an efficient spatial adaptive masking derived from density maps to boost efficiency. Meanwhile, we employ an optical flow-based temporal collaborative fusion strategy to effectively capture the dynamic variations across frames, aligning features to derive multi-frame density residuals. The counting accuracy of the current frame is boosted by harnessing the information from adjacent frames. In addition, considering that most existing datasets are limited to human-centric scenarios, we first propose a large video bird counting dataset, DroneBird, in natural scenarios for migratory bird protection. Extensive experiments on three crowd datasets and our DroneBird validate our superiority against the counterparts. The code and dataset are available.

  • 6 authors
·
Nov 20, 2024

Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise

In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.

  • 5 authors
·
Apr 3, 2023

Using Strong Lensing to Detect Subhalos with Steep Inner Density Profiles

The inner region of a subhalo's density distribution is particularly sensitive to dark matter microphysics, with alternative dark matter models leading to both cored and steeply-rising inner density profiles. This work investigates how the lensing signature and detectability of dark matter subhalos in mock HST-, Euclid-, and JWST-like strong lensing observations depends on the subhalo's radial density profile, especially with regards to the inner power-law slope, beta. We demonstrate that the minimum-mass subhalo detectable along the Einstein ring of a system is strongly dependent on beta. In particular, we show that subhalos with beta sim 2.2 can be detected down to masses over an order-of-magnitude lower than their Navarro-Frenk-White (NFW) counterparts with beta sim 1. Importantly, we find that the detectability of subhalos with steep inner profiles is minimally affected by increasing the complexity of the main lens galaxy's mass model. This is a unique characteristic of these subhalos, as those with NFW or shallower profiles become essentially undetectable when multipole perturbations are added to the lens model. The results of this work highlight how the underlying dark matter physics can significantly impact the expected number of subhalo detections from strong gravitational lensing observations. This is important for testing Cold Dark Matter against alternatives, such as Self-Interacting Dark Matter, which predict the existence of subhalos with diverse inner density profiles.

  • 5 authors
·
Oct 20

Nuclear charge radius predictions by kernel ridge regression with odd-even effects

The extended kernel ridge regression (EKRR) method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models. These are: (i) the isospin dependent A^{1/3} formula, (ii) relativistic continuum Hartree-Bogoliubov (RCHB) theory, (iii) Hartree-Fock-Bogoliubov (HFB) model HFB25, (iv) the Weizs\"acker-Skyrme (WS) model WS^ast, and (v) HFB25^ast model. In the last two models, the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models, respectively. For each model, the resultant root-mean-square deviation for the 1014 nuclei with proton number Z geq 8 can be significantly reduced to 0.009-0.013~fm after considering the modification with the EKRR method. The best among them was the RCHB model, with a root-mean-square deviation of 0.0092~fm. The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined and it was found that after considering the odd-even effects, the extrapolation power was improved compared with that of the original KRR method. The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.

  • 2 authors
·
Apr 18, 2024

What Drives Cluster Cool-Core Transformations? A Population Level Analysis of TNG-Cluster

In this study, we examine the frequency and physical drivers of transformations from cool-core (CC) to non-cool-core (NCC) clusters, and vice versa, in a sample of 352 massive galaxy clusters (M_vir = 10^14-15.3 M_sun) from the TNG-Cluster magnetohydrodynamical cosmological simulation of galaxies. By identifying transformations based on the evolution of central entropy and focusing on z<2.5, we find that clusters frequently undergo such events, depending on their assembly and supermassive black hole histories. On average, clusters experience 2 to 3 transformations. Transformations can occur in both directions and can be temporary, but those to higher entropy cores, i.e. in the direction from CC to NCC states, are the vast majority. CC phases are shorter than NCC phases, and thus overall the TNG-Cluster population forms with low-entropy cores and moves towards NCC states with time. We study the role that mergers play in driving transformations, and find that mergers within ~1Gyr prior to a transformation toward higher (but not lower) entropy cores occur statistically more often than in a random control sample. Most importantly, we find examples of mergers associated with CC disruption regardless of their mass ratio or angular momentum. However, past merger activity is not a good predictor for z=0 CC status, at least based on core entropy, even though clusters undergoing more mergers eventually have the highest core entropy values at z=0. We consider the interplay between AGN feedback and evolving cluster core thermodynamics. We find that core transformations are accompanied by an increase in AGN activity, whereby frequent and repeated (kinetic) energy injections from the central SMBHs can produce a collective, long-term impact on central entropy, ultimately heating cluster cores. Whether such fast-paced periods of AGN activity are triggered by mergers is plausible, but not necessary.

  • 3 authors
·
Mar 3

Water Snowline in Young Stellar Objects with Various Density Structures Using Radiative Transfer Models

Tracing the water snowline in low-mass young stellar objects (YSOs) is important because dust grain growth is promoted and the chemical composition varies at the water snowline, which influences planet formation and its properties. In protostellar envelopes, the water snowline can be estimated as a function of luminosity using a relation derived from radiative transfer models, and these predictions are consistent with observations. However, accurately estimating the water snowline in protoplanetary disks requires new relations that account for the disk structure. We present the relations between luminosity and water snowline using the dust continuum radiative transfer models with various density structures. We adopt two-dimensional density structures for an envelope-only model (Model E), an envelope+disk+cavity model (Model E+D), and a protoplanetary disk model (Model PPD). The relations between the water snowline, where T_dust = 100 K, and the total luminosity, ranging 0.1-1,000 solar luminosity, are well fitted by a power-law relation, R_snow=a * (L/L_solar)^p au. The factor a decreases with increasing disk density, while the power index p has values around 0.5 in all models. As the disk becomes denser, the water snowline forms at smaller radii even at the same luminosity, since dense dust hinders photon propagation. We also explore the effect of viscous heating on the water snowline. In Model PPD with viscous heating, the water snowline shifts outward by a few au up to 15 au, increasing the factor a and decreasing the power index p. In Model E+D with lower disk mass, the effect of viscous heating is negligible, indicating that the disk mass controls the effect. The discrepancy between our models and direct observations provides insights into the recent outburst event and the presence of a disk structure in low-mass YSOs.

  • 4 authors
·
Oct 16

Grad DFT: a software library for machine learning enhanced density functional theory

Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.

  • 5 authors
·
Sep 22, 2023

Robust Binding Energy Distribution Sampling on Amorphous Solid Water Models. Method testing and validation with NH3, CO and CH4

This work aims to develop a method based on a structurally reliable ice model and a statistically and physico-chemically robust approach for BE distribution inference, with the aim to be applicable to various relevant interstellar species. A multiscale computational approach is presented, with a Molecular Dynamics (MD) Heat & Quench protocol for the amorphous water ice model, and an ONIOM(B3LYP-D3(BJ)/6-311+G**:GFN2-xtb) scheme for the BE inference, with a prime emphasis onto the BE/real system size convergence. The sampling of the binding configurations is twofold, exploring both regularly spaced binding sites, as well as various adsorbate-to-substrate orientations on each locally distinct site. This second source of BE diversity accounts for the local roughness of the potential energy landscape of the substrate. Three different adsorbate test cases are considered, i.e. NH3, CO and CH4, owing to their significance in dust icy mantles, and their distinct binding behavior with water ices. The BE distributions for NH3, CO and CH4 have been inferred, with converged statistics. The distribution for NH3 is better represented by a double Gaussian component profile. Three starting adsorbate orientations per site are required to reach convergence for both Gaussian components of NH3, while 2 orientations are sufficient for CO, and one unique for CH4 (symmetric). Further geometrical and molecular surrounding insights have been provided. These results encompass previously reported results.

  • 4 authors
·
Apr 25

AutoCoreset: An Automatic Practical Coreset Construction Framework

A coreset is a tiny weighted subset of an input set, that closely resembles the loss function, with respect to a certain set of queries. Coresets became prevalent in machine learning as they have shown to be advantageous for many applications. While coreset research is an active research area, unfortunately, coresets are constructed in a problem-dependent manner, where for each problem, a new coreset construction algorithm is usually suggested, a process that may take time or may be hard for new researchers in the field. Even the generic frameworks require additional (problem-dependent) computations or proofs to be done by the user. Besides, many problems do not have (provable) small coresets, limiting their applicability. To this end, we suggest an automatic practical framework for constructing coresets, which requires (only) the input data and the desired cost function from the user, without the need for any other task-related computation to be done by the user. To do so, we reduce the problem of approximating a loss function to an instance of vector summation approximation, where the vectors we aim to sum are loss vectors of a specific subset of the queries, such that we aim to approximate the image of the function on this subset. We show that while this set is limited, the coreset is quite general. An extensive experimental study on various machine learning applications is also conducted. Finally, we provide a ``plug and play" style implementation, proposing a user-friendly system that can be easily used to apply coresets for many problems. Full open source code can be found at https://github.com/alaamaalouf/AutoCoreset{https://github.com/alaamaalouf/AutoCoreset}. We believe that these contributions enable future research and easier use and applications of coresets.

  • 4 authors
·
May 19, 2023

First Light And Reionisation Epoch Simulations (FLARES) I: Environmental Dependence of High-Redshift Galaxy Evolution

We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionisation (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large (3.2 ;cGpc)^{3} parent volume, based on their overdensity within a sphere of radius 14,h^{-1};cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF) and the star forming sequence (SFS) predicted by \flares, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalisation. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, such as WFIRST and Euclid.

  • 7 authors
·
Apr 15, 2020

Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning

Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.

  • 4 authors
·
Sep 16, 2022

Linear statistics for Coulomb gases: higher order cumulants

We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.

  • 4 authors
·
Oct 25, 2023

Planck 2018 results. VI. Cosmological parameters

We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter LambdaCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base LambdaCDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega_c h^2 = 0.120pm 0.001, baryon density Omega_b h^2 = 0.0224pm 0.0001, scalar spectral index n_s = 0.965pm 0.004, and optical depth tau = 0.054pm 0.007 (in this abstract we quote 68,% confidence regions on measured parameters and 95,% on upper limits). The angular acoustic scale is measured to 0.03,% precision, with 100theta_*=1.0411pm 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-LambdaCDM cosmology, the inferred late-Universe parameters are: Hubble constant H_0 = (67.4pm 0.5)km/s/Mpc; matter density parameter Omega_m = 0.315pm 0.007; and matter fluctuation amplitude sigma_8 = 0.811pm 0.006. We find no compelling evidence for extensions to the base-LambdaCDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be N_{rm eff} = 2.99pm 0.17, and the neutrino mass is tightly constrained to sum m_nu< 0.12eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -LambdaCDM at over 2,sigma, which pulls some parameters that affect the lensing amplitude away from the base-LambdaCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

  • 182 authors
·
Jul 17, 2018

Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs

Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.

  • 5 authors
·
Dec 11, 2024

Beyond monoculture: Polydisperse moment methods for sub-stellar atmosphere cloud microphysics II. A three-moment gamma distribution formulation for GCM applications

Context. Understanding how the shape of cloud particle size distributions affects the atmospheric properties of sub-stellar atmospheres is a key area to explore, particularly in the JWST era of broad wavelength coverage, where observations are sensitive to particle size distributions. It is therefore important to elucidate how underlying cloud microphysical processes influence the size distribution, in order to better understand how clouds affect observed atmospheric properties. Aims. In this follow-up paper, we aim to extend our sub-stellar atmosphere microphysical cloud formation framework from Paper I to include effects of assuming a polydisperse gamma particle size distribution, requiring a three-moment solution set of equations. Methods. We develop a three-moment framework for sub-stellar mineral cloud particle microphysical nucleation, condensation, evaporation and collisional growth assuming a gamma distribution. As in the previous paper, we demonstrate the effects of polydispersity using a simple one-dimensional Y-dwarf KCl cloud formation scenario, and compare the results with the monodisperse case. Results. Our three-moment scheme provides a generalised framework applicable to any size distribution with a defined moment generation expression. In our test case, we show that the gamma distribution evolves with altitude, initially broad at the cloud base and narrowing at lower pressures. We find that differences between the gamma and monodisperse cloud structures can be significant, depending on the surface gravity of the atmosphere. Conclusions. We present a self-consistent framework for including the effects of polydispersity for sub-stellar microphysical cloud studies using the moment method.

  • 2 authors
·
Jul 17

Mass-Radius Relationships for Solid Exoplanets

We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.

  • 4 authors
·
Jul 19, 2007

CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability

As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.

  • 3 authors
·
Mar 31

Towards A Universally Transferable Acceleration Method for Density Functional Theory

Recently, sophisticated deep learning-based approaches have been developed for generating efficient initial guesses to accelerate the convergence of density functional theory (DFT) calculations. While the actual initial guesses are often density matrices (DM), quantities that can convert into density matrices also qualify as alternative forms of initial guesses. Hence, existing works mostly rely on the prediction of the Hamiltonian matrix for obtaining high-quality initial guesses. However, the Hamiltonian matrix is both numerically difficult to predict and intrinsically non-transferable, hindering the application of such models in real scenarios. In light of this, we propose a method that constructs DFT initial guesses by predicting the electron density in a compact auxiliary basis representation using E(3)-equivariant neural networks. Trained on small molecules with up to 20 atoms, our model is able to achieve an average 33.3% self-consistent field (SCF) step reduction on systems up to 60 atoms, substantially outperforming Hamiltonian-centric and DM-centric models. Critically, this acceleration remains nearly constant with increasing system sizes and exhibits strong transferring behaviors across orbital basis sets and exchange-correlation (XC) functionals. To the best of our knowledge, this work represents the first and robust candidate for a universally transferable DFT acceleration method. We are also releasing the SCFbench dataset and its accompanying code to facilitate future research in this promising direction.

  • 6 authors
·
Sep 29