new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 16

Towards Mitigating Perceived Unfairness in Contracts from a Non-Legal Stakeholder's Perspective

Commercial contracts are known to be a valuable source for deriving project-specific requirements. However, contract negotiations mainly occur among the legal counsel of the parties involved. The participation of non-legal stakeholders, including requirement analysts, engineers, and solution architects, whose primary responsibility lies in ensuring the seamless implementation of contractual terms, is often indirect and inadequate. Consequently, a significant number of sentences in contractual clauses, though legally accurate, can appear unfair from an implementation perspective to non-legal stakeholders. This perception poses a problem since requirements indicated in the clauses are obligatory and can involve punitive measures and penalties if not implemented as committed in the contract. Therefore, the identification of potentially unfair clauses in contracts becomes crucial. In this work, we conduct an empirical study to analyze the perspectives of different stakeholders regarding contractual fairness. We then investigate the ability of Pre-trained Language Models (PLMs) to identify unfairness in contractual sentences by comparing chain of thought prompting and semi-supervised fine-tuning approaches. Using BERT-based fine-tuning, we achieved an accuracy of 84% on a dataset consisting of proprietary contracts. It outperformed chain of thought prompting using Vicuna-13B by a margin of 9%.

  • 4 authors
·
Dec 3, 2023

LLM-FuncMapper: Function Identification for Interpreting Complex Clauses in Building Codes via LLM

As a vital stage of automated rule checking (ARC), rule interpretation of regulatory texts requires considerable effort. However, interpreting regulatory clauses with implicit properties or complex computational logic is still challenging due to the lack of domain knowledge and limited expressibility of conventional logic representations. Thus, LLM-FuncMapper, an approach to identifying predefined functions needed to interpret various regulatory clauses based on the large language model (LLM), is proposed. First, by systematically analysis of building codes, a series of atomic functions are defined to capture shared computational logics of implicit properties and complex constraints, creating a database of common blocks for interpreting regulatory clauses. Then, a prompt template with the chain of thought is developed and further enhanced with a classification-based tuning strategy, to enable common LLMs for effective function identification. Finally, the proposed approach is validated with statistical analysis, experiments, and proof of concept. Statistical analysis reveals a long-tail distribution and high expressibility of the developed function database, with which almost 100% of computer-processible clauses can be interpreted and represented as computer-executable codes. Experiments show that LLM-FuncMapper achieve promising results in identifying relevant predefined functions for rule interpretation. Further proof of concept in automated rule interpretation also demonstrates the possibility of LLM-FuncMapper in interpreting complex regulatory clauses. To the best of our knowledge, this study is the first attempt to introduce LLM for understanding and interpreting complex regulatory clauses, which may shed light on further adoption of LLM in the construction domain.

  • 5 authors
·
Aug 16, 2023

Bridging Legal Knowledge and AI: Retrieval-Augmented Generation with Vector Stores, Knowledge Graphs, and Hierarchical Non-negative Matrix Factorization

Agentic Generative AI, powered by Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), and Vector Stores (VSs), represents a transformative technology applicable to specialized domains such as legal systems, research, recommender systems, cybersecurity, and global security, including proliferation research. This technology excels at inferring relationships within vast unstructured or semi-structured datasets. The legal domain here comprises complex data characterized by extensive, interrelated, and semi-structured knowledge systems with complex relations. It comprises constitutions, statutes, regulations, and case law. Extracting insights and navigating the intricate networks of legal documents and their relations is crucial for effective legal research. Here, we introduce a generative AI system that integrates RAG, VS, and KG, constructed via Non-Negative Matrix Factorization (NMF), to enhance legal information retrieval and AI reasoning and minimize hallucinations. In the legal system, these technologies empower AI agents to identify and analyze complex connections among cases, statutes, and legal precedents, uncovering hidden relationships and predicting legal trends-challenging tasks that are essential for ensuring justice and improving operational efficiency. Our system employs web scraping techniques to systematically collect legal texts, such as statutes, constitutional provisions, and case law, from publicly accessible platforms like Justia. It bridges the gap between traditional keyword-based searches and contextual understanding by leveraging advanced semantic representations, hierarchical relationships, and latent topic discovery. This framework supports legal document clustering, summarization, and cross-referencing, for scalable, interpretable, and accurate retrieval for semi-structured data while advancing computational law and AI.

  • 5 authors
·
Feb 27, 2025

Large Language Models as Fiduciaries: A Case Study Toward Robustly Communicating With Artificial Intelligence Through Legal Standards

Artificial Intelligence (AI) is taking on increasingly autonomous roles, e.g., browsing the web as a research assistant and managing money. But specifying goals and restrictions for AI behavior is difficult. Similar to how parties to a legal contract cannot foresee every potential "if-then" contingency of their future relationship, we cannot specify desired AI behavior for all circumstances. Legal standards facilitate robust communication of inherently vague and underspecified goals. Instructions (in the case of language models, "prompts") that employ legal standards will allow AI agents to develop shared understandings of the spirit of a directive that generalize expectations regarding acceptable actions to take in unspecified states of the world. Standards have built-in context that is lacking from other goal specification languages, such as plain language and programming languages. Through an empirical study on thousands of evaluation labels we constructed from U.S. court opinions, we demonstrate that large language models (LLMs) are beginning to exhibit an "understanding" of one of the most relevant legal standards for AI agents: fiduciary obligations. Performance comparisons across models suggest that, as LLMs continue to exhibit improved core capabilities, their legal standards understanding will also continue to improve. OpenAI's latest LLM has 78% accuracy on our data, their previous release has 73% accuracy, and a model from their 2020 GPT-3 paper has 27% accuracy (worse than random). Our research is an initial step toward a framework for evaluating AI understanding of legal standards more broadly, and for conducting reinforcement learning with legal feedback (RLLF).

  • 1 authors
·
Jan 24, 2023