Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCA-Edit: Causality-Aware Condition Adapter for High-Fidelity Local Facial Attribute Editing
For efficient and high-fidelity local facial attribute editing, most existing editing methods either require additional fine-tuning for different editing effects or tend to affect beyond the editing regions. Alternatively, inpainting methods can edit the target image region while preserving external areas. However, current inpainting methods still suffer from the generation misalignment with facial attributes description and the loss of facial skin details. To address these challenges, (i) a novel data utilization strategy is introduced to construct datasets consisting of attribute-text-image triples from a data-driven perspective, (ii) a Causality-Aware Condition Adapter is proposed to enhance the contextual causality modeling of specific details, which encodes the skin details from the original image while preventing conflicts between these cues and textual conditions. In addition, a Skin Transition Frequency Guidance technique is introduced for the local modeling of contextual causality via sampling guidance driven by low-frequency alignment. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our method in boosting both fidelity and editability for localized attribute editing. The code is available at https://github.com/connorxian/CA-Edit.
CARE: Causality Reasoning for Empathetic Responses by Conditional Graph Generation
Recent approaches to empathetic response generation incorporate emotion causalities to enhance comprehension of both the user's feelings and experiences. However, these approaches suffer from two critical issues. First, they only consider causalities between the user's emotion and the user's experiences, and ignore those between the user's experiences. Second, they neglect interdependence among causalities and reason them independently. To solve the above problems, we expect to reason all plausible causalities interdependently and simultaneously, given the user's emotion, dialogue history, and future dialogue content. Then, we infuse these causalities into response generation for empathetic responses. Specifically, we design a new model, i.e., the Conditional Variational Graph Auto-Encoder (CVGAE), for the causality reasoning, and adopt a multi-source attention mechanism in the decoder for the causality infusion. We name the whole framework as CARE, abbreviated for CAusality Reasoning for Empathetic conversation. Experimental results indicate that our method achieves state-of-the-art performance.
Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium $φ^3$ QFT
Our aim is to contribute to quantum field theory (QFT) formalisms useful for descriptions of short time phenomena, dominant especially in heavy ion collisions. We formulate out-of-equilibrium QFT within the finite-time-path formalism (FTP) and renormalization theory (RT). The potential conflict of FTP and RT is investigated in g phi^3 QFT, by using the retarded/advanced (R/A) basis of Green functions and dimensional renormalization (DR). For example, vertices immediately after (in time) divergent self-energy loops do not conserve energy, as integrals diverge. We "repair" them, while keeping d<4, to obtain energy conservation at those vertices. Already in the S-matrix theory, the renormalized, finite part of Feynman self-energy Sigma_{F}(p_0) does not vanish when |p_0|rightarrowinfty and cannot be split to retarded and advanced parts. In the Glaser--Epstein approach, the causality is repaired in the composite object G_F(p_0)Sigma_{F}(p_0). In the FTP approach, after repairing the vertices, the corresponding composite objects are G_R(p_0)Sigma_{R}(p_0) and Sigma_{A}(p_0)G_A(p_0). In the limit drightarrow 4, one obtains causal QFT. The tadpole contribution splits into diverging and finite parts. The diverging, constant component is eliminated by the renormalization condition langle 0|phi|0rangle =0 of the S-matrix theory. The finite, oscillating energy-nonconserving tadpole contributions vanish in the limit trightarrow infty .
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.
Beyond Simulation: Benchmarking World Models for Planning and Causality in Autonomous Driving
World models have become increasingly popular in acting as learned traffic simulators. Recent work has explored replacing traditional traffic simulators with world models for policy training. In this work, we explore the robustness of existing metrics to evaluate world models as traffic simulators to see if the same metrics are suitable for evaluating a world model as a pseudo-environment for policy training. Specifically, we analyze the metametric employed by the Waymo Open Sim-Agents Challenge (WOSAC) and compare world model predictions on standard scenarios where the agents are fully or partially controlled by the world model (partial replay). Furthermore, since we are interested in evaluating the ego action-conditioned world model, we extend the standard WOSAC evaluation domain to include agents that are causal to the ego vehicle. Our evaluations reveal a significant number of scenarios where top-ranking models perform well under no perturbation but fail when the ego agent is forced to replay the original trajectory. To address these cases, we propose new metrics to highlight the sensitivity of world models to uncontrollable objects and evaluate the performance of world models as pseudo-environments for policy training and analyze some state-of-the-art world models under these new metrics.
End-to-End Training for Autoregressive Video Diffusion via Self-Resampling
Autoregressive video diffusion models hold promise for world simulation but are vulnerable to exposure bias arising from the train-test mismatch. While recent works address this via post-training, they typically rely on a bidirectional teacher model or online discriminator. To achieve an end-to-end solution, we introduce Resampling Forcing, a teacher-free framework that enables training autoregressive video models from scratch and at scale. Central to our approach is a self-resampling scheme that simulates inference-time model errors on history frames during training. Conditioned on these degraded histories, a sparse causal mask enforces temporal causality while enabling parallel training with frame-level diffusion loss. To facilitate efficient long-horizon generation, we further introduce history routing, a parameter-free mechanism that dynamically retrieves the top-k most relevant history frames for each query. Experiments demonstrate that our approach achieves performance comparable to distillation-based baselines while exhibiting superior temporal consistency on longer videos owing to native-length training.
SoundReactor: Frame-level Online Video-to-Audio Generation
Prevailing Video-to-Audio (V2A) generation models operate offline, assuming an entire video sequence or chunks of frames are available beforehand. This critically limits their use in interactive applications such as live content creation and emerging generative world models. To address this gap, we introduce the novel task of frame-level online V2A generation, where a model autoregressively generates audio from video without access to future video frames. Furthermore, we propose SoundReactor, which, to the best of our knowledge, is the first simple yet effective framework explicitly tailored for this task. Our design enforces end-to-end causality and targets low per-frame latency with audio-visual synchronization. Our model's backbone is a decoder-only causal transformer over continuous audio latents. For vision conditioning, it leverages grid (patch) features extracted from the smallest variant of the DINOv2 vision encoder, which are aggregated into a single token per frame to maintain end-to-end causality and efficiency. The model is trained through a diffusion pre-training followed by consistency fine-tuning to accelerate the diffusion head decoding. On a benchmark of diverse gameplay videos from AAA titles, our model successfully generates semantically and temporally aligned, high-quality full-band stereo audio, validated by both objective and human evaluations. Furthermore, our model achieves low per-frame waveform-level latency (26.3ms with the head NFE=1, 31.5ms with NFE=4) on 30FPS, 480p videos using a single H100. Demo samples are available at https://koichi-saito-sony.github.io/soundreactor/.
MXMap: A Multivariate Cross Mapping Framework for Causal Discovery in Dynamical Systems
Convergent Cross Mapping (CCM) is a powerful method for detecting causality in coupled nonlinear dynamical systems, providing a model-free approach to capture dynamic causal interactions. Partial Cross Mapping (PCM) was introduced as an extension of CCM to address indirect causality in three-variable systems by comparing cross-mapping quality between direct cause-effect mapping and indirect mapping through an intermediate conditioning variable. However, PCM remains limited to univariate delay embeddings in its cross-mapping processes. In this work, we extend PCM to the multivariate setting, introducing multiPCM, which leverages multivariate embeddings to more effectively distinguish indirect causal relationships. We further propose a multivariate cross-mapping framework (MXMap) for causal discovery in dynamical systems. This two-phase framework combines (1) pairwise CCM tests to establish an initial causal graph and (2) multiPCM to refine the graph by pruning indirect causal connections. Through experiments on simulated data and the ERA5 Reanalysis weather dataset, we demonstrate the effectiveness of MXMap. Additionally, MXMap is compared against several baseline methods, showing advantages in accuracy and causal graph refinement.
Distilling semantically aware orders for autoregressive image generation
Autoregressive patch-based image generation has recently shown competitive results in terms of image quality and scalability. It can also be easily integrated and scaled within Vision-Language models. Nevertheless, autoregressive models require a defined order for patch generation. While a natural order based on the dictation of the words makes sense for text generation, there is no inherent generation order that exists for image generation. Traditionally, a raster-scan order (from top-left to bottom-right) guides autoregressive image generation models. In this paper, we argue that this order is suboptimal, as it fails to respect the causality of the image content: for instance, when conditioned on a visual description of a sunset, an autoregressive model may generate clouds before the sun, even though the color of clouds should depend on the color of the sun and not the inverse. In this work, we show that first by training a model to generate patches in any-given-order, we can infer both the content and the location (order) of each patch during generation. Secondly, we use these extracted orders to finetune the any-given-order model to produce better-quality images. Through our experiments, we show on two datasets that this new generation method produces better images than the traditional raster-scan approach, with similar training costs and no extra annotations.
Causal Inference in the Presence of Latent Variables and Selection Bias
We show that there is a general, informative and reliable procedure for discovering causal relations when, for all the investigator knows, both latent variables and selection bias may be at work. Given information about conditional independence and dependence relations between measured variables, even when latent variables and selection bias may be present, there are sufficient conditions for reliably concluding that there is a causal path from one variable to another, and sufficient conditions for reliably concluding when no such causal path exists.
Identifying and bounding the probability of necessity for causes of effects with ordinal outcomes
Although the existing causal inference literature focuses on the forward-looking perspective by estimating effects of causes, the backward-looking perspective can provide insights into causes of effects. In backward-looking causal inference, the probability of necessity measures the probability that a certain event is caused by the treatment given the observed treatment and outcome. Most existing results focus on binary outcomes. Motivated by applications with ordinal outcomes, we propose a general definition of the probability of necessity. However, identifying the probability of necessity is challenging because it involves the joint distribution of the potential outcomes. We propose a novel assumption of monotonic incremental treatment effect to identify the probability of necessity with ordinal outcomes. We also discuss the testable implications of this key identification assumption. When it fails, we derive explicit formulas of the sharp large-sample bounds on the probability of necessity.
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
From Temporal to Contemporaneous Iterative Causal Discovery in the Presence of Latent Confounders
We present a constraint-based algorithm for learning causal structures from observational time-series data, in the presence of latent confounders. We assume a discrete-time, stationary structural vector autoregressive process, with both temporal and contemporaneous causal relations. One may ask if temporal and contemporaneous relations should be treated differently. The presented algorithm gradually refines a causal graph by learning long-term temporal relations before short-term ones, where contemporaneous relations are learned last. This ordering of causal relations to be learnt leads to a reduction in the required number of statistical tests. We validate this reduction empirically and demonstrate that it leads to higher accuracy for synthetic data and more plausible causal graphs for real-world data compared to state-of-the-art algorithms.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning
Understanding commonsense causality is a unique mark of intelligence for humans. It helps people understand the principles of the real world better and benefits the decision-making process related to causation. For instance, commonsense causality is crucial in judging whether a defendant's action causes the plaintiff's loss in determining legal liability. Despite its significance, a systematic exploration of this topic is notably lacking. Our comprehensive survey bridges this gap by focusing on taxonomies, benchmarks, acquisition methods, qualitative reasoning, and quantitative measurements in commonsense causality, synthesizing insights from over 200 representative articles. Our work aims to provide a systematic overview, update scholars on recent advancements, provide a pragmatic guide for beginners, and highlight promising future research directions in this vital field.
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
A major barrier to deploying current machine learning models lies in their non-reliability to dataset shifts. To resolve this problem, most existing studies attempted to transfer stable information to unseen environments. Particularly, independent causal mechanisms-based methods proposed to remove mutable causal mechanisms via the do-operator. Compared to previous methods, the obtained stable predictors are more effective in identifying stable information. However, a key question remains: which subset of this whole stable information should the model transfer, in order to achieve optimal generalization ability? To answer this question, we present a comprehensive minimax analysis from a causal perspective. Specifically, we first provide a graphical condition for the whole stable set to be optimal. When this condition fails, we surprisingly find with an example that this whole stable set, although can fully exploit stable information, is not the optimal one to transfer. To identify the optimal subset under this case, we propose to estimate the worst-case risk with a novel optimization scheme over the intervention functions on mutable causal mechanisms. We then propose an efficient algorithm to search for the subset with minimal worst-case risk, based on a newly defined equivalence relation between stable subsets. Compared to the exponential cost of exhaustively searching over all subsets, our searching strategy enjoys a polynomial complexity. The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
Attribution-Scores in Data Management and Explainable Machine Learning
We describe recent research on the use of actual causality in the definition of responsibility scores as explanations for query answers in databases, and for outcomes from classification models in machine learning. In the case of databases, useful connections with database repairs are illustrated and exploited. Repairs are also used to give a quantitative measure of the consistency of a database. For classification models, the responsibility score is properly extended and illustrated. The efficient computation of Shap-score is also analyzed and discussed. The emphasis is placed on work done by the author and collaborators.
A Dynamical View of the Question of Why
We address causal reasoning in multivariate time series data generated by stochastic processes. Existing approaches are largely restricted to static settings, ignoring the continuity and emission of variations across time. In contrast, we propose a learning paradigm that directly establishes causation between events in the course of time. We present two key lemmas to compute causal contributions and frame them as reinforcement learning problems. Our approach offers formal and computational tools for uncovering and quantifying causal relationships in diffusion processes, subsuming various important settings such as discrete-time Markov decision processes. Finally, in fairly intricate experiments and through sheer learning, our framework reveals and quantifies causal links, which otherwise seem inexplicable.
Conditions and Assumptions for Constraint-based Causal Structure Learning
We formalize constraint-based structure learning of the "true" causal graph from observed data when unobserved variables are also existent. We provide conditions for a "natural" family of constraint-based structure-learning algorithms that output graphs that are Markov equivalent to the causal graph. Under the faithfulness assumption, this natural family contains all exact structure-learning algorithms. We also provide a set of assumptions, under which any natural structure-learning algorithm outputs Markov equivalent graphs to the causal graph. These assumptions can be thought of as a relaxation of faithfulness, and most of them can be directly tested from (the underlying distribution) of the data, particularly when one focuses on structural causal models. We specialize the definitions and results for structural causal models.
Causal evidence for the primordiality of colours in trans-Neptunian objects
The origins of the colours of Trans-Neptunian Objects (TNOs) represent a crucial unresolved question, central to understanding the history of our Solar System. Recent observational surveys revealed correlations between the eccentricity and inclination of TNOs, and their colours. This rekindled the long-standing debate on whether these colours reflect the conditions of TNO formation or their subsequent evolution. We address this question using a model-agnostic, data-driven approach that unanimously converges to a common causal graph from the analysis of two different datasets, each from two different conditional independence test methods. For evaluation, we demonstrate how our model is consistent with the currently-accepted paradigms of TNOs' dynamical histories, without involving any orbital modelling or physics-based assumptions. Our causal model (with no knowledge of the existence of Neptune) predicts the need for an unknown confounding variable, consistent with Neptune's effects. The model predicts that the colour of TNOs is the root cause of their inclination distribution, rather than the other way around. This strongly suggests that the colours of TNOs reflect an underlying dynamical property, most likely their formation location. Our model excludes formation scenarios that invoke substantial colour modification by subsequent evolution. We conclude that the colours of TNOs are predominantly primordial.
Causal Bandits with Unknown Graph Structure
In causal bandit problems, the action set consists of interventions on variables of a causal graph. Several researchers have recently studied such bandit problems and pointed out their practical applications. However, all existing works rely on a restrictive and impractical assumption that the learner is given full knowledge of the causal graph structure upfront. In this paper, we develop novel causal bandit algorithms without knowing the causal graph. Our algorithms work well for causal trees, causal forests and a general class of causal graphs. The regret guarantees of our algorithms greatly improve upon those of standard multi-armed bandit (MAB) algorithms under mild conditions. Lastly, we prove our mild conditions are necessary: without them one cannot do better than standard MAB algorithms.
Causal Evidence for the Primordiality of Colors in Trans-Neptunian Objects
The origins of the colors of Trans-Neptunian Objects (TNOs) represent a crucial unresolved question, central to understanding the history of our Solar System. Recent observational surveys have revealed correlations between the eccentricity and inclination of TNOs and their colors. This has rekindled the long-standing debate on whether these colors reflect the conditions of TNO formation or their subsequent collisional evolution. In this study, we address this question with 98.7% certainty, using a model-agnostic, data-driven approach based on causal graphs. First, as a sanity check, we demonstrate how our model can replicate the currently accepted paradigms of TNOs' dynamical history, blindly and without any orbital modeling or physics-based assumptions. In fact, our causal model (with no knowledge of the existence of Neptune) predicts the existence of an unknown perturbing body, i.e., Neptune. We then show how this model predicts, with high certainty, that the color of TNOs is the root cause of their inclination distribution, rather than the other way around. This strongly suggests that the colors of TNOs reflect an underlying dynamical property, most likely their formation location. Moreover, our causal model excludes formation scenarios that invoke substantial color modification by subsequent irradiation. We therefore conclude that the colors of TNOs are predominantly primordial.
Conditional Instrumental Variable Regression with Representation Learning for Causal Inference
This paper studies the challenging problem of estimating causal effects from observational data, in the presence of unobserved confounders. The two-stage least square (TSLS) method and its variants with a standard instrumental variable (IV) are commonly used to eliminate confounding bias, including the bias caused by unobserved confounders, but they rely on the linearity assumption. Besides, the strict condition of unconfounded instruments posed on a standard IV is too strong to be practical. To address these challenging and practical problems of the standard IV method (linearity assumption and the strict condition), in this paper, we use a conditional IV (CIV) to relax the unconfounded instrument condition of standard IV and propose a non-linear CIV regression with Confounding Balancing Representation Learning, CBRL.CIV, for jointly eliminating the confounding bias from unobserved confounders and balancing the observed confounders, without the linearity assumption. We theoretically demonstrate the soundness of CBRL.CIV. Extensive experiments on synthetic and two real-world datasets show the competitive performance of CBRL.CIV against state-of-the-art IV-based estimators and superiority in dealing with the non-linear situation.
Causal Modeling of Twitter Activity During COVID-19
Understanding the characteristics of public attention and sentiment is an essential prerequisite for appropriate crisis management during adverse health events. This is even more crucial during a pandemic such as COVID-19, as primary responsibility of risk management is not centralized to a single institution, but distributed across society. While numerous studies utilize Twitter data in descriptive or predictive context during COVID-19 pandemic, causal modeling of public attention has not been investigated. In this study, we propose a causal inference approach to discover and quantify causal relationships between pandemic characteristics (e.g. number of infections and deaths) and Twitter activity as well as public sentiment. Our results show that the proposed method can successfully capture the epidemiological domain knowledge and identify variables that affect public attention and sentiment. We believe our work contributes to the field of infodemiology by distinguishing events that correlate with public attention from events that cause public attention.
Causal discovery from conditionally stationary time-series
Causal discovery, i.e., inferring underlying cause-effect relationships from observations of a scene or system, is an inherent mechanism in human cognition, but has been shown to be highly challenging to automate. The majority of approaches in the literature aiming for this task consider constrained scenarios with fully observed variables or data from stationary time-series. In this work we aim for causal discovery in a more general class of scenarios, scenes with non-stationary behavior over time. For our purposes we here regard a scene as a composition objects interacting with each other over time. Non-stationarity is modeled as stationarity conditioned on an underlying variable, a state, which can be of varying dimension, more or less hidden given observations of the scene, and also depend more or less directly on these observations. We propose a probabilistic deep learning approach called State-Dependent Causal Inference (SDCI) for causal discovery in such conditionally stationary time-series data. Results in two different synthetic scenarios show that this method is able to recover the underlying causal dependencies with high accuracy even in cases with hidden states.
On the Identifiability and Estimation of Causal Location-Scale Noise Models
We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
Schrödinger-Poisson systems with a general critical nonlinearity
We consider a Schr\"odinger-Poisson system involving a general nonlinearity at critical growth and we prove the existence of positive solutions. The Ambrosetti-Rabinowitz condition is not required. We also study the asymptotics of solutions with respect to a parameter.
Causal Inference for Banking Finance and Insurance A Survey
Causal Inference plays an significant role in explaining the decisions taken by statistical models and artificial intelligence models. Of late, this field started attracting the attention of researchers and practitioners alike. This paper presents a comprehensive survey of 37 papers published during 1992-2023 and concerning the application of causal inference to banking, finance, and insurance. The papers are categorized according to the following families of domains: (i) Banking, (ii) Finance and its subdomains such as corporate finance, governance finance including financial risk and financial policy, financial economics, and Behavioral finance, and (iii) Insurance. Further, the paper covers the primary ingredients of causal inference namely, statistical methods such as Bayesian Causal Network, Granger Causality and jargon used thereof such as counterfactuals. The review also recommends some important directions for future research. In conclusion, we observed that the application of causal inference in the banking and insurance sectors is still in its infancy, and thus more research is possible to turn it into a viable method.
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework
Fairness for machine learning predictions is widely required in practice for legal, ethical, and societal reasons. Existing work typically focuses on settings without unobserved confounding, even though unobserved confounding can lead to severe violations of causal fairness and, thus, unfair predictions. In this work, we analyze the sensitivity of causal fairness to unobserved confounding. Our contributions are three-fold. First, we derive bounds for causal fairness metrics under different sources of unobserved confounding. This enables practitioners to examine the sensitivity of their machine learning models to unobserved confounding in fairness-critical applications. Second, we propose a novel neural framework for learning fair predictions, which allows us to offer worst-case guarantees of the extent to which causal fairness can be violated due to unobserved confounding. Third, we demonstrate the effectiveness of our framework in a series of experiments, including a real-world case study about predicting prison sentences. To the best of our knowledge, ours is the first work to study causal fairness under unobserved confounding. To this end, our work is of direct practical value as a refutation strategy to ensure the fairness of predictions in high-stakes applications.
Robust agents learn causal world models
It has long been hypothesised that causal reasoning plays a fundamental role in robust and general intelligence. However, it is not known if agents must learn causal models in order to generalise to new domains, or if other inductive biases are sufficient. We answer this question, showing that any agent capable of satisfying a regret bound under a large set of distributional shifts must have learned an approximate causal model of the data generating process, which converges to the true causal model for optimal agents. We discuss the implications of this result for several research areas including transfer learning and causal inference.
Active causal structure learning with advice
We introduce the problem of active causal structure learning with advice. In the typical well-studied setting, the learning algorithm is given the essential graph for the observational distribution and is asked to recover the underlying causal directed acyclic graph (DAG) G^* while minimizing the number of interventions made. In our setting, we are additionally given side information about G^* as advice, e.g. a DAG G purported to be G^*. We ask whether the learning algorithm can benefit from the advice when it is close to being correct, while still having worst-case guarantees even when the advice is arbitrarily bad. Our work is in the same space as the growing body of research on algorithms with predictions. When the advice is a DAG G, we design an adaptive search algorithm to recover G^* whose intervention cost is at most O(max{1, log psi}) times the cost for verifying G^*; here, psi is a distance measure between G and G^* that is upper bounded by the number of variables n, and is exactly 0 when G=G^*. Our approximation factor matches the state-of-the-art for the advice-less setting.
Causal Inference by String Diagram Surgery
Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.
Interventional Fairness on Partially Known Causal Graphs: A Constrained Optimization Approach
Fair machine learning aims to prevent discrimination against individuals or sub-populations based on sensitive attributes such as gender and race. In recent years, causal inference methods have been increasingly used in fair machine learning to measure unfairness by causal effects. However, current methods assume that the true causal graph is given, which is often not true in real-world applications. To address this limitation, this paper proposes a framework for achieving causal fairness based on the notion of interventions when the true causal graph is partially known. The proposed approach involves modeling fair prediction using a Partially Directed Acyclic Graph (PDAG), specifically, a class of causal DAGs that can be learned from observational data combined with domain knowledge. The PDAG is used to measure causal fairness, and a constrained optimization problem is formulated to balance between fairness and accuracy. Results on both simulated and real-world datasets demonstrate the effectiveness of this method.
Generative causal explanations of black-box classifiers
We develop a method for generating causal post-hoc explanations of black-box classifiers based on a learned low-dimensional representation of the data. The explanation is causal in the sense that changing learned latent factors produces a change in the classifier output statistics. To construct these explanations, we design a learning framework that leverages a generative model and information-theoretic measures of causal influence. Our objective function encourages both the generative model to faithfully represent the data distribution and the latent factors to have a large causal influence on the classifier output. Our method learns both global and local explanations, is compatible with any classifier that admits class probabilities and a gradient, and does not require labeled attributes or knowledge of causal structure. Using carefully controlled test cases, we provide intuition that illuminates the function of our objective. We then demonstrate the practical utility of our method on image recognition tasks.
Task-specific experimental design for treatment effect estimation
Understanding causality should be a core requirement of any attempt to build real impact through AI. Due to the inherent unobservability of counterfactuals, large randomised trials (RCTs) are the standard for causal inference. But large experiments are generically expensive, and randomisation carries its own costs, e.g. when suboptimal decisions are trialed. Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought. In this work, we develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications. Across a range of important tasks, real-world datasets, and sample sizes, our method outperforms other benchmarks, e.g. requiring an order-of-magnitude less data to match RCT performance on targeted marketing tasks.
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
Overspinning a rotating black hole in semiclassical gravity with type-A trace anomaly
Recently, Fernandes discovered an analytic solution for rotating black holes in semiclassical gravity induced by the trace anomaly. These solutions exhibit some distinctive characteristics, including a non-spherically symmetric event horizon and violations of the Kerr bound. As a crucial assumption to uphold causality in spacetime, we investigate the validity of the weak cosmic censorship conjecture (WCCC) within this class of solutions with type-A trace anomaly by introducing a test particle on the equatorial plane. Our study reveals three distinct mechanisms that can potentially destroy the event horizon, leading to a violation of the WCCC. Our findings indicate that, with the exception of extremal Kerr, static extremal, and static singular black holes, the WCCC may be violated under the first-order perturbation of the test particle. These results suggest the need for further exploration of modifications to the behavior of the test particle under quantum effects in order to address the violation of the WCCC in this system.
How Much Does Home Field Advantage Matter in Soccer Games? A Causal Inference Approach for English Premier League Analysis
In many sports, it is commonly believed that the home team has an advantage over the visiting team, known as the home field advantage. Yet its causal effect on team performance is largely unknown. In this paper, we propose a novel causal inference approach to study the causal effect of home field advantage in English Premier League. We develop a hierarchical causal model and show that both league level and team level causal effects are identifiable and can be conveniently estimated. We further develop an inference procedure for the proposed estimators and demonstrate its excellent numerical performance via simulation studies. We implement our method on the 2020-21 English Premier League data and assess the causal effect of home advantage on eleven summary statistics that measure the offensive and defensive performance and referee bias. We find that the home field advantage resides more heavily in offensive statistics than it does in defensive or referee statistics. We also find evidence that teams that had lower rankings retain a higher home field advantage.
Is More Data All You Need? A Causal Exploration
Curating a large scale medical imaging dataset for machine learning applications is both time consuming and expensive. Balancing the workload between model development, data collection and annotations is difficult for machine learning practitioners, especially under time constraints. Causal analysis is often used in medicine and economics to gain insights about the effects of actions and policies. In this paper we explore the effect of dataset interventions on the output of image classification models. Through a causal approach we investigate the effects of the quantity and type of data we need to incorporate in a dataset to achieve better performance for specific subtasks. The main goal of this paper is to highlight the potential of causal analysis as a tool for resource optimization for developing medical imaging ML applications. We explore this concept with a synthetic dataset and an exemplary use-case for Diabetic Retinopathy image analysis.
Causal Abstraction for Faithful Model Interpretation
A faithful and interpretable explanation of an AI model's behavior and internal structure is a high-level explanation that is human-intelligible but also consistent with the known, but often opaque low-level causal details of the model. We argue that the theory of causal abstraction provides the mathematical foundations for the desired kinds of model explanations. In causal abstraction analysis, we use interventions on model-internal states to rigorously assess whether an interpretable high-level causal model is a faithful description of an AI model. Our contributions in this area are: (1) We generalize causal abstraction to cyclic causal structures and typed high-level variables. (2) We show how multi-source interchange interventions can be used to conduct causal abstraction analyses. (3) We define a notion of approximate causal abstraction that allows us to assess the degree to which a high-level causal model is a causal abstraction of a lower-level one. (4) We prove constructive causal abstraction can be decomposed into three operations we refer to as marginalization, variable-merge, and value-merge. (5) We formalize the XAI methods of LIME, causal effect estimation, causal mediation analysis, iterated nullspace projection, and circuit-based explanations as special cases of causal abstraction analysis.
Additive Causal Bandits with Unknown Graph
We explore algorithms to select actions in the causal bandit setting where the learner can choose to intervene on a set of random variables related by a causal graph, and the learner sequentially chooses interventions and observes a sample from the interventional distribution. The learner's goal is to quickly find the intervention, among all interventions on observable variables, that maximizes the expectation of an outcome variable. We depart from previous literature by assuming no knowledge of the causal graph except that latent confounders between the outcome and its ancestors are not present. We first show that the unknown graph problem can be exponentially hard in the parents of the outcome. To remedy this, we adopt an additional additive assumption on the outcome which allows us to solve the problem by casting it as an additive combinatorial linear bandit problem with full-bandit feedback. We propose a novel action-elimination algorithm for this setting, show how to apply this algorithm to the causal bandit problem, provide sample complexity bounds, and empirically validate our findings on a suite of randomly generated causal models, effectively showing that one does not need to explicitly learn the parents of the outcome to identify the best intervention.
The Relativity of Causal Knowledge
Recent advances in artificial intelligence reveal the limits of purely predictive systems and call for a shift toward causal and collaborative reasoning. Drawing inspiration from the revolution of Grothendieck in mathematics, we introduce the relativity of causal knowledge, which posits structural causal models (SCMs) are inherently imperfect, subjective representations embedded within networks of relationships. By leveraging category theory, we arrange SCMs into a functor category and show that their observational and interventional probability measures naturally form convex structures. This result allows us to encode non-intervened SCMs with convex spaces of probability measures. Next, using sheaf theory, we construct the network sheaf and cosheaf of causal knowledge. These structures enable the transfer of causal knowledge across the network while incorporating interventional consistency and the perspective of the subjects, ultimately leading to the formal, mathematical definition of relative causal knowledge.
An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation
The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.
Causal Discovery Under Local Privacy
Differential privacy is a widely adopted framework designed to safeguard the sensitive information of data providers within a data set. It is based on the application of controlled noise at the interface between the server that stores and processes the data, and the data consumers. Local differential privacy is a variant that allows data providers to apply the privatization mechanism themselves on their data individually. Therefore it provides protection also in contexts in which the server, or even the data collector, cannot be trusted. The introduction of noise, however, inevitably affects the utility of the data, particularly by distorting the correlations between individual data components. This distortion can prove detrimental to tasks such as causal discovery. In this paper, we consider various well-known locally differentially private mechanisms and compare the trade-off between the privacy they provide, and the accuracy of the causal structure produced by algorithms for causal learning when applied to data obfuscated by these mechanisms. Our analysis yields valuable insights for selecting appropriate local differentially private protocols for causal discovery tasks. We foresee that our findings will aid researchers and practitioners in conducting locally private causal discovery.
AC-Reason: Towards Theory-Guided Actual Causality Reasoning with Large Language Models
Actual causality (AC), a fundamental aspect of causal reasoning (CR), is responsible for attribution and responsibility assignment in real-world scenarios. However, existing LLM-based methods lack grounding in formal AC theory, resulting in limited interpretability. Therefore, we propose AC-Reason, a semi-formal reasoning framework that identifies causally relevant events within an AC scenario, infers the values of their formal causal factors (e.g., sufficiency, necessity, and normality), and answers AC queries via a theory-guided algorithm with explanations. While AC-Reason does not explicitly construct a causal graph, it operates over variables in the underlying causal structure to support principled reasoning. To enable comprehensive evaluation, we introduce AC-Bench, a new benchmark built upon and substantially extending Big-Bench Hard Causal Judgment (BBH-CJ). AC-Bench comprises ~1K carefully annotated samples, each with detailed reasoning steps and focuses solely on actual causation. The case study shows that synthesized samples in AC-Bench present greater challenges for LLMs. Extensive experiments on BBH-CJ and AC-Bench show that AC-Reason consistently improves LLM performance over baselines. On BBH-CJ, all tested LLMs surpass the average human rater accuracy of 69.60%, with GPT-4 + AC-Reason achieving 75.04%. On AC-Bench, GPT-4 + AC-Reason again achieves the highest accuracy of 71.82%. AC-Bench further enables fine-grained analysis of reasoning faithfulness, revealing that only Qwen-2.5-72B-Instruct, Claude-3.5-Sonnet, and GPT-4o exhibit faithful reasoning, whereas GPT-4 tends to exploit shortcuts. Finally, our ablation study proves that integrating AC theory into LLMs is highly effective, with the proposed algorithm contributing the most significant performance gains.
New metrics and search algorithms for weighted causal DAGs
Recovering causal relationships from data is an important problem. Using observational data, one can typically only recover causal graphs up to a Markov equivalence class and additional assumptions or interventional data are needed for complete recovery. In this work, under some standard assumptions, we study causal graph discovery via adaptive interventions with node-dependent interventional costs. For this setting, we show that no algorithm can achieve an approximation guarantee that is asymptotically better than linear in the number of vertices with respect to the verification number; a well-established benchmark for adaptive search algorithms. Motivated by this negative result, we define a new benchmark that captures the worst-case interventional cost for any search algorithm. Furthermore, with respect to this new benchmark, we provide adaptive search algorithms that achieve logarithmic approximations under various settings: atomic, bounded size interventions and generalized cost objectives.
Teaching Transformers Causal Reasoning through Axiomatic Training
For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since interventional data is costly to generate, we study to what extent an agent can learn causal reasoning from passive data. Specifically, we consider an axiomatic training setup where an agent learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the agent would learn to generalize from the axiom demonstrations to new scenarios. For example, if a transformer model is trained on demonstrations of the causal transitivity axiom over small graphs, would it generalize to applying the transitivity axiom over large graphs? Our results, based on a novel axiomatic training scheme, indicate that such generalization is possible. We consider the task of inferring whether a variable causes another variable, given a causal graph structure. We find that a 67 million parameter transformer model, when trained on linear causal chains (along with some noisy variations) can generalize well to new kinds of graphs, including longer causal chains, causal chains with reversed order, and graphs with branching; even when it is not explicitly trained for such settings. Our model performs at par (or even better) than many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new paradigm of learning causal reasoning from passive data that can be used to learn arbitrary axioms, as long as sufficient demonstrations can be generated.
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data. One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability. A recent breakthrough explores identifiability by leveraging the change of causal influences among latent causal variables across multiple environments liu2022identifying. However, this progress rests on the assumption that the causal relationships among latent causal variables adhere strictly to linear Gaussian models. In this paper, we extend the scope of latent causal models to involve nonlinear causal relationships, represented by polynomial models, and general noise distributions conforming to the exponential family. Additionally, we investigate the necessity of imposing changes on all causal parameters and present partial identifiability results when part of them remains unchanged. Further, we propose a novel empirical estimation method, grounded in our theoretical finding, that enables learning consistent latent causal representations. Our experimental results, obtained from both synthetic and real-world data, validate our theoretical contributions concerning identifiability and consistency.
Causal Regime Detection in Energy Markets With Augmented Time Series Structural Causal Models
Energy markets exhibit complex causal relationships between weather patterns, generation technologies, and price formation, with regime changes occurring continuously rather than at discrete break points. Current approaches model electricity prices without explicit causal interpretation or counterfactual reasoning capabilities. We introduce Augmented Time Series Causal Models (ATSCM) for energy markets, extending counterfactual reasoning frameworks to multivariate temporal data with learned causal structure. Our approach models energy systems through interpretable factors (weather, generation mix, demand patterns), rich grid dynamics, and observable market variables. We integrate neural causal discovery to learn time-varying causal graphs without requiring ground truth DAGs. Applied to real-world electricity price data, ATSCM enables novel counterfactual queries such as "What would prices be under different renewable generation scenarios?".
A Unified Experiment Design Approach for Cyclic and Acyclic Causal Models
We study experiment design for unique identification of the causal graph of a simple SCM, where the graph may contain cycles. The presence of cycles in the structure introduces major challenges for experiment design as, unlike acyclic graphs, learning the skeleton of causal graphs with cycles may not be possible from merely the observational distribution. Furthermore, intervening on a variable in such graphs does not necessarily lead to orienting all the edges incident to it. In this paper, we propose an experiment design approach that can learn both cyclic and acyclic graphs and hence, unifies the task of experiment design for both types of graphs. We provide a lower bound on the number of experiments required to guarantee the unique identification of the causal graph in the worst case, showing that the proposed approach is order-optimal in terms of the number of experiments up to an additive logarithmic term. Moreover, we extend our result to the setting where the size of each experiment is bounded by a constant. For this case, we show that our approach is optimal in terms of the size of the largest experiment required for uniquely identifying the causal graph in the worst case.
Modelling Major Disease Outbreaks in the 21st Century: A Causal Approach
Epidemiologists aiming to model the dynamics of global events face a significant challenge in identifying the factors linked with anomalies such as disease outbreaks. In this paper, we present a novel method for identifying the most important development sectors sensitive to disease outbreaks by using global development indicators as markers. We use statistical methods to assess the causative linkages between these indicators and disease outbreaks, as well as to find the most often ranked indicators. We used data imputation techniques in addition to statistical analysis to convert raw real-world data sets into meaningful data for causal inference. The application of various algorithms for the detection of causal linkages between the indicators is the subject of this research. Despite the fact that disparities in governmental policies between countries account for differences in causal linkages, several indicators emerge as important determinants sensitive to disease outbreaks over the world in the 21st Century.
The Magic of IF: Investigating Causal Reasoning Abilities in Large Language Models of Code
Causal reasoning, the ability to identify cause-and-effect relationship, is crucial in human thinking. Although large language models (LLMs) succeed in many NLP tasks, it is still challenging for them to conduct complex causal reasoning like abductive reasoning and counterfactual reasoning. Given the fact that programming code may express causal relations more often and explicitly with conditional statements like ``if``, we want to explore whether Code-LLMs acquire better causal reasoning abilities. Our experiments show that compared to text-only LLMs, Code-LLMs with code prompts are significantly better in causal reasoning. We further intervene on the prompts from different aspects, and discover that the programming structure is crucial in code prompt design, while Code-LLMs are robust towards format perturbations.
Differentiable Causal Computations via Delayed Trace
We investigate causal computations taking sequences of inputs to sequences of outputs where the nth output depends on the first n inputs only. We model these in category theory via a construction taking a Cartesian category C to another category St(C) with a novel trace-like operation called "delayed trace", which misses yanking and dinaturality axioms of the usual trace. The delayed trace operation provides a feedback mechanism in St(C) with an implicit guardedness guarantee. When C is equipped with a Cartesian differential operator, we construct a differential operator for St(C) using an abstract version of backpropagation through time, a technique from machine learning based on unrolling of functions. This obtains a swath of properties for backpropagation through time, including a chain rule and Schwartz theorem. Our differential operator is also able to compute the derivative of a stateful network without requiring the network to be unrolled.
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Most existing causal discovery methods rely on the assumption of no latent confounders, limiting their applicability in solving real-life problems. In this paper, we introduce a novel, versatile framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network (for instance, they can be effects of observed variables), based on rank information of covariance matrix over observed variables. We start by investigating the efficacy of rank in comparison to conditional independence and, theoretically, establish necessary and sufficient conditions for the identifiability of certain latent structural patterns. Furthermore, we develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones. We also show that, under certain graphical conditions, RLCD correctly identifies the Markov Equivalence Class of the whole latent causal graph asymptotically. Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
Hierarchical Graph Neural Networks for Causal Discovery and Root Cause Localization
In this paper, we propose REASON, a novel framework that enables the automatic discovery of both intra-level (i.e., within-network) and inter-level (i.e., across-network) causal relationships for root cause localization. REASON consists of Topological Causal Discovery and Individual Causal Discovery. The Topological Causal Discovery component aims to model the fault propagation in order to trace back to the root causes. To achieve this, we propose novel hierarchical graph neural networks to construct interdependent causal networks by modeling both intra-level and inter-level non-linear causal relations. Based on the learned interdependent causal networks, we then leverage random walks with restarts to model the network propagation of a system fault. The Individual Causal Discovery component focuses on capturing abrupt change patterns of a single system entity. This component examines the temporal patterns of each entity's metric data (i.e., time series), and estimates its likelihood of being a root cause based on the Extreme Value theory. Combining the topological and individual causal scores, the top K system entities are identified as root causes. Extensive experiments on three real-world datasets with case studies demonstrate the effectiveness and superiority of the proposed framework.
A study of a deterministic model for meningitis epidemic
A compartmental deterministic model that allows (1) immunity from two stages of infection and carriage, and (2) disease induced death, is used in studying the dynamics of meningitis epidemic process in a closed population. It allows for difference in the transmission rate of infection to a susceptible by a carrier and an infective. It is generalized to allow a proportion ({\phi}) of those susceptibles infected to progress directly to infectives in stage I. Both models are used in this study. The threshold conditions for the spread of carrier and infectives in stage I are derived for the two models. Sensitivity analysis is performed on the reproductive number derived from the next generation matrix. The case-carrier ratio profile for various parameters and threshold values are shown. So also are the graphs of the total number ever infected as influenced by {\epsilon} and {\phi}. The infection transmission rate (eta), the odds in favor of a carrier, over an infective, in transmitting an infection to a susceptible ({\epsilon}) and the carrier conversion rate ({\phi}) to an infective in stage I, are identified as key parameters that should be subject of attention for any control intervention strategy. The case-carrier ratio profiles provide evidence of a critical case-carrier ratio attained before the number of reported cases grows to an epidemic level. They also provide visual evidence of epidemiological context, in this case, epidemic incidence (in later part of dry season) and endemic incidence (during rainy season). Results from total proportion ever infected suggest that the model, in which {\phi}=0 obtained, can adequately represent, in essence, the generalized model for this study.
On the Relationship Between Explanation and Prediction: A Causal View
Being able to provide explanations for a model's decision has become a central requirement for the development, deployment, and adoption of machine learning models. However, we are yet to understand what explanation methods can and cannot do. How do upstream factors such as data, model prediction, hyperparameters, and random initialization influence downstream explanations? While previous work raised concerns that explanations (E) may have little relationship with the prediction (Y), there is a lack of conclusive study to quantify this relationship. Our work borrows tools from causal inference to systematically assay this relationship. More specifically, we study the relationship between E and Y by measuring the treatment effect when intervening on their causal ancestors, i.e., on hyperparameters and inputs used to generate saliency-based Es or Ys. Our results suggest that the relationships between E and Y is far from ideal. In fact, the gap between 'ideal' case only increase in higher-performing models -- models that are likely to be deployed. Our work is a promising first step towards providing a quantitative measure of the relationship between E and Y, which could also inform the future development of methods for E with a quantitative metric.
Sequential Causal Normal Form Games: Theory, Computation, and Strategic Signaling
Can classical game-theoretic frameworks be extended to capture the bounded rationality and causal reasoning of AI agents? We investigate this question by extending Causal Normal Form Games (CNFGs) to sequential settings, introducing Sequential Causal Multi-Agent Systems (S-CMAS) that incorporate Pearl's Causal Hierarchy across leader-follower interactions. While theoretically elegant -- we prove PSPACE-completeness, develop equilibrium refinements, and establish connections to signaling theory -- our comprehensive empirical investigation reveals a critical limitation: S-CNE provides zero welfare improvement over classical Stackelberg equilibrium across all tested scenarios. Through 50+ Monte Carlo simulations and hand-crafted synthetic examples, we demonstrate that backward induction with rational best-response eliminates any strategic advantage from causal layer distinctions. We construct a theoretical example illustrating conditions where benefits could emerge (ε-rational satisficing followers), though implementation confirms that even relaxed rationality assumptions prove insufficient when good instincts align with optimal play. This negative result provides valuable insight: classical game-theoretic extensions grounded in rational choice are fundamentally incompatible with causal reasoning advantages, motivating new theoretical frameworks beyond standard Nash equilibrium for agentic AI.
Sharp seasonal threshold property for cooperative population dynamics with concave nonlinearities
We consider a biological population whose environment varies periodically in time, exhibiting two very different "seasons" : one is favorable and the other one is unfavorable. For monotone differential models with concave nonlinearities, we address the following question: the system's period being fixed, under what conditions does there exist a critical duration for the unfavorable season? By "critical duration" we mean that above some threshold, the population cannot sustain and extincts, while below this threshold, the system converges to a unique periodic and positive solution. We term this a "sharp seasonal threshold property" (SSTP, for short). Building upon a previous result, we obtain sufficient conditions for SSTP in any dimension and apply our criterion to a two-dimensional model featuring juvenile and adult populations of insects.
Asymmetric Graph Error Control with Low Complexity in Causal Bandits
In this paper, the causal bandit problem is investigated, in which the objective is to select an optimal sequence of interventions on nodes in a causal graph. It is assumed that the graph is governed by linear structural equations; it is further assumed that both the causal topology and the distribution of interventions are unknown. By exploiting the causal relationships between the nodes whose signals contribute to the reward, interventions are optimized. First, based on the difference between the two types of graph identification errors (false positives and negatives), a causal graph learning method is proposed, which strongly reduces sample complexity relative to the prior art by learning sub-graphs. Under the assumption of Gaussian exogenous inputs and minimum-mean squared error weight estimation, a new uncertainty bound tailored to the causal bandit problem is derived. This uncertainty bound drives an upper confidence bound based intervention selection to optimize the reward. To cope with non-stationary bandits, a sub-graph change detection mechanism is proposed, with high sample efficiency. Numerical results compare the new methodology to existing schemes and show a substantial performance improvement in both stationary and non-stationary settings. Compared to existing approaches, the proposed scheme takes 67% fewer samples to learn the causal structure and achieves an average reward gain of 85%.
Independent-Set Design of Experiments for Estimating Treatment and Spillover Effects under Network Interference
Interference is ubiquitous when conducting causal experiments over networks. Except for certain network structures, causal inference on the network in the presence of interference is difficult due to the entanglement between the treatment assignments and the interference levels. In this article, we conduct causal inference under interference on an observed, sparse but connected network, and we propose a novel design of experiments based on an independent set. Compared to conventional designs, the independent-set design focuses on an independent subset of data and controls their interference exposures through the assignments to the rest (auxiliary set). We provide a lower bound on the size of the independent set from a greedy algorithm , and justify the theoretical performance of estimators under the proposed design. Our approach is capable of estimating both spillover effects and treatment effects. We justify its superiority over conventional methods and illustrate the empirical performance through simulations.
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
DAPrompt: Deterministic Assumption Prompt Learning for Event Causality Identification
Event Causality Identification (ECI) aims at determining whether there is a causal relation between two event mentions. Conventional prompt learning designs a prompt template to first predict an answer word and then maps it to the final decision. Unlike conventional prompts, we argue that predicting an answer word may not be a necessary prerequisite for the ECI task. Instead, we can first make a deterministic assumption on the existence of causal relation between two events and then evaluate its rationality to either accept or reject the assumption. The design motivation is to try the most utilization of the encyclopedia-like knowledge embedded in a pre-trained language model. In light of such considerations, we propose a deterministic assumption prompt learning model, called DAPrompt, for the ECI task. In particular, we design a simple deterministic assumption template concatenating with the input event pair, which includes two masks as predicted events' tokens. We use the probabilities of predicted events to evaluate the assumption rationality for the final event causality decision. Experiments on the EventStoryLine corpus and Causal-TimeBank corpus validate our design objective in terms of significant performance improvements over the state-of-the-art algorithms.
The Non-Linear Representation Dilemma: Is Causal Abstraction Enough for Mechanistic Interpretability?
The concept of causal abstraction got recently popularised to demystify the opaque decision-making processes of machine learning models; in short, a neural network can be abstracted as a higher-level algorithm if there exists a function which allows us to map between them. Notably, most interpretability papers implement these maps as linear functions, motivated by the linear representation hypothesis: the idea that features are encoded linearly in a model's representations. However, this linearity constraint is not required by the definition of causal abstraction. In this work, we critically examine the concept of causal abstraction by considering arbitrarily powerful alignment maps. In particular, we prove that under reasonable assumptions, any neural network can be mapped to any algorithm, rendering this unrestricted notion of causal abstraction trivial and uninformative. We complement these theoretical findings with empirical evidence, demonstrating that it is possible to perfectly map models to algorithms even when these models are incapable of solving the actual task; e.g., on an experiment using randomly initialised language models, our alignment maps reach 100% interchange-intervention accuracy on the indirect object identification task. This raises the non-linear representation dilemma: if we lift the linearity constraint imposed to alignment maps in causal abstraction analyses, we are left with no principled way to balance the inherent trade-off between these maps' complexity and accuracy. Together, these results suggest an answer to our title's question: causal abstraction is not enough for mechanistic interpretability, as it becomes vacuous without assumptions about how models encode information. Studying the connection between this information-encoding assumption and causal abstraction should lead to exciting future work.
Causal Inference with Conditional Front-Door Adjustment and Identifiable Variational Autoencoder
An essential and challenging problem in causal inference is causal effect estimation from observational data. The problem becomes more difficult with the presence of unobserved confounding variables. The front-door adjustment is a practical approach for dealing with unobserved confounding variables. However, the restriction for the standard front-door adjustment is difficult to satisfy in practice. In this paper, we relax some of the restrictions by proposing the concept of conditional front-door (CFD) adjustment and develop the theorem that guarantees the causal effect identifiability of CFD adjustment. Furthermore, as it is often impossible for a CFD variable to be given in practice, it is desirable to learn it from data. By leveraging the ability of deep generative models, we propose CFDiVAE to learn the representation of the CFD adjustment variable directly from data with the identifiable Variational AutoEncoder and formally prove the model identifiability. Extensive experiments on synthetic datasets validate the effectiveness of CFDiVAE and its superiority over existing methods. The experiments also show that the performance of CFDiVAE is less sensitive to the causal strength of unobserved confounding variables. We further apply CFDiVAE to a real-world dataset to demonstrate its potential application.
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
It is commonplace to encounter heterogeneous or nonstationary data, of which the underlying generating process changes across domains or over time. Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper, we develop a framework for causal discovery from such data, called Constraint-based causal Discovery from heterogeneous/NOnstationary Data (CD-NOD), to find causal skeleton and directions and estimate the properties of mechanism changes. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a method to determine causal orientations by making use of independent changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. After learning the causal structure, next, we investigate how to efficiently estimate the "driving force" of the nonstationarity of a causal mechanism. That is, we aim to extract from data a low-dimensional representation of changes. The proposed methods are nonparametric, with no hard restrictions on data distributions and causal mechanisms, and do not rely on window segmentation. Furthermore, we find that data heterogeneity benefits causal structure identification even with particular types of confounders. Finally, we show the connection between heterogeneity/nonstationarity and soft intervention in causal discovery. Experimental results on various synthetic and real-world data sets (task-fMRI and stock market data) are presented to demonstrate the efficacy of the proposed methods.
Causally Fair Node Classification on Non-IID Graph Data
Fair machine learning seeks to identify and mitigate biases in predictions against unfavorable populations characterized by demographic attributes, such as race and gender. Recently, a few works have extended fairness to graph data, such as social networks, but most of them neglect the causal relationships among data instances. This paper addresses the prevalent challenge in fairness-aware ML algorithms, which typically assume Independent and Identically Distributed (IID) data. We tackle the overlooked domain of non-IID, graph-based settings where data instances are interconnected, influencing the outcomes of fairness interventions. We base our research on the Network Structural Causal Model (NSCM) framework and posit two main assumptions: Decomposability and Graph Independence, which enable the computation of interventional distributions in non-IID settings using the do-calculus. Based on that, we develop the Message Passing Variational Autoencoder for Causal Inference (MPVA) to compute interventional distributions and facilitate causally fair node classification through estimated interventional distributions. Empirical evaluations on semi-synthetic and real-world datasets demonstrate that MPVA outperforms conventional methods by effectively approximating interventional distributions and mitigating bias. The implications of our findings underscore the potential of causality-based fairness in complex ML applications, setting the stage for further research into relaxing the initial assumptions to enhance model fairness.
Federated Causal Discovery from Heterogeneous Data
Conventional causal discovery methods rely on centralized data, which is inconsistent with the decentralized nature of data in many real-world situations. This discrepancy has motivated the development of federated causal discovery (FCD) approaches. However, existing FCD methods may be limited by their potentially restrictive assumptions of identifiable functional causal models or homogeneous data distributions, narrowing their applicability in diverse scenarios. In this paper, we propose a novel FCD method attempting to accommodate arbitrary causal models and heterogeneous data. We first utilize a surrogate variable corresponding to the client index to account for the data heterogeneity across different clients. We then develop a federated conditional independence test (FCIT) for causal skeleton discovery and establish a federated independent change principle (FICP) to determine causal directions. These approaches involve constructing summary statistics as a proxy of the raw data to protect data privacy. Owing to the nonparametric properties, FCIT and FICP make no assumption about particular functional forms, thereby facilitating the handling of arbitrary causal models. We conduct extensive experiments on synthetic and real datasets to show the efficacy of our method. The code is available at https://github.com/lokali/FedCDH.git.
CLEAR: Can Language Models Really Understand Causal Graphs?
Causal reasoning is a cornerstone of how humans interpret the world. To model and reason about causality, causal graphs offer a concise yet effective solution. Given the impressive advancements in language models, a crucial question arises: can they really understand causal graphs? To this end, we pioneer an investigation into language models' understanding of causal graphs. Specifically, we develop a framework to define causal graph understanding, by assessing language models' behaviors through four practical criteria derived from diverse disciplines (e.g., philosophy and psychology). We then develop CLEAR, a novel benchmark that defines three complexity levels and encompasses 20 causal graph-based tasks across these levels. Finally, based on our framework and benchmark, we conduct extensive experiments on six leading language models and summarize five empirical findings. Our results indicate that while language models demonstrate a preliminary understanding of causal graphs, significant potential for improvement remains. Our project website is at https://github.com/OpenCausaLab/CLEAR.
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression
The origin of adversarial examples is still inexplicable in research fields, and it arouses arguments from various viewpoints, albeit comprehensive investigations. In this paper, we propose a way of delving into the unexpected vulnerability in adversarially trained networks from a causal perspective, namely adversarial instrumental variable (IV) regression. By deploying it, we estimate the causal relation of adversarial prediction under an unbiased environment dissociated from unknown confounders. Our approach aims to demystify inherent causal features on adversarial examples by leveraging a zero-sum optimization game between a casual feature estimator (i.e., hypothesis model) and worst-case counterfactuals (i.e., test function) disturbing to find causal features. Through extensive analyses, we demonstrate that the estimated causal features are highly related to the correct prediction for adversarial robustness, and the counterfactuals exhibit extreme features significantly deviating from the correct prediction. In addition, we present how to effectively inoculate CAusal FEatures (CAFE) into defense networks for improving adversarial robustness.
Algorithmic Writing Assistance on Jobseekers' Resumes Increases Hires
There is a strong association between the quality of the writing in a resume for new labor market entrants and whether those entrants are ultimately hired. We show that this relationship is, at least partially, causal: a field experiment in an online labor market was conducted with nearly half a million jobseekers in which a treated group received algorithmic writing assistance. Treated jobseekers experienced an 8% increase in the probability of getting hired. Contrary to concerns that the assistance is taking away a valuable signal, we find no evidence that employers were less satisfied. We present a model in which better writing is not a signal of ability but helps employers ascertain ability, which rationalizes our findings.
Counterfactual Fairness in Mortgage Lending via Matching and Randomization
Unfairness in mortgage lending has created generational inequality among racial and ethnic groups in the US. Many studies address this problem, but most existing work focuses on correlation-based techniques. In our work, we use the framework of counterfactual fairness to train fair machine learning models. We propose a new causal graph for the variables available in the Home Mortgage Disclosure Act (HMDA) data. We use a matching-based approach instead of the latent variable modeling approach, because the former approach does not rely on any modeling assumptions. Furthermore, matching provides us with counterfactual pairs in which the race variable is isolated. We first demonstrate the unfairness in mortgage approval and interest rates between African-American and non-Hispanic White sub-populations. Then, we show that having balanced data using matching does not guarantee perfect counterfactual fairness of the machine learning models.
Counterfactual Analysis in Dynamic Latent State Models
We provide an optimization-based framework to perform counterfactual analysis in a dynamic model with hidden states. Our framework is grounded in the ``abduction, action, and prediction'' approach to answer counterfactual queries and handles two key challenges where (1) the states are hidden and (2) the model is dynamic. Recognizing the lack of knowledge on the underlying causal mechanism and the possibility of infinitely many such mechanisms, we optimize over this space and compute upper and lower bounds on the counterfactual quantity of interest. Our work brings together ideas from causality, state-space models, simulation, and optimization, and we apply it on a breast cancer case study. To the best of our knowledge, we are the first to compute lower and upper bounds on a counterfactual query in a dynamic latent-state model.
Towards Automated Causal Discovery: a case study on 5G telecommunication data
We introduce the concept of Automated Causal Discovery (AutoCD), defined as any system that aims to fully automate the application of causal discovery and causal reasoning methods. AutoCD's goal is to deliver all causal information that an expert human analyst would and answer a user's causal queries. We describe the architecture of such a platform, and illustrate its performance on synthetic data sets. As a case study, we apply it on temporal telecommunication data. The system is general and can be applied to a plethora of causal discovery problems.
Large-Scale Targeted Cause Discovery with Data-Driven Learning
We propose a novel machine learning approach for inferring causal variables of a target variable from observations. Our focus is on directly inferring a set of causal factors without requiring full causal graph reconstruction, which is computationally challenging in large-scale systems. The identified causal set consists of all potential regulators of the target variable under experimental settings, enabling efficient regulation when intervention costs and feasibility vary across variables. To achieve this, we train a neural network using supervised learning on simulated data to infer causality. By employing a local-inference strategy, our approach scales with linear complexity in the number of variables, efficiently scaling up to thousands of variables. Empirical results demonstrate superior performance in identifying causal relationships within large-scale gene regulatory networks, outperforming existing methods that emphasize full-graph discovery. We validate our model's generalization capability across out-of-distribution graph structures and generating mechanisms, including gene regulatory networks of E. coli and the human K562 cell line. Implementation codes are available at https://github.com/snu-mllab/Targeted-Cause-Discovery.
DSC-IITISM at FinCausal 2021: Combining POS tagging with Attention-based Contextual Representations for Identifying Causal Relationships in Financial Documents
Causality detection draws plenty of attention in the field of Natural Language Processing and linguistics research. It has essential applications in information retrieval, event prediction, question answering, financial analysis, and market research. In this study, we explore several methods to identify and extract cause-effect pairs in financial documents using transformers. For this purpose, we propose an approach that combines POS tagging with the BIO scheme, which can be integrated with modern transformer models to address this challenge of identifying causality in a given text. Our best methodology achieves an F1-Score of 0.9551, and an Exact Match Score of 0.8777 on the blind test in the FinCausal-2021 Shared Task at the FinCausal 2021 Workshop.
Selective Machine Learning of the Average Treatment Effect with an Invalid Instrumental Variable
Instrumental variable methods have been widely used to identify causal effects in the presence of unmeasured confounding. A key identification condition known as the exclusion restriction states that the instrument cannot have a direct effect on the outcome which is not mediated by the exposure in view. In the health and social sciences, such an assumption is often not credible. To address this concern, we consider identification conditions of the population average treatment effect with an invalid instrumental variable which does not satisfy the exclusion restriction, and derive the efficient influence function targeting the identifying functional under a nonparametric observed data model. We propose a novel multiply robust locally efficient estimator of the average treatment effect that is consistent in the union of multiple parametric nuisance models, as well as a multiply debiased machine learning estimator for which the nuisance parameters are estimated using generic machine learning methods, that effectively exploit various forms of linear or nonlinear structured sparsity in the nuisance parameter space. When one cannot be confident that any of these machine learners is consistent at sufficiently fast rates to ensure n-consistency for the average treatment effect, we introduce a new criteria for selective machine learning which leverages the multiple robustness property in order to ensure small bias. The proposed methods are illustrated through extensive simulations and a data analysis evaluating the causal effect of 401(k) participation on savings.
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such underspecified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.
Differentiable Causal Discovery Under Latent Interventions
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown. However, previous work assumes that the correspondence between samples and interventions is known, which is often unrealistic. We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system, i.e., interventions are entirely latent. We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture (under a Dirichlet process prior) of intervention structural causal models. Experiments with synthetic and real data show that our approach and its semi-supervised variant are able to discover causal relations in this challenging scenario.
CausalCite: A Causal Formulation of Paper Citations
Citation count of a paper is a commonly used proxy for evaluating the significance of a paper in the scientific community. Yet citation measures are widely criticized for failing to accurately reflect the true impact of a paper. Thus, we propose CausalCite, a new way to measure the significance of a paper by assessing the causal impact of the paper on its follow-up papers. CausalCite is based on a novel causal inference method, TextMatch, which adapts the traditional matching framework to high-dimensional text embeddings. TextMatch encodes each paper using text embeddings from large language models (LLMs), extracts similar samples by cosine similarity, and synthesizes a counterfactual sample as the weighted average of similar papers according to their similarity values. We demonstrate the effectiveness of CausalCite on various criteria, such as high correlation with paper impact as reported by scientific experts on a previous dataset of 1K papers, (test-of-time) awards for past papers, and its stability across various subfields of AI. We also provide a set of findings that can serve as suggested ways for future researchers to use our metric for a better understanding of the quality of a paper. Our code is available at https://github.com/causalNLP/causal-cite.
Quantum Time: a novel resource for quantum information
Time in relativity theory has a status different from that adopted by standard quantum mechanics, where time is considered as a parameter measured with reference to an external absolute Newtonian frame. This status strongly restricts its role in the dynamics of systems and hinders any formulation to merge quantum mechanics with general relativity, specifically when considering quantum gravity. To overcome those limitations, several authors tried to construct an operator which is conjugate to the Hamiltonian of quantum systems implementing some essential features of the relativistic time. These formulations use the concept of internal or intrinsic time instead of the universal coordinate time used in textbooks. Furthermore, recently it is remarked that the consideration of time with relativistic features could enhance the analysis techniques in quantum information processing and have an impact on its status in causal orders and causal structures of quantum information. The role of clocks, their accuracy and stability has become an important issue in quantum information processing. This article present a substantiative review of recent works which reflect the possibility of utilizing quantum time, measured by quantum clock devised according to Page-Wootters scheme, to stand as a resource for quantum information processing.
Causal-Copilot: An Autonomous Causal Analysis Agent
Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis. A live interactive demo of Causal-Copilot is available at https://causalcopilot.com/.
Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice
Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.
e-CARE: a New Dataset for Exploring Explainable Causal Reasoning
Understanding causality has vital importance for various Natural Language Processing (NLP) applications. Beyond the labeled instances, conceptual explanations of the causality can provide deep understanding of the causal facts to facilitate the causal reasoning process. However, such explanation information still remains absent in existing causal reasoning resources. In this paper, we fill this gap by presenting a human-annotated explainable CAusal REasoning dataset (e-CARE), which contains over 21K causal reasoning questions, together with natural language formed explanations of the causal questions. Experimental results show that generating valid explanations for causal facts still remains especially challenging for the state-of-the-art models, and the explanation information can be helpful for promoting the accuracy and stability of causal reasoning models.
Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP
The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other. While this idea has led to fruitful developments in the field of causal inference, it is not widely-known in the NLP community. In this work, we argue that the causal direction of the data collection process bears nontrivial implications that can explain a number of published NLP findings, such as differences in semi-supervised learning (SSL) and domain adaptation (DA) performance across different settings. We categorize common NLP tasks according to their causal direction and empirically assay the validity of the ICM principle for text data using minimum description length. We conduct an extensive meta-analysis of over 100 published SSL and 30 DA studies, and find that the results are consistent with our expectations based on causal insights. This work presents the first attempt to analyze the ICM principle in NLP, and provides constructive suggestions for future modeling choices. Code available at https://github.com/zhijing-jin/icm4nlp
Amortized Inference for Causal Structure Learning
Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
Causal Information Prioritization for Efficient Reinforcement Learning
Current Reinforcement Learning (RL) methods often suffer from sample-inefficiency, resulting from blind exploration strategies that neglect causal relationships among states, actions, and rewards. Although recent causal approaches aim to address this problem, they lack grounded modeling of reward-guided causal understanding of states and actions for goal-orientation, thus impairing learning efficiency. To tackle this issue, we propose a novel method named Causal Information Prioritization (CIP) that improves sample efficiency by leveraging factored MDPs to infer causal relationships between different dimensions of states and actions with respect to rewards, enabling the prioritization of causal information. Specifically, CIP identifies and leverages causal relationships between states and rewards to execute counterfactual data augmentation to prioritize high-impact state features under the causal understanding of the environments. Moreover, CIP integrates a causality-aware empowerment learning objective, which significantly enhances the agent's execution of reward-guided actions for more efficient exploration in complex environments. To fully assess the effectiveness of CIP, we conduct extensive experiments across 39 tasks in 5 diverse continuous control environments, encompassing both locomotion and manipulation skills learning with pixel-based and sparse reward settings. Experimental results demonstrate that CIP consistently outperforms existing RL methods across a wide range of scenarios.
Inference in Non-stationary High-Dimensional VARs
In this paper we construct an inferential procedure for Granger causality in high-dimensional non-stationary vector autoregressive (VAR) models. Our method does not require knowledge of the order of integration of the time series under consideration. We augment the VAR with at least as many lags as the suspected maximum order of integration, an approach which has been proven to be robust against the presence of unit roots in low dimensions. We prove that we can restrict the augmentation to only the variables of interest for the testing, thereby making the approach suitable for high dimensions. We combine this lag augmentation with a post-double-selection procedure in which a set of initial penalized regressions is performed to select the relevant variables for both the Granger causing and caused variables. We then establish uniform asymptotic normality of a second-stage regression involving only the selected variables. Finite sample simulations show good performance, an application to investigate the (predictive) causes and effects of economic uncertainty illustrates the need to allow for unknown orders of integration.
IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model
In this paper, we describe our shared task submissions for Subtask 2 in CASE-2022, Event Causality Identification with Casual News Corpus. The challenge focused on the automatic detection of all cause-effect-signal spans present in the sentence from news-media. We detect cause-effect-signal spans in a sentence using T5 -- a pre-trained autoregressive language model. We iteratively identify all cause-effect-signal span triplets, always conditioning the prediction of the next triplet on the previously predicted ones. To predict the triplet itself, we consider different causal relationships such as causerightarroweffectrightarrowsignal. Each triplet component is generated via a language model conditioned on the sentence, the previous parts of the current triplet, and previously predicted triplets. Despite training on an extremely small dataset of 160 samples, our approach achieved competitive performance, being placed second in the competition. Furthermore, we show that assuming either causerightarroweffect or effectrightarrowcause order achieves similar results.
Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning
Faithful evaluation of language model capabilities is crucial for deriving actionable insights that can inform model development. However, rigorous causal evaluations in this domain face significant methodological challenges, including complex confounding effects and prohibitive computational costs associated with extensive retraining. To tackle these challenges, we propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors. Crucially, these latent factors are identified as causally interrelated after appropriately controlling for the base model as a common confounder. Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks from the Open LLM Leaderboard, we identify a concise three-node linear causal structure that reliably explains the observed performance variations. Further interpretation of this causal structure provides substantial scientific insights beyond simple numerical rankings: specifically, we reveal a clear causal direction starting from general problem-solving capabilities, advancing through instruction-following proficiency, and culminating in mathematical reasoning ability. Our results underscore the essential role of carefully controlling base model variations during evaluation, a step critical to accurately uncovering the underlying causal relationships among latent model capabilities.
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Time-series causal discovery (TSCD) is a fundamental problem of machine learning. However, existing synthetic datasets cannot properly evaluate or predict the algorithms' performance on real data. This study introduces the CausalTime pipeline to generate time-series that highly resemble the real data and with ground truth causal graphs for quantitative performance evaluation. The pipeline starts from real observations in a specific scenario and produces a matching benchmark dataset. Firstly, we harness deep neural networks along with normalizing flow to accurately capture realistic dynamics. Secondly, we extract hypothesized causal graphs by performing importance analysis on the neural network or leveraging prior knowledge. Thirdly, we derive the ground truth causal graphs by splitting the causal model into causal term, residual term, and noise term. Lastly, using the fitted network and the derived causal graph, we generate corresponding versatile time-series proper for algorithm assessment. In the experiments, we validate the fidelity of the generated data through qualitative and quantitative experiments, followed by a benchmarking of existing TSCD algorithms using these generated datasets. CausalTime offers a feasible solution to evaluating TSCD algorithms in real applications and can be generalized to a wide range of fields. For easy use of the proposed approach, we also provide a user-friendly website, hosted on www.causaltime.cc.
Efficient Causal Graph Discovery Using Large Language Models
We propose a novel framework that leverages LLMs for full causal graph discovery. While previous LLM-based methods have used a pairwise query approach, this requires a quadratic number of queries which quickly becomes impractical for larger causal graphs. In contrast, the proposed framework uses a breadth-first search (BFS) approach which allows it to use only a linear number of queries. We also show that the proposed method can easily incorporate observational data when available, to improve performance. In addition to being more time and data-efficient, the proposed framework achieves state-of-the-art results on real-world causal graphs of varying sizes. The results demonstrate the effectiveness and efficiency of the proposed method in discovering causal relationships, showcasing its potential for broad applicability in causal graph discovery tasks across different domains.
Linear Causal Disentanglement via Interventions
Causal disentanglement seeks a representation of data involving latent variables that relate to one another via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct models that cannot be distinguished. Conversely, we show that a single intervention on each latent variable is sufficient for identifiability. Our proof uses a generalization of the RQ decomposition of a matrix that replaces the usual orthogonal and upper triangular conditions with analogues depending on a partial order on the rows of the matrix, with partial order determined by a latent causal model. We corroborate our theoretical results with a method for causal disentanglement that accurately recovers a latent causal model.
Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
Conventional supervised learning methods typically assume i.i.d samples and are found to be sensitive to out-of-distribution (OOD) data. We propose Generative Causal Representation Learning (GCRL) which leverages causality to facilitate knowledge transfer under distribution shifts. While we evaluate the effectiveness of our proposed method in human trajectory prediction models, GCRL can be applied to other domains as well. First, we propose a novel causal model that explains the generative factors in motion forecasting datasets using features that are common across all environments and with features that are specific to each environment. Selection variables are used to determine which parts of the model can be directly transferred to a new environment without fine-tuning. Second, we propose an end-to-end variational learning paradigm to learn the causal mechanisms that generate observations from features. GCRL is supported by strong theoretical results that imply identifiability of the causal model under certain assumptions. Experimental results on synthetic and real-world motion forecasting datasets show the robustness and effectiveness of our proposed method for knowledge transfer under zero-shot and low-shot settings by substantially outperforming the prior motion forecasting models on out-of-distribution prediction. Our code is available at https://github.com/sshirahmad/GCRL.
DAG-aware Transformer for Causal Effect Estimation
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences. While recent advances in machine learning, especially those based on the deep-learning architectures, have shown potential in estimating causal effects, existing approaches often fall short in handling complex causal structures and lack adaptability across various causal scenarios. In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges. The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism, enabling it to accurately model the underlying causal structure. This allows for flexible estimation of both average treatment effects (ATE) and conditional average treatment effects (CATE). Extensive experiments on both synthetic and real-world datasets demonstrate that our approach surpasses existing methods in estimating causal effects across a wide range of scenarios. The flexibility and robustness of our model make it a valuable tool for researchers and practitioners tackling complex causal inference problems.
DoWhy-GCM: An extension of DoWhy for causal inference in graphical causal models
We introduce DoWhy-GCM, an extension of the DoWhy Python library, that leverages graphical causal models. Unlike existing causality libraries, which mainly focus on effect estimation questions, with DoWhy-GCM, users can ask a wide range of additional causal questions, such as identifying the root causes of outliers and distributional changes, causal structure learning, attributing causal influences, and diagnosis of causal structures. To this end, DoWhy-GCM users first model cause-effect relations between variables in a system under study through a graphical causal model, fit the causal mechanisms of variables next, and then ask the causal question. All these steps take only a few lines of code in DoWhy-GCM. The library is available at https://github.com/py-why/dowhy.
Differentiable Causal Discovery For Latent Hierarchical Causal Models
Discovering causal structures with latent variables from observational data is a fundamental challenge in causal discovery. Existing methods often rely on constraint-based, iterative discrete searches, limiting their scalability to large numbers of variables. Moreover, these methods frequently assume linearity or invertibility, restricting their applicability to real-world scenarios. We present new theoretical results on the identifiability of nonlinear latent hierarchical causal models, relaxing previous assumptions in literature about the deterministic nature of latent variables and exogenous noise. Building on these insights, we develop a novel differentiable causal discovery algorithm that efficiently estimates the structure of such models. To the best of our knowledge, this is the first work to propose a differentiable causal discovery method for nonlinear latent hierarchical models. Our approach outperforms existing methods in both accuracy and scalability. We demonstrate its practical utility by learning interpretable hierarchical latent structures from high-dimensional image data and demonstrate its effectiveness on downstream tasks.
Compositional Semantics for Probabilistic Programs with Exact Conditioning
We define a probabilistic programming language for Gaussian random variables with a first-class exact conditioning construct. We give operational, denotational and equational semantics for this language, establishing convenient properties like exchangeability of conditions. Conditioning on equality of continuous random variables is nontrivial, as the exact observation may have probability zero; this is Borel's paradox. Using categorical formulations of conditional probability, we show that the good properties of our language are not particular to Gaussians, but can be derived from universal properties, thus generalizing to wider settings. We define the Cond construction, which internalizes conditioning as a morphism, providing general compositional semantics for probabilistic programming with exact conditioning.
Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation
In real-world scenarios, the application of reinforcement learning is significantly challenged by complex non-stationarity. Most existing methods attempt to model changes in the environment explicitly, often requiring impractical prior knowledge of environments. In this paper, we propose a new perspective, positing that non-stationarity can propagate and accumulate through complex causal relationships during state transitions, thereby compounding its sophistication and affecting policy learning. We believe that this challenge can be more effectively addressed by implicitly tracing the causal origin of non-stationarity. To this end, we introduce the Causal-Origin REPresentation (COREP) algorithm. COREP primarily employs a guided updating mechanism to learn a stable graph representation for the state, termed as causal-origin representation. By leveraging this representation, the learned policy exhibits impressive resilience to non-stationarity. We supplement our approach with a theoretical analysis grounded in the causal interpretation for non-stationary reinforcement learning, advocating for the validity of the causal-origin representation. Experimental results further demonstrate the superior performance of COREP over existing methods in tackling non-stationarity problems.
DAGSurv: Directed Acyclic Graph Based Survival Analysis Using Deep Neural Networks
Causal structures for observational survival data provide crucial information regarding the relationships between covariates and time-to-event. We derive motivation from the information theoretic source coding argument, and show that incorporating the knowledge of the directed acyclic graph (DAG) can be beneficial if suitable source encoders are employed. As a possible source encoder in this context, we derive a variational inference based conditional variational autoencoder for causal structured survival prediction, which we refer to as DAGSurv. We illustrate the performance of DAGSurv on low and high-dimensional synthetic datasets, and real-world datasets such as METABRIC and GBSG. We demonstrate that the proposed method outperforms other survival analysis baselines such as Cox Proportional Hazards, DeepSurv and Deephit, which are oblivious to the underlying causal relationship between data entities.
On Measuring Intrinsic Causal Attributions in Deep Neural Networks
Quantifying the causal influence of input features within neural networks has become a topic of increasing interest. Existing approaches typically assess direct, indirect, and total causal effects. This work treats NNs as structural causal models (SCMs) and extends our focus to include intrinsic causal contributions (ICC). We propose an identifiable generative post-hoc framework for quantifying ICC. We also draw a relationship between ICC and Sobol' indices. Our experiments on synthetic and real-world datasets demonstrate that ICC generates more intuitive and reliable explanations compared to existing global explanation techniques.
Offline Reinforcement Learning with Causal Structured World Models
Model-based methods have recently shown promising for offline reinforcement learning (RL), aiming to learn good policies from historical data without interacting with the environment. Previous model-based offline RL methods learn fully connected nets as world-models that map the states and actions to the next-step states. However, it is sensible that a world-model should adhere to the underlying causal effect such that it will support learning an effective policy generalizing well in unseen states. In this paper, We first provide theoretical results that causal world-models can outperform plain world-models for offline RL by incorporating the causal structure into the generalization error bound. We then propose a practical algorithm, oFfline mOdel-based reinforcement learning with CaUsal Structure (FOCUS), to illustrate the feasibility of learning and leveraging causal structure in offline RL. Experimental results on two benchmarks show that FOCUS reconstructs the underlying causal structure accurately and robustly. Consequently, it performs better than the plain model-based offline RL algorithms and other causal model-based RL algorithms.
Interventional Causal Representation Learning
Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observational data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect do interventions. Moreover, we can achieve block affine identification, namely the estimated latent factors are only entangled with a few other latents if we have access to data from imperfect interventions. These results highlight the unique power of interventional data in causal representation learning; they can enable provable identification of latent factors without any assumptions about their distributions or dependency structure.
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
Observational studies require adjustment for confounding factors that are correlated with both the treatment and outcome. In the setting where the observed variables are tabular quantities such as average income in a neighborhood, tools have been developed for addressing such confounding. However, in many parts of the developing world, features about local communities may be scarce. In this context, satellite imagery can play an important role, serving as a proxy for the confounding variables otherwise unobserved. In this paper, we study confounder adjustment in this non-tabular setting, where patterns or objects found in satellite images contribute to the confounder bias. Using the evaluation of anti-poverty aid programs in Africa as our running example, we formalize the challenge of performing causal adjustment with such unstructured data -- what conditions are sufficient to identify causal effects, how to perform estimation, and how to quantify the ways in which certain aspects of the unstructured image object are most predictive of the treatment decision. Via simulation, we also explore the sensitivity of satellite image-based observational inference to image resolution and to misspecification of the image-associated confounder. Finally, we apply these tools in estimating the effect of anti-poverty interventions in African communities from satellite imagery.
CauSight: Learning to Supersense for Visual Causal Discovery
Causal thinking enables humans to understand not just what is seen, but why it happens. To replicate this capability in modern AI systems, we introduce the task of visual causal discovery. It requires models to infer cause-and-effect relations among visual entities across diverse scenarios instead of merely perceiving their presence. To this end, we first construct the Visual Causal Graph dataset (VCG-32K), a large-scale collection of over 32,000 images annotated with entity-level causal graphs, and further develop CauSight, a novel vision-language model to perform visual causal discovery through causally aware reasoning. Our training recipe integrates three components: (1) training data curation from VCG-32K, (2) Tree-of-Causal-Thought (ToCT) for synthesizing reasoning trajectories, and (3) reinforcement learning with a designed causal reward to refine the reasoning policy. Experiments show that CauSight outperforms GPT-4.1 on visual causal discovery, achieving over a threefold performance boost (21% absolute gain). Our code, model, and dataset are fully open-sourced at project page: https://github.com/OpenCausaLab/CauSight.
Planetary Causal Inference: Implications for the Geography of Poverty
Earth observation data such as satellite imagery can, when combined with machine learning, have profound impacts on our understanding of the geography of poverty through the prediction of living conditions, especially where government-derived economic indicators are either unavailable or potentially untrustworthy. Recent work has progressed in using EO data not only to predict spatial economic outcomes, but also to explore cause and effect, an understanding which is critical for downstream policy analysis. In this review, we first document the growth of interest in EO-ML analyses in the causal space. We then trace the relationship between spatial statistics and EO-ML methods before discussing the four ways in which EO data has been used in causal ML pipelines -- (1.) poverty outcome imputation for downstream causal analysis, (2.) EO image deconfounding, (3.) EO-based treatment effect heterogeneity, and (4.) EO-based transportability analysis. We conclude by providing a workflow for how researchers can incorporate EO data in causal ML analysis going forward.
Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in generative AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate the design of CCR tasks for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. Additionally, CCR errors increased with the complexity of causal paths for all models except o1.
COLD: Causal reasOning in cLosed Daily activities
Large Language Models (LLMs) have shown state-of-the-art performance in a variety of tasks, including arithmetic and reasoning; however, to gauge the intellectual capabilities of LLMs, causal reasoning has become a reliable proxy for validating a general understanding of the mechanics and intricacies of the world similar to humans. Previous works in natural language processing (NLP) have either focused on open-ended causal reasoning via causal commonsense reasoning (CCR) or framed a symbolic representation-based question answering for theoretically backed-up analysis via a causal inference engine. The former adds an advantage of real-world grounding but lacks theoretically backed-up analysis/validation, whereas the latter is far from real-world grounding. In this work, we bridge this gap by proposing the COLD (Causal reasOning in cLosed Daily activities) framework, which is built upon human understanding of daily real-world activities to reason about the causal nature of events. We show that the proposed framework facilitates the creation of enormous causal queries (~ 9 million) and comes close to the mini-turing test, simulating causal reasoning to evaluate the understanding of a daily real-world task. We evaluate multiple LLMs on the created causal queries and find that causal reasoning is challenging even for activities trivial to humans. We further explore (the causal reasoning abilities of LLMs) using the backdoor criterion to determine the causal strength between events.
Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models. But what exactly in the training data causes a model to make a certain prediction? We seek to answer this question by providing a language for describing how training data influences predictions, through a causal framework. Importantly, our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone. Addressing the problem of extracting factual knowledge from pretrained language models (PLMs), we focus on simple data statistics such as co-occurrence counts and show that these statistics do influence the predictions of PLMs, suggesting that such models rely on shallow heuristics. Our causal framework and our results demonstrate the importance of studying datasets and the benefits of causality for understanding NLP models.
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.
Cause and Effect: Can Large Language Models Truly Understand Causality?
With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.
Guided Generation of Cause and Effect
We present a conditional text generation framework that posits sentential expressions of possible causes and effects. This framework depends on two novel resources we develop in the course of this work: a very large-scale collection of English sentences expressing causal patterns CausalBank; and a refinement over previous work on constructing large lexical causal knowledge graphs Cause Effect Graph. Further, we extend prior work in lexically-constrained decoding to support disjunctive positive constraints. Human assessment confirms that our approach gives high-quality and diverse outputs. Finally, we use CausalBank to perform continued training of an encoder supporting a recent state-of-the-art model for causal reasoning, leading to a 3-point improvement on the COPA challenge set, with no change in model architecture.
Causal isotonic calibration for heterogeneous treatment effects
We propose causal isotonic calibration, a novel nonparametric method for calibrating predictors of heterogeneous treatment effects. Furthermore, we introduce cross-calibration, a data-efficient variant of calibration that eliminates the need for hold-out calibration sets. Cross-calibration leverages cross-fitted predictors and generates a single calibrated predictor using all available data. Under weak conditions that do not assume monotonicity, we establish that both causal isotonic calibration and cross-calibration achieve fast doubly-robust calibration rates, as long as either the propensity score or outcome regression is estimated accurately in a suitable sense. The proposed causal isotonic calibrator can be wrapped around any black-box learning algorithm, providing robust and distribution-free calibration guarantees while preserving predictive performance.
Causal Agent based on Large Language Model
Large language models (LLMs) have achieved significant success across various domains. However, the inherent complexity of causal problems and causal theory poses challenges in accurately describing them in natural language, making it difficult for LLMs to comprehend and use them effectively. Causal methods are not easily conveyed through natural language, which hinders LLMs' ability to apply them accurately. Additionally, causal datasets are typically tabular, while LLMs excel in handling natural language data, creating a structural mismatch that impedes effective reasoning with tabular data. This lack of causal reasoning capability limits the development of LLMs. To address these challenges, we have equipped the LLM with causal tools within an agent framework, named the Causal Agent, enabling it to tackle causal problems. The causal agent comprises tools, memory, and reasoning modules. In the tools module, the causal agent applies causal methods to align tabular data with natural language. In the reasoning module, the causal agent employs the ReAct framework to perform reasoning through multiple iterations with the tools. In the memory module, the causal agent maintains a dictionary instance where the keys are unique names and the values are causal graphs. To verify the causal ability of the causal agent, we established a benchmark consisting of four levels of causal problems: variable level, edge level, causal graph level, and causal effect level. We generated a test dataset of 1.3K using ChatGPT-3.5 for these four levels of issues and tested the causal agent on the datasets. Our methodology demonstrates remarkable efficacy on the four-level causal problems, with accuracy rates all above 80%. For further insights and implementation details, our code is accessible via the GitHub repository https://github.com/Kairong-Han/Causal_Agent.
Disentangling Linkage and Population Structure in Association Mapping
Genome-wide association study (GWAS) tests single nucleotide polymorphism (SNP) markers across the genome to localize the underlying causal variant of a trait. Because causal variants are seldom observed directly, a surrogate model based on genotyped markers are widely considered. Although many methods estimating the parameters of the surrogate model have been proposed, the connection between the surrogate model and the true causal model is yet investigated. In this work, we establish the connection between the surrogate model and the true causal model. The connection shows that population structure is accounted in GWAS by modelling the variant of interest and not the trait. Such observation explains how environmental confounding can be partially corrected using genetic covariates and why the previously claimed connection between PC correction and linear mixed models is incorrect.
Constrained Causal Bayesian Optimization
We propose constrained causal Bayesian optimization (cCBO), an approach for finding interventions in a known causal graph that optimize a target variable under some constraints. cCBO first reduces the search space by exploiting the graph structure and, if available, an observational dataset; and then solves the restricted optimization problem by modelling target and constraint quantities using Gaussian processes and by sequentially selecting interventions via a constrained expected improvement acquisition function. We propose different surrogate models that enable to integrate observational and interventional data while capturing correlation among effects with increasing levels of sophistication. We evaluate cCBO on artificial and real-world causal graphs showing successful trade off between fast convergence and percentage of feasible interventions.
On Heterogeneous Treatment Effects in Heterogeneous Causal Graphs
Heterogeneity and comorbidity are two interwoven challenges associated with various healthcare problems that greatly hampered research on developing effective treatment and understanding of the underlying neurobiological mechanism. Very few studies have been conducted to investigate heterogeneous causal effects (HCEs) in graphical contexts due to the lack of statistical methods. To characterize this heterogeneity, we first conceptualize heterogeneous causal graphs (HCGs) by generalizing the causal graphical model with confounder-based interactions and multiple mediators. Such confounders with an interaction with the treatment are known as moderators. This allows us to flexibly produce HCGs given different moderators and explicitly characterize HCEs from the treatment or potential mediators on the outcome. We establish the theoretical forms of HCEs and derive their properties at the individual level in both linear and nonlinear models. An interactive structural learning is developed to estimate the complex HCGs and HCEs with confidence intervals provided. Our method is empirically justified by extensive simulations and its practical usefulness is illustrated by exploring causality among psychiatric disorders for trauma survivors.
Bayesian Updates Compose Optically
Bayes' rule tells us how to invert a causal process in order to update our beliefs in light of new evidence. If the process is believed to have a complex compositional structure, we may ask whether composing the inversions of the component processes gives the same belief update as the inversion of the whole. We answer this question affirmatively, showing that the relevant compositional structure is precisely that of the lens pattern, and that we can think of Bayesian inversion as a particular instance of a state-dependent morphism in a corresponding fibred category. We define a general notion of (mixed) Bayesian lens, and discuss the (un)lawfulness of these lenses when their contravariant components are exact Bayesian inversions. We prove our main result both abstractly and concretely, for both discrete and continuous states, taking care to illustrate the common structures.
Breaking Symmetry When Training Transformers
As we show in this paper, the prediction for output token n+1 of Transformer architectures without one of the mechanisms of positional encodings and causal attention is invariant to permutations of input tokens 1, 2, ..., n-1. Usually, both mechanisms are employed and the symmetry with respect to the input tokens is broken. Recently, it has been shown that one can train Transformers without positional encodings. This must be enabled by the causal attention mechanism. In this paper, we elaborate on the argument that the causal connection mechanism must be responsible for the fact that Transformers are able to model input sequences where the order is important. Vertical "slices" of Transformers are all encouraged to represent the same location k in the input sequence. We hypothesize that residual connections contribute to this phenomenon, and demonstrate evidence for this.
