new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Human-like object concept representations emerge naturally in multimodal large language models

Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.

  • 13 authors
·
Jul 1, 2024

Predicting Maintenance Cessation of Open Source Software Repositories with An Integrated Feature Framework

The maintenance risks of open source software (OSS) projects pose significant threats to the quality, security, and resilience of modern software supply chains. While prior research has proposed diverse approaches for predicting OSS maintenance risk -- leveraging signals ranging from surface features (e.g., stars, commits) to social network analyses and behavioral patterns -- existing methods often suffer from ambiguous operational definitions, limited interpretability, and datasets of insufficient scale or generalizability. In this work, we introduce ``maintenance cessation'', grounded in both explicit archival status and rigorous semantic analysis of project documentation. Building on this foundation, we curate a large-scale, longitudinal dataset of 115,466 GitHub repositories -- encompassing 57,733 confirmed cessation events -- complemented by comprehensive, timeline-based behavioral features. We propose an integrated, multi-perspective feature framework for predicting maintenance cessation, systematically combining user-centric features, maintainer-centric features and project evolution features. AFT survival analysis demonstrates a high C-index (0.846), substantially outperforming models relying only on surface features. Feature ablation and SHAP analysis further confirm the effectiveness and interpretability of our approach. Finally, we demonstrate real-world applicability by deploying a GBSA classifier in the openEuler ecosystem for proactive package risk screening. Our work establishes a scalable, interpretable foundation for maintenance-risk prediction, enabling reproducible risk management across large-scale open source ecosystems.

  • 5 authors
·
Jul 29

Extended Inductive Reasoning for Personalized Preference Inference from Behavioral Signals

Large language models (LLMs) have demonstrated significant success in complex reasoning tasks such as math and coding. In contrast to these tasks where deductive reasoning predominates, inductive reasoning-the ability to derive general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose AlignXplore, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. Such explicit preference articulation enables efficient streaming inference: when new behavioral signals emerge, the model can directly build upon previously inferred preference descriptions rather than reprocessing historical signals from scratch, while also supporting iterative refinement to the inferred preferences. We develop AlignXplore by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Through extensive experiments, we demonstrate that AlignXplore achieves substantial improvements over the backbone model by an average of 15.49\% on in-domain and out-of-domain benchmarks, while maintaining strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.

  • 4 authors
·
May 23

PIPA: A Unified Evaluation Protocol for Diagnosing Interactive Planning Agents

The growing capabilities of large language models (LLMs) in instruction-following and context-understanding lead to the era of agents with numerous applications. Among these, task planning agents have become especially prominent in realistic scenarios involving complex internal pipelines, such as context understanding, tool management, and response generation. However, existing benchmarks predominantly evaluate agent performance based on task completion as a proxy for overall effectiveness. We hypothesize that merely improving task completion is misaligned with maximizing user satisfaction, as users interact with the entire agentic process and not only the end result. To address this gap, we propose PIPA, a unified evaluation protocol that conceptualizes the behavioral process of interactive task planning agents within a partially observable Markov Decision Process (POMDP) paradigm. The proposed protocol offers a comprehensive assessment of agent performance through a set of atomic evaluation criteria, allowing researchers and practitioners to diagnose specific strengths and weaknesses within the agent's decision-making pipeline. Our analyses show that agents excel in different behavioral stages, with user satisfaction shaped by both outcomes and intermediate behaviors. We also highlight future directions, including systems that leverage multiple agents and the limitations of user simulators in task planning.

  • 9 authors
·
May 2

A Hierarchy-based Analysis Approach for Blended Learning: A Case Study with Chinese Students

Blended learning is generally defined as the combination of traditional face-to-face learning and online learning. This learning mode has been widely used in advanced education across the globe due to the COVID-19 pandemic's social distance restriction as well as the development of technology. Online learning plays an important role in blended learning, and as it requires more student autonomy, the quality of blended learning in advanced education has been a persistent concern. Existing literature offers several elements and frameworks regarding evaluating the quality of blended learning. However, most of them either have different favours for evaluation perspectives or simply offer general guidance for evaluation, reducing the completeness, objectivity and practicalness of related works. In order to carry out a more intuitive and comprehensive evaluation framework, this paper proposes a hierarchy-based analysis approach. Applying gradient boosting model and feature importance evaluation method, this approach mainly analyses student engagement and its three identified dimensions (behavioral engagement, emotional engagement, cognitive engagement) to eliminate some existing stubborn problems when it comes to blended learning evaluation. The results show that cognitive engagement and emotional engagement play a more important role in blended learning evaluation, implying that these two should be considered to improve for better learning as well as teaching quality.

  • 9 authors
·
Sep 18, 2023

AmadeusGPT: a natural language interface for interactive animal behavioral analysis

The process of quantifying and analyzing animal behavior involves translating the naturally occurring descriptive language of their actions into machine-readable code. Yet, codifying behavior analysis is often challenging without deep understanding of animal behavior and technical machine learning knowledge. To limit this gap, we introduce AmadeusGPT: a natural language interface that turns natural language descriptions of behaviors into machine-executable code. Large-language models (LLMs) such as GPT3.5 and GPT4 allow for interactive language-based queries that are potentially well suited for making interactive behavior analysis. However, the comprehension capability of these LLMs is limited by the context window size, which prevents it from remembering distant conversations. To overcome the context window limitation, we implement a novel dual-memory mechanism to allow communication between short-term and long-term memory using symbols as context pointers for retrieval and saving. Concretely, users directly use language-based definitions of behavior and our augmented GPT develops code based on the core AmadeusGPT API, which contains machine learning, computer vision, spatio-temporal reasoning, and visualization modules. Users then can interactively refine results, and seamlessly add new behavioral modules as needed. We benchmark AmadeusGPT and show we can produce state-of-the-art performance on the MABE 2022 behavior challenge tasks. Note, an end-user would not need to write any code to achieve this. Thus, collectively AmadeusGPT presents a novel way to merge deep biological knowledge, large-language models, and core computer vision modules into a more naturally intelligent system. Code and demos can be found at: https://github.com/AdaptiveMotorControlLab/AmadeusGPT.

  • 5 authors
·
Jul 10, 2023

A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models

Advancements in high-computing devices increase the necessity for improved and new understanding and development of smart manufacturing factories. Discrete-event models with simulators have been shown to be critical to architect, designing, building, and operating the manufacturing of semiconductor chips. The diffusion, implantation, and lithography machines have intricate processes due to their feedforward and feedback connectivity. The dataset collected from simulations of the factory models holds the promise of generating valuable machine-learning models. As surrogate data-based models, their executions are highly efficient compared to the physics-based counterpart models. For the development of surrogate models, it is beneficial to have publicly available benchmark simulation models that are grounded in factory models that have concise structures and accurate behaviors. Hence, in this research, a dataset is devised and constructed based on a benchmark model of an Intel semiconductor fabrication factory. The model is formalized using the Parallel Discrete-Event System Specification and executed using the DEVS-Suite simulator. The time series dataset is constructed using discrete-event time trajectories. This dataset is further analyzed and used to develop baseline univariate and multivariate machine learning models. The dataset can also be utilized in the machine learning community for behavioral analysis based on formalized and scalable component-based discrete-event models and simulations.

  • 4 authors
·
Aug 17, 2024

A Comprehensive Survey on Long Context Language Modeling

Efficient processing of long contexts has been a persistent pursuit in Natural Language Processing. With the growing number of long documents, dialogues, and other textual data, it is important to develop Long Context Language Models (LCLMs) that can process and analyze extensive inputs in an effective and efficient way. In this paper, we present a comprehensive survey on recent advances in long-context modeling for large language models. Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively. For the first aspect, we discuss data strategies, architectural designs, and workflow approaches oriented with long context processing. For the second aspect, we provide a detailed examination of the infrastructure required for LCLM training and inference. For the third aspect, we present evaluation paradigms for long-context comprehension and long-form generation, as well as behavioral analysis and mechanism interpretability of LCLMs. Beyond these three key aspects, we thoroughly explore the diverse application scenarios where existing LCLMs have been deployed and outline promising future development directions. This survey provides an up-to-date review of the literature on long-context LLMs, which we wish to serve as a valuable resource for both researchers and engineers. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/LCLM-Horizon/A-Comprehensive-Survey-For-Long-Context-Language-Modeling{\color[RGB]{175,36,67}{LCLM-Horizon}}.

  • 37 authors
·
Mar 20 2

BIRD-INTERACT: Re-imagining Text-to-SQL Evaluation for Large Language Models via Lens of Dynamic Interactions

Large language models (LLMs) have demonstrated remarkable performance on single-turn text-to-SQL tasks, but real-world database applications predominantly require multi-turn interactions to handle ambiguous queries, execution errors, and evolving user requirements. Existing multi-turn benchmarks fall short by treating conversation histories as static context or limiting evaluation to read-only operations, failing to reflect production-grade database assistant challenges. We introduce BIRD-INTERACT, a benchmark that restores this realism through: (1) a comprehensive interaction environment coupling each database with a hierarchical knowledge base, metadata files, and a function-driven user simulator, enabling models to solicit clarifications, retrieve knowledge, and recover from errors without human supervision; (2) two evaluation settings consisting of a pre-defined conversational protocol (c-Interact) and an open-ended agentic setting (a-Interact) where models autonomously decide when to query the user simulator or explore the environment; (3) a challenging task suite covering the full CRUD spectrum for business-intelligence and operational use cases, guarded by executable test cases. Each task features ambiguous and follow-up sub-tasks requiring dynamic interaction. The suite comprises BIRD-INTERACT-FULL (600 tasks, up to 11,796 interactions) for comprehensive performance assessment, and BIRD-INTERACT-LITE (300 tasks with simplified databases) for detailed behavioral analysis and rapid method development. Our empirical results highlight BIRD-INTERACT's difficulty: GPT-5 completes only 8.67% of tasks in c-Interact and 17.00% in a-Interact. Analysis via memory grafting and Interaction Test-time Scaling validates the importance of effective interaction for complex, dynamic text-to-SQL tasks.

An In-kernel Forensics Engine for Investigating Evasive Attacks

Over the years, adversarial attempts against critical services have become more effective and sophisticated in launching low-profile attacks. This trend has always been concerning. However, an even more alarming trend is the increasing difficulty of collecting relevant evidence about these attacks and the involved threat actors in the early stages before significant damage is done. This issue puts defenders at a significant disadvantage, as it becomes exceedingly difficult to understand the attack details and formulate an appropriate response. Developing robust forensics tools to collect evidence about modern threats has never been easy. One main challenge is to provide a robust trade-off between achieving sufficient visibility while leaving minimal detectable artifacts. This paper will introduce LASE, an open-source Low-Artifact Forensics Engine to perform threat analysis and forensics in Windows operating system. LASE augments current analysis tools by providing detailed, system-wide monitoring capabilities while minimizing detectable artifacts. We designed multiple deployment scenarios, showing LASE's potential in evidence gathering and threat reasoning in a real-world setting. By making LASE and its execution trace data available to the broader research community, this work encourages further exploration in the field by reducing the engineering costs for threat analysis and building a longitudinal behavioral analysis catalog for diverse security domains.

  • 3 authors
·
May 9

Quo Vadis: Hybrid Machine Learning Meta-Model based on Contextual and Behavioral Malware Representations

We propose a hybrid machine learning architecture that simultaneously employs multiple deep learning models analyzing contextual and behavioral characteristics of Windows portable executable, producing a final prediction based on a decision from the meta-model. The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample since dynamic analysis through virtualization is challenging for vast quantities of samples. To surpass this limitation, we employ a Windows kernel emulation that allows the acquisition of behavioral patterns across large corpora with minimal temporal and computational costs. We partner with a security vendor for a collection of more than 100k int-the-wild samples that resemble the contemporary threat landscape, containing raw PE files and filepaths of applications at the moment of execution. The acquired dataset is at least ten folds larger than reported in related works on behavioral malware analysis. Files in the training dataset are labeled by a professional threat intelligence team, utilizing manual and automated reverse engineering tools. We estimate the hybrid classifier's operational utility by collecting an out-of-sample test set three months later from the acquisition of the training set. We report an improved detection rate, above the capabilities of the current state-of-the-art model, especially under low false-positive requirements. Additionally, we uncover a meta-model's ability to identify malicious activity in validation and test sets even if none of the individual models express enough confidence to mark the sample as malevolent. We conclude that the meta-model can learn patterns typical to malicious samples from representation combinations produced by different analysis techniques. We publicly release pre-trained models and anonymized dataset of emulation reports.

  • 1 authors
·
Aug 20, 2022

StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving

While personalization has been explored in traditional autonomous driving systems, it remains largely overlooked in end-to-end autonomous driving (E2EAD), despite its growing prominence. This gap is critical, as user-aligned behavior is essential for trust, comfort, and widespread adoption of autonomous vehicles. A core challenge is the lack of large-scale real-world datasets annotated with diverse and fine-grained driving preferences, hindering the development and evaluation of personalized E2EAD models. In this work, we present the first large-scale real-world dataset enriched with annotations capturing diverse driving preferences, establishing a foundation for personalization in E2EAD. We extract static environmental features from real-world road topology and infer dynamic contextual cues using a fine-tuned visual language model (VLM), enabling consistent and fine-grained scenario construction. Based on these scenarios, we derive objective preference annotations through behavioral distribution analysis and rule-based heuristics. To address the inherent subjectivity of driving style, we further employ the VLM to generate subjective annotations by jointly modeling scene semantics and driver behavior. Final high-quality labels are obtained through a human-in-the-loop verification process that fuses both perspectives. Building on this dataset, we propose the first benchmark for evaluating personalized E2EAD models. We assess several state-of-the-art models with and without preference conditioning, demonstrating that incorporating personalized preferences results in behavior more aligned with human driving. Our work lays the foundation for personalized E2EAD by providing a standardized platform to systematically integrate human preferences into data-driven E2EAD systems, catalyzing future research in human-centric autonomy.

  • 4 authors
·
Jun 30

MAIF: Enforcing AI Trust and Provenance with an Artifact-Centric Agentic Paradigm

The AI trustworthiness crisis threatens to derail the artificial intelligence revolution, with regulatory barriers, security vulnerabilities, and accountability gaps preventing deployment in critical domains. Current AI systems operate on opaque data structures that lack the audit trails, provenance tracking, or explainability required by emerging regulations like the EU AI Act. We propose an artifact-centric AI agent paradigm where behavior is driven by persistent, verifiable data artifacts rather than ephemeral tasks, solving the trustworthiness problem at the data architecture level. Central to this approach is the Multimodal Artifact File Format (MAIF), an AI-native container embedding semantic representations, cryptographic provenance, and granular access controls. MAIF transforms data from passive storage into active trust enforcement, making every AI operation inherently auditable. Our production-ready implementation demonstrates ultra-high-speed streaming (2,720.7 MB/s), optimized video processing (1,342 MB/s), and enterprise-grade security. Novel algorithms for cross-modal attention, semantic compression, and cryptographic binding achieve up to 225 compression while maintaining semantic fidelity. Advanced security features include stream-level access control, real-time tamper detection, and behavioral anomaly analysis with minimal overhead. This approach directly addresses the regulatory, security, and accountability challenges preventing AI deployment in sensitive domains, offering a viable path toward trustworthy AI systems at scale.

  • 5 authors
·
Nov 18