- Universal Adversarial Suffixes for Language Models Using Reinforcement Learning with Calibrated Reward Language models are vulnerable to short adversarial suffixes that can reliably alter predictions. Previous works usually find such suffixes with gradient search or rule-based methods, but these are brittle and often tied to a single task or model. In this paper, a reinforcement learning framework is used where the suffix is treated as a policy and trained with Proximal Policy Optimization against a frozen model as a reward oracle. Rewards are shaped using calibrated cross-entropy, removing label bias and aggregating across surface forms to improve transferability. The proposed method is evaluated on five diverse NLP benchmark datasets, covering sentiment, natural language inference, paraphrase, and commonsense reasoning, using three distinct language models: Qwen2-1.5B Instruct, TinyLlama-1.1B Chat, and Phi-1.5. Results show that RL-trained suffixes consistently degrade accuracy and transfer more effectively across tasks and models than previous adversarial triggers of similar genres. 3 authors · Dec 8, 2025
- Set Learning for Accurate and Calibrated Models Model overconfidence and poor calibration are common in machine learning and difficult to account for when applying standard empirical risk minimization. In this work, we propose a novel method to alleviate these problems that we call odd-k-out learning (OKO), which minimizes the cross-entropy error for sets rather than for single examples. This naturally allows the model to capture correlations across data examples and achieves both better accuracy and calibration, especially in limited training data and class-imbalanced regimes. Perhaps surprisingly, OKO often yields better calibration even when training with hard labels and dropping any additional calibration parameter tuning, such as temperature scaling. We demonstrate this in extensive experimental analyses and provide a mathematical theory to interpret our findings. We emphasize that OKO is a general framework that can be easily adapted to many settings and a trained model can be applied to single examples at inference time, without significant run-time overhead or architecture changes. 5 authors · Jul 5, 2023
- Optimizing Calibration by Gaining Aware of Prediction Correctness Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim. 5 authors · Apr 19, 2024
1 RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness We show that the effectiveness of the well celebrated Mixup [Zhang et al., 2018] can be further improved if instead of using it as the sole learning objective, it is utilized as an additional regularizer to the standard cross-entropy loss. This simple change not only provides much improved accuracy but also significantly improves the quality of the predictive uncertainty estimation of Mixup in most cases under various forms of covariate shifts and out-of-distribution detection experiments. In fact, we observe that Mixup yields much degraded performance on detecting out-of-distribution samples possibly, as we show empirically, because of its tendency to learn models that exhibit high-entropy throughout; making it difficult to differentiate in-distribution samples from out-distribution ones. To show the efficacy of our approach (RegMixup), we provide thorough analyses and experiments on vision datasets (ImageNet & CIFAR-10/100) and compare it with a suite of recent approaches for reliable uncertainty estimation. 5 authors · Jun 29, 2022