Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGraph Neural Networks are Dynamic Programmers
Recent advances in neural algorithmic reasoning with graph neural networks (GNNs) are propped up by the notion of algorithmic alignment. Broadly, a neural network will be better at learning to execute a reasoning task (in terms of sample complexity) if its individual components align well with the target algorithm. Specifically, GNNs are claimed to align with dynamic programming (DP), a general problem-solving strategy which expresses many polynomial-time algorithms. However, has this alignment truly been demonstrated and theoretically quantified? Here we show, using methods from category theory and abstract algebra, that there exists an intricate connection between GNNs and DP, going well beyond the initial observations over individual algorithms such as Bellman-Ford. Exposing this connection, we easily verify several prior findings in the literature, produce better-grounded GNN architectures for edge-centric tasks, and demonstrate empirical results on the CLRS algorithmic reasoning benchmark. We hope our exposition will serve as a foundation for building stronger algorithmically aligned GNNs.
Mind The Gap: Deep Learning Doesn't Learn Deeply
This paper aims to understand how neural networks learn algorithmic reasoning by addressing two questions: How faithful are learned algorithms when they are effective, and why do neural networks fail to learn effective algorithms otherwise? To answer these questions, we use neural compilation, a technique that directly encodes a source algorithm into neural network parameters, enabling the network to compute the algorithm exactly. This enables comparison between compiled and conventionally learned parameters, intermediate vectors, and behaviors. This investigation is crucial for developing neural networks that robustly learn complexalgorithms from data. Our analysis focuses on graph neural networks (GNNs), which are naturally aligned with algorithmic reasoning tasks, specifically our choices of BFS, DFS, and Bellman-Ford, which cover the spectrum of effective, faithful, and ineffective learned algorithms. Commonly, learning algorithmic reasoning is framed as induction over synthetic data, where a parameterized model is trained on inputs, traces, and outputs produced by an underlying ground truth algorithm. In contrast, we introduce a neural compilation method for GNNs, which sets network parameters analytically, bypassing training. Focusing on GNNs leverages their alignment with algorithmic reasoning, extensive algorithmic induction literature, and the novel application of neural compilation to GNNs. Overall, this paper aims to characterize expressability-trainability gaps - a fundamental shortcoming in learning algorithmic reasoning. We hypothesize that inductive learning is most effective for parallel algorithms contained within the computational class NC.
Cultivating Pluralism In Algorithmic Monoculture: The Community Alignment Dataset
How can large language models (LLMs) serve users with varying preferences that may conflict across cultural, political, or other dimensions? To advance this challenge, this paper establishes four key results. First, we demonstrate, through a large-scale multilingual human study with representative samples from five countries (N=15,000), that humans exhibit significantly more variation in preferences than the responses of 21 state-of-the-art LLMs. Second, we show that existing methods for preference dataset collection are insufficient for learning the diversity of human preferences even along two of the most salient dimensions of variability in global values, due to the underlying homogeneity of candidate responses. Third, we argue that this motivates the need for negatively-correlated sampling when generating candidate sets, and we show that simple prompt-based techniques for doing so significantly enhance the performance of alignment methods in learning heterogeneous preferences. Fourth, based on this novel candidate sampling approach, we collect and open-source Community Alignment, the largest and most representative multilingual and multi-turn preference dataset to date, featuring almost 200,000 comparisons from annotators spanning five countries. We hope that the Community Alignment dataset will be a valuable resource for improving the effectiveness of LLMs for a diverse global population.
AI Alignment at Your Discretion
In AI alignment, extensive latitude must be granted to annotators, either human or algorithmic, to judge which model outputs are `better' or `safer.' We refer to this latitude as alignment discretion. Such discretion remains largely unexamined, posing two risks: (i) annotators may use their power of discretion arbitrarily, and (ii) models may fail to mimic this discretion. To study this phenomenon, we draw on legal concepts of discretion that structure how decision-making authority is conferred and exercised, particularly in cases where principles conflict or their application is unclear or irrelevant. Extended to AI alignment, discretion is required when alignment principles and rules are (inevitably) conflicting or indecisive. We present a set of metrics to systematically analyze when and how discretion in AI alignment is exercised, such that both risks (i) and (ii) can be observed. Moreover, we distinguish between human and algorithmic discretion and analyze the discrepancy between them. By measuring both human and algorithmic discretion over safety alignment datasets, we reveal layers of discretion in the alignment process that were previously unaccounted for. Furthermore, we demonstrate how algorithms trained on these datasets develop their own forms of discretion in interpreting and applying these principles, which challenges the purpose of having any principles at all. Our paper presents the first step towards formalizing this core gap in current alignment processes, and we call on the community to further scrutinize and control alignment discretion.
mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
InstructEngine: Instruction-driven Text-to-Image Alignment
Reinforcement Learning from Human/AI Feedback (RLHF/RLAIF) has been extensively utilized for preference alignment of text-to-image models. Existing methods face certain limitations in terms of both data and algorithm. For training data, most approaches rely on manual annotated preference data, either by directly fine-tuning the generators or by training reward models to provide training signals. However, the high annotation cost makes them difficult to scale up, the reward model consumes extra computation and cannot guarantee accuracy. From an algorithmic perspective, most methods neglect the value of text and only take the image feedback as a comparative signal, which is inefficient and sparse. To alleviate these drawbacks, we propose the InstructEngine framework. Regarding annotation cost, we first construct a taxonomy for text-to-image generation, then develop an automated data construction pipeline based on it. Leveraging advanced large multimodal models and human-defined rules, we generate 25K text-image preference pairs. Finally, we introduce cross-validation alignment method, which refines data efficiency by organizing semantically analogous samples into mutually comparable pairs. Evaluations on DrawBench demonstrate that InstructEngine improves SD v1.5 and SDXL's performance by 10.53% and 5.30%, outperforming state-of-the-art baselines, with ablation study confirming the benefits of InstructEngine's all components. A win rate of over 50% in human reviews also proves that InstructEngine better aligns with human preferences.
PARL: A Unified Framework for Policy Alignment in Reinforcement Learning
We present a novel unified bilevel optimization-based framework, PARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning using utility or preference-based feedback. We identify a major gap within current algorithmic designs for solving policy alignment due to a lack of precise characterization of the dependence of the alignment objective on the data generated by policy trajectories. This shortfall contributes to the sub-optimal performance observed in contemporary algorithms. Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable (optimal policy for the designed reward). Interestingly, from an optimization perspective, our formulation leads to a new class of stochastic bilevel problems where the stochasticity at the upper objective depends upon the lower-level variable. To demonstrate the efficacy of our formulation in resolving alignment issues in RL, we devised an algorithm named A-PARL to solve PARL problem, establishing sample complexity bounds of order O(1/T). Our empirical results substantiate that the proposed PARL can address the alignment concerns in RL by showing significant improvements (up to 63\% in terms of required samples) for policy alignment in large-scale environments of the Deepmind control suite and Meta world tasks.
Kun: Answer Polishment for Chinese Self-Alignment with Instruction Back-Translation
In this paper, we introduce Kun, a novel approach for creating high-quality instruction-tuning datasets for large language models (LLMs) without relying on manual annotations. Adapting a self-training algorithm based on instruction back-translation and answer polishment, Kun leverages unlabelled data from diverse sources such as Wudao, Wanjuan, and SkyPile to generate a substantial dataset of over a million Chinese instructional data points. This approach significantly deviates from traditional methods by using a self-curation process to refine and select the most effective instruction-output pairs. Our experiments with the 6B-parameter Yi model across various benchmarks demonstrate Kun's robustness and scalability. Our method's core contributions lie in its algorithmic advancement, which enhances data retention and clarity, and its innovative data generation approach that substantially reduces the reliance on costly and time-consuming manual annotations. This methodology presents a scalable and efficient solution for improving the instruction-following capabilities of LLMs, with significant implications for their application across diverse fields. The code and dataset can be found at https://github.com/Zheng0428/COIG-Kun
Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across various a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions.
Principled Data Selection for Alignment: The Hidden Risks of Difficult Examples
The alignment of large language models (LLMs) often assumes that using more clean data yields better outcomes, overlooking the match between model capacity and example difficulty. Challenging this, we propose a new principle: Preference data vary in difficulty, and overly difficult examples hinder alignment, by exceeding the model's capacity. Through systematic experimentation, we validate this principle with three key findings: (1) preference examples vary in difficulty, as evidenced by consistent learning orders across alignment runs; (2) overly difficult examples significantly degrade performance across four LLMs and two datasets; and (3) the capacity of a model dictates its threshold for handling difficult examples, underscoring a critical relationship between data selection and model capacity. Building on this principle, we introduce Selective DPO, which filters out overly difficult examples. This simple adjustment improves alignment performance by 9-16% in win rates on the AlpacaEval 2 benchmark compared to the DPO baseline, suppressing a series of DPO variants with different algorithmic adjustments. Together, these results illuminate the importance of aligning data difficulty with model capacity, offering a transformative perspective for improving alignment strategies in LLMs. Code is available at https://github.com/glorgao/SelectiveDPO.
EnvTrace: Simulation-Based Semantic Evaluation of LLM Code via Execution Trace Alignment -- Demonstrated at Synchrotron Beamlines
Evaluating large language models (LLMs) for instrument control requires methods that go beyond standard, stateless algorithmic benchmarks, since the behavior of physical systems cannot be fully captured by unit tests alone. Here we introduce EnvTrace, a simulation-based method that evaluates execution traces to assess semantic code equivalence. EnvTrace is demonstrated with a beamline control-logic digital twin to facilitate the evaluation of instrument control code, with the digital twin itself also enabling the pre-execution validation of live experiments. Over 30 LLMs were evaluated using trace alignment to generate a multi-faceted score for functional correctness across key behavioral dimensions, showing that many top-tier models can approach human-level performance in rapid control-code generation. This is a first step toward a broader vision where LLMs and digital twins work symbiotically: LLMs providing intuitive control and agentic orchestration, and digital twins offering safe and high-fidelity environments, paving the way towards autonomous embodied AI.
On the Markov Property of Neural Algorithmic Reasoning: Analyses and Methods
Neural algorithmic reasoning is an emerging research direction that endows neural networks with the ability to mimic algorithmic executions step-by-step. A common paradigm in existing designs involves the use of historical embeddings in predicting the results of future execution steps. Our observation in this work is that such historical dependence intrinsically contradicts the Markov nature of algorithmic reasoning tasks. Based on this motivation, we present our ForgetNet, which does not use historical embeddings and thus is consistent with the Markov nature of the tasks. To address challenges in training ForgetNet at early stages, we further introduce G-ForgetNet, which uses a gating mechanism to allow for the selective integration of historical embeddings. Such an enhanced capability provides valuable computational pathways during the model's early training phase. Our extensive experiments, based on the CLRS-30 algorithmic reasoning benchmark, demonstrate that both ForgetNet and G-ForgetNet achieve better generalization capability than existing methods. Furthermore, we investigate the behavior of the gating mechanism, highlighting its degree of alignment with our intuitions and its effectiveness for robust performance.
Defeating the Training-Inference Mismatch via FP16
Reinforcement learning (RL) fine-tuning of large language models (LLMs) often suffers from instability due to the numerical mismatch between the training and inference policies. While prior work has attempted to mitigate this issue through algorithmic corrections or engineering alignments, we show that its root cause lies in the floating point precision itself. The widely adopted BF16, despite its large dynamic range, introduces large rounding errors that breaks the consistency between training and inference. In this work, we demonstrate that simply reverting to FP16 effectively eliminates this mismatch. The change is simple, fully supported by modern frameworks with only a few lines of code change, and requires no modification to the model architecture or learning algorithm. Our results suggest that using FP16 uniformly yields more stable optimization, faster convergence, and stronger performance across diverse tasks, algorithms and frameworks. We hope these findings motivate a broader reconsideration of precision trade-offs in RL fine-tuning.
Can World Simulators Reason? Gen-ViRe: A Generative Visual Reasoning Benchmark
While Chain-of-Thought (CoT) prompting enables sophisticated symbolic reasoning in LLMs, it remains confined to discrete text and cannot simulate the continuous, physics-governed dynamics of the real world. Recent video generation models have emerged as potential world simulators through Chain-of-Frames (CoF) reasoning -- materializing thought as frame-by-frame visual sequences, with each frame representing a physically-grounded reasoning step. Despite compelling demonstrations, a challenge persists: existing benchmarks, focusing on fidelity or alignment, do not assess CoF reasoning and thus cannot measure core cognitive abilities in multi-step planning, algorithmic logic, or abstract pattern extrapolation. This evaluation void prevents systematic understanding of model capabilities and principled guidance for improvement. We introduce Gen-ViRe (Generative Visual Reasoning Benchmark), a framework grounded in cognitive science and real-world AI applications, which decomposes CoF reasoning into six cognitive dimensions -- from perceptual logic to abstract planning -- and 24 subtasks. Through multi-source data curation, minimal prompting protocols, and hybrid VLM-assisted evaluation with detailed criteria, Gen-ViRe delivers the first quantitative assessment of video models as reasoners. Our experiments on SOTA systems reveal substantial discrepancies between impressive visual quality and actual reasoning depth, establishing baselines and diagnostic tools to advance genuine world simulators.
Aligning Multimodal LLM with Human Preference: A Survey
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.
BinaryAlign: Word Alignment as Binary Sequence Labeling
Real world deployments of word alignment are almost certain to cover both high and low resource languages. However, the state-of-the-art for this task recommends a different model class depending on the availability of gold alignment training data for a particular language pair. We propose BinaryAlign, a novel word alignment technique based on binary sequence labeling that outperforms existing approaches in both scenarios, offering a unifying approach to the task. Additionally, we vary the specific choice of multilingual foundation model, perform stratified error analysis over alignment error type, and explore the performance of BinaryAlign on non-English language pairs. We make our source code publicly available.
AI Alignment: A Comprehensive Survey
AI alignment aims to make AI systems behave in line with human intentions and values. As AI systems grow more capable, so do risks from misalignment. To provide a comprehensive and up-to-date overview of the alignment field, in this survey, we delve into the core concepts, methodology, and practice of alignment. First, we identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality (RICE). Guided by these four principles, we outline the landscape of current alignment research and decompose them into two key components: forward alignment and backward alignment. The former aims to make AI systems aligned via alignment training, while the latter aims to gain evidence about the systems' alignment and govern them appropriately to avoid exacerbating misalignment risks. On forward alignment, we discuss techniques for learning from feedback and learning under distribution shift. On backward alignment, we discuss assurance techniques and governance practices. We also release and continually update the website (www.alignmentsurvey.com) which features tutorials, collections of papers, blog posts, and other resources.
P-Aligner: Enabling Pre-Alignment of Language Models via Principled Instruction Synthesis
Large Language Models (LLMs) are expected to produce safe, helpful, and honest content during interaction with human users, but they frequently fail to align with such values when given flawed instructions, e.g., missing context, ambiguous directives, or inappropriate tone, leaving substantial room for improvement along multiple dimensions. A cost-effective yet high-impact way is to pre-align instructions before the model begins decoding. Existing approaches either rely on prohibitive test-time search costs or end-to-end model rewrite, which is powered by a customized training corpus with unclear objectives. In this work, we demonstrate that the goal of efficient and effective preference alignment can be achieved by P-Aligner, a lightweight module generating instructions that preserve the original intents while being expressed in a more human-preferred form. P-Aligner is trained on UltraPrompt, a new dataset synthesized via a proposed principle-guided pipeline using Monte-Carlo Tree Search, which systematically explores the space of candidate instructions that are closely tied to human preference. Experiments across different methods show that P-Aligner generally outperforms strong baselines across various models and benchmarks, including average win-rate gains of 28.35% and 8.69% on GPT-4-turbo and Gemma-2-SimPO, respectively. Further analyses validate its effectiveness and efficiency through multiple perspectives, including data quality, search strategies, iterative deployment, and time overhead.
Aligner: One Global Token is Worth Millions of Parameters When Aligning Large Language Models
We introduce Aligner, a novel Parameter-Efficient Fine-Tuning (PEFT) method for aligning multi-billion-parameter-sized Large Language Models (LLMs). Aligner employs a unique design that constructs a globally shared set of tunable tokens that modify the attention of every layer. Remarkably with this method, even when using one token accounting for a mere 5,000 parameters, Aligner can still perform comparably well to state-of-the-art LLM adaptation methods like LoRA that require millions of parameters. This capacity is substantiated in both instruction following and value alignment tasks. Besides the multiple order-of-magnitude improvement in parameter efficiency, the insight Aligner provides into the internal mechanisms of LLMs is also valuable. The architectural features and efficacy of our method, in addition to our experiments demonstrate that an LLM separates its internal handling of "form" and "knowledge" in a somewhat orthogonal manner. This finding promises to motivate new research into LLM mechanism understanding and value alignment.
Alignment and Safety in Large Language Models: Safety Mechanisms, Training Paradigms, and Emerging Challenges
Due to the remarkable capabilities and growing impact of large language models (LLMs), they have been deeply integrated into many aspects of society. Thus, ensuring their alignment with human values and intentions has emerged as a critical challenge. This survey provides a comprehensive overview of practical alignment techniques, training protocols, and empirical findings in LLM alignment. We analyze the development of alignment methods across diverse paradigms, characterizing the fundamental trade-offs between core alignment objectives. Our analysis shows that while supervised fine-tuning enables basic instruction-following, preference-based methods offer more flexibility for aligning with nuanced human intent. We discuss state-of-the-art techniques, including Direct Preference Optimization (DPO), Constitutional AI, brain-inspired methods, and alignment uncertainty quantification (AUQ), highlighting their approaches to balancing quality and efficiency. We review existing evaluation frameworks and benchmarking datasets, emphasizing limitations such as reward misspecification, distributional robustness, and scalable oversight. We summarize strategies adopted by leading AI labs to illustrate the current state of practice. We conclude by outlining open problems in oversight, value pluralism, robustness, and continuous alignment. This survey aims to inform both researchers and practitioners navigating the evolving landscape of LLM alignment.
Towards Scalable Automated Alignment of LLMs: A Survey
Alignment is the most critical step in building large language models (LLMs) that meet human needs. With the rapid development of LLMs gradually surpassing human capabilities, traditional alignment methods based on human-annotation are increasingly unable to meet the scalability demands. Therefore, there is an urgent need to explore new sources of automated alignment signals and technical approaches. In this paper, we systematically review the recently emerging methods of automated alignment, attempting to explore how to achieve effective, scalable, automated alignment once the capabilities of LLMs exceed those of humans. Specifically, we categorize existing automated alignment methods into 4 major categories based on the sources of alignment signals and discuss the current status and potential development of each category. Additionally, we explore the underlying mechanisms that enable automated alignment and discuss the essential factors that make automated alignment technologies feasible and effective from the fundamental role of alignment.
Efficient Alignment of Large Language Models via Data Sampling
LLM alignment ensures that large language models behave safely and effectively by aligning their outputs with human values, goals, and intentions. Aligning LLMs employ huge amounts of data, computation, and time. Moreover, curating data with human feedback is expensive and takes time. Recent research depicts the benefit of data engineering in the fine-tuning and pre-training paradigms to bring down such costs. However, alignment differs from the afore-mentioned paradigms and it is unclear if data efficient alignment is feasible. In this work, we first aim to understand how the performance of LLM alignment scales with data. We find out that LLM alignment performance follows an exponential plateau pattern which tapers off post a rapid initial increase. Based on this, we identify data subsampling as a viable method to reduce resources required for alignment. Further, we propose an information theory-based methodology for efficient alignment by identifying a small high quality subset thereby reducing the computation and time required by alignment. We evaluate the proposed methodology over multiple datasets and compare the results. We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset while using less than 10% data, leading to greater than 90% savings in costs, resources, and faster LLM alignment.
ComPO: Preference Alignment via Comparison Oracles
Direct alignment methods are increasingly used for aligning large language models (LLMs) with human preferences. However, these methods suffer from the issues of verbosity and likelihood displacement, which can be driven by the noisy preference pairs that induce similar likelihood for preferred and dispreferred responses. The contributions of this paper are two-fold. First, we propose a new preference alignment method based on comparison oracles and provide the convergence guarantee for its basic scheme. Second, we improve our method using some heuristics and conduct the experiments to demonstrate the flexibility and compatibility of practical scheme in improving the performance of LLMs using noisy preference pairs. Evaluations are conducted across multiple base and instruction-tuned models (Mistral-7B, Llama-3-8B and Gemma-2-9B) with benchmarks (AlpacaEval 2, MT-Bench and Arena-Hard). Experimental results show the effectiveness of our method as an alternative to addressing the limitations of existing direct alignment methods. A highlight of our work is that we evidence the importance of designing specialized methods for preference pairs with distinct likelihood margin, which complements the recent findings in Razin-2025-Unintentional.
Large Language Model Alignment: A Survey
Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.
Towards a Unified View of Preference Learning for Large Language Models: A Survey
Large Language Models (LLMs) exhibit remarkably powerful capabilities. One of the crucial factors to achieve success is aligning the LLM's output with human preferences. This alignment process often requires only a small amount of data to efficiently enhance the LLM's performance. While effective, research in this area spans multiple domains, and the methods involved are relatively complex to understand. The relationships between different methods have been under-explored, limiting the development of the preference alignment. In light of this, we break down the existing popular alignment strategies into different components and provide a unified framework to study the current alignment strategies, thereby establishing connections among them. In this survey, we decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm. This unified view offers an in-depth understanding of existing alignment algorithms and also opens up possibilities to synergize the strengths of different strategies. Furthermore, we present detailed working examples of prevalent existing algorithms to facilitate a comprehensive understanding for the readers. Finally, based on our unified perspective, we explore the challenges and future research directions for aligning large language models with human preferences.
Sample-Efficient Alignment for LLMs
We study methods for efficiently aligning large language models (LLMs) with human preferences given budgeted online feedback. We first formulate the LLM alignment problem in the frame of contextual dueling bandits. This formulation, subsuming recent paradigms such as online RLHF and online DPO, inherently quests for sample-efficient algorithms that incorporate online active exploration. Leveraging insights from bandit theory, we introduce a unified algorithm based on Thompson sampling and highlight its applications in two distinct LLM alignment scenarios. The practical agent that efficiently implements this algorithm, named SEA (Sample-Efficient Alignment), is empirically validated through extensive experiments across three model scales (1B, 2.8B, 6.9B) and three preference learning algorithms (DPO, IPO, SLiC). The results demonstrate that SEA achieves highly sample-efficient alignment with oracle's preferences, outperforming recent active exploration methods for LLMs. Additionally, we release the implementation of SEA together with an efficient codebase designed for online alignment of LLMs, aiming to accelerate future research in this field.
A Comprehensive Evaluation framework of Alignment Techniques for LLMs
As Large Language Models (LLMs) become increasingly integrated into real-world applications, ensuring their outputs align with human values and safety standards has become critical. The field has developed diverse alignment approaches including traditional fine-tuning methods (RLHF, instruction tuning), post-hoc correction systems, and inference-time interventions, each with distinct advantages and limitations. However, the lack of unified evaluation frameworks makes it difficult to systematically compare these paradigms and guide deployment decisions. This paper introduces a multi-dimensional evaluation of alignment techniques for LLMs, a comprehensive evaluation framework that provides a systematic comparison across all major alignment paradigms. Our framework assesses methods along four key dimensions: alignment detection, alignment quality, computational efficiency, and robustness. Through experiments across diverse base models and alignment strategies, we demonstrate the utility of our framework in identifying strengths and limitations of current state-of-the-art models, providing valuable insights for future research directions.
From Real to Synthetic: Synthesizing Millions of Diversified and Complicated User Instructions with Attributed Grounding
The pursuit of diverse, complex, and large-scale instruction data is crucial for automatically aligning large language models (LLMs). While there are methods capable of generating synthetic instructions at scale, they either suffer from limited grounding sources, leading to a narrow distribution, or rely on trivial extensions that fail to produce meaningful trajectories in terms of complexity. In contrast, instructions that benefit efficient alignment are typically crafted with cognitive insights and grounded in real-world use cases. In this paper, we synthesize such instructions using attributed grounding, which involves 1) a top-down attribution process that grounds a selective set of real instructions to situated users, and 2) a bottom-up synthesis process that leverages web documents to first generate a situation, then a meaningful instruction. This framework allows us to harvest diverse and complex instructions at scale, utilizing the vast range of web documents. Specifically, we construct a dataset of 1 million instructions, called SynthQuestions, and demonstrate that models trained on it achieve leading performance on several common benchmarks, with improvements that continually scale with more web corpora. Data, models and codes will be available at https://github.com/Ignoramus0817/SynthQuestions.
What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning
Instruction tuning is a standard technique employed to align large language models to end tasks and user preferences after the initial pretraining phase. Recent research indicates the critical role of data engineering in instruction tuning -- when appropriately selected, only limited data is necessary to achieve superior performance. However, we still lack a principled understanding of what makes good instruction tuning data for alignment, and how we should select data automatically and effectively. In this work, we delve deeply into automatic data selection strategies for alignment. We start with controlled studies to measure data across three dimensions: complexity, quality, and diversity, along which we examine existing methods and introduce novel techniques for enhanced data measurement. Subsequently, we propose a simple strategy to select data samples based on the measurement. We present deita (short for Data-Efficient Instruction Tuning for Alignment), a series of models fine-tuned from LLaMA and Mistral models using data samples automatically selected with our proposed approach. Empirically, deita performs better or on par with the state-of-the-art open-source alignment models with only 6K SFT training data samples -- over 10x less than the data used in the baselines. When further trained with direct preference optimization (DPO), deita-Mistral-7B + DPO trained with 6K SFT and 10K DPO samples achieve 7.55 MT-Bench and 90.06% AlpacaEval scores. We anticipate this work to provide tools on automatic data selection, facilitating data-efficient alignment. We release our models as well as the selected datasets for future researches to effectively align models more efficiently.
Human-Instruction-Free LLM Self-Alignment with Limited Samples
Aligning large language models (LLMs) with human values is a vital task for LLM practitioners. Current alignment techniques have several limitations: (1) requiring a large amount of annotated data; (2) demanding heavy human involvement; (3) lacking a systematic mechanism to continuously improve. In this work, we study aligning LLMs to a new domain with limited samples (e.g. < 100). We propose an algorithm that can self-align LLMs iteratively without active human involvement. Unlike existing works, our algorithm relies on neither human-crafted instructions nor labeled rewards, significantly reducing human involvement. In addition, our algorithm can self-improve the alignment continuously. The key idea is to first retrieve high-quality samples related to the target domain and use them as In-context Learning examples to generate more samples. Then we use the self-generated samples to finetune the LLM iteratively. We show that our method can unlock the LLMs' self-generalization ability to perform alignment with near-zero human supervision. We test our algorithm on three benchmarks in safety, truthfulness, and instruction-following, and show good performance in alignment, domain adaptability, and scalability.
ARGS: Alignment as Reward-Guided Search
Aligning large language models with human objectives is paramount, yet common approaches including RLHF suffer from unstable and resource-intensive training. In response to this challenge, we introduce ARGS, Alignment as Reward-Guided Search, a novel framework that integrates alignment into the decoding process, eliminating the need for expensive RL training. By adjusting the model's probabilistic predictions using a reward signal, ARGS generates texts with semantic diversity while being aligned with human preferences, offering a promising and flexible solution for aligning language models. Notably, ARGS demonstrates consistent enhancements in average reward compared to baselines across diverse alignment tasks and various model dimensions. For example, under the same greedy-based decoding strategy, our method improves the average reward by 19.56% relative to the baseline and secures a preference or tie score of 64.33% in GPT-4 evaluation. We believe that our framework, emphasizing decoding-time alignment, paves the way for more responsive language models in the future. Code is publicly available at: https://github.com/deeplearning-wisc/args.
AlignBench: Benchmarking Chinese Alignment of Large Language Models
Alignment has become a critical step for instruction-tuned Large Language Models (LLMs) to become helpful assistants. However, effective evaluation of alignment for emerging Chinese LLMs is still significantly lacking, calling for real-scenario grounded, open-ended, challenging and automatic evaluations tailored for alignment. To fill in this gap, we introduce AlignBench, a comprehensive multi-dimensional benchmark for evaluating LLMs' alignment in Chinese. Equipped with a human-in-the-loop data curation pipeline, our benchmark employs a rule-calibrated multi-dimensional LLM-as-Judge with Chain-of-Thought to generate explanations and final ratings as evaluations, ensuring high reliability and interpretability. Furthermore, we report AlignBench evaluated by CritiqueLLM, a dedicated Chinese evaluator LLM that recovers 95% of GPT-4's evaluation ability. We will provide public APIs for evaluating AlignBench with CritiqueLLM to facilitate the evaluation of LLMs' Chinese alignment. All evaluation codes, data, and LLM generations are available at https://github.com/THUDM/AlignBench.
Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models
Aligning Large Language Models (LLMs) traditionally relies on costly training and human preference annotations. Self-alignment seeks to reduce these expenses by enabling models to align themselves. To further lower costs and achieve alignment without any expensive tuning or annotations, we introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (DRPO). Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions, all without additional training or human intervention. The core of DRPO is a dynamic rewarding mechanism, which identifies and rectifies model-specific alignment weaknesses, allowing LLMs to adapt efficiently to diverse alignment challenges. Empirical evaluations on eight recent LLMs, both open- and closed-sourced, demonstrate that DRPO significantly enhances alignment performance, with base models outperforming their SFT/RLHF-tuned counterparts. Moreover, the prompts automatically optimized by DRPO surpass those curated by human experts, further validating the effectiveness of our approach. Our findings highlight the great potential of current LLMs to achieve adaptive self-alignment through inference-time optimization, complementing tuning-based alignment methods.
Mask-Align: Self-Supervised Neural Word Alignment
Word alignment, which aims to align translationally equivalent words between source and target sentences, plays an important role in many natural language processing tasks. Current unsupervised neural alignment methods focus on inducing alignments from neural machine translation models, which does not leverage the full context in the target sequence. In this paper, we propose Mask-Align, a self-supervised word alignment model that takes advantage of the full context on the target side. Our model masks out each target token and predicts it conditioned on both source and the remaining target tokens. This two-step process is based on the assumption that the source token contributing most to recovering the masked target token should be aligned. We also introduce an attention variant called leaky attention, which alleviates the problem of unexpected high cross-attention weights on special tokens such as periods. Experiments on four language pairs show that our model outperforms previous unsupervised neural aligners and obtains new state-of-the-art results.
Unbalanced Optimal Transport for Unbalanced Word Alignment
Monolingual word alignment is crucial to model semantic interactions between sentences. In particular, null alignment, a phenomenon in which words have no corresponding counterparts, is pervasive and critical in handling semantically divergent sentences. Identification of null alignment is useful on its own to reason about the semantic similarity of sentences by indicating there exists information inequality. To achieve unbalanced word alignment that values both alignment and null alignment, this study shows that the family of optimal transport (OT), i.e., balanced, partial, and unbalanced OT, are natural and powerful approaches even without tailor-made techniques. Our extensive experiments covering unsupervised and supervised settings indicate that our generic OT-based alignment methods are competitive against the state-of-the-arts specially designed for word alignment, remarkably on challenging datasets with high null alignment frequencies.
Aligners: Decoupling LLMs and Alignment
Large Language Models (LLMs) need to be aligned with human expectations to ensure their safety and utility in most applications. Alignment is challenging, costly, and needs to be repeated for every LLM and alignment criterion. We propose to decouple LLMs and alignment by training aligner models that can be used to align any LLM for a given criteria on an as-needed basis, thus also reducing the potential negative impacts of alignment on performance. Our recipe for training the aligner models solely relies on synthetic data generated with a (prompted) LLM and can be easily adjusted for a variety of alignment criteria. We illustrate our method by training an "ethical" aligner and verify its efficacy empirically.
LIONs: An Empirically Optimized Approach to Align Language Models
Alignment is a crucial step to enhance the instruction-following and conversational abilities of language models. Despite many recent work proposing new algorithms, datasets, and training pipelines, there is a lack of comprehensive studies measuring the impact of various design choices throughout the whole training process. We first conduct a rigorous analysis over a three-stage training pipeline consisting of supervised fine-tuning, offline preference learning, and online preference learning. We have found that using techniques like sequence packing, loss masking in SFT, increasing the preference dataset size in DPO, and online DPO training can significantly improve the performance of language models. We then train from Gemma-2b-base and LLama-3-8b-base, and find that our best models exceed the performance of the official instruct models tuned with closed-source data and algorithms. Our code and models can be found at https://github.com/Columbia-NLP-Lab/LionAlignment.
Align on the Fly: Adapting Chatbot Behavior to Established Norms
In this paper, we aim to align large language models with the ever-changing, complex, and diverse human values (e.g., social norms) across time and locations. This presents a challenge to existing alignment techniques, such as supervised fine-tuning, which internalize values within model parameters. To overcome this, we propose an On-the-fly Preference Optimization (OPO) method, which is a real-time alignment that works in a streaming way. It employs an external memory to store established rules for alignment, which can constrain LLMs' behaviors without further training, allowing for convenient updates and customization of human values. We also introduce a scalable evaluation to assess the proposed method more effectively. Experimental results on both human-annotated and auto-generated questions from legal and moral domains indicate the effectiveness of the proposed OPO method. Our code and data are released at https://github.com/GAIR-NLP/OPO.
From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models
Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.
Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback
The success of AI assistants based on Language Models (LLMs) hinges on Reinforcement Learning from Human Feedback (RLHF) to comprehend and align with user intentions. However, traditional alignment algorithms, such as PPO, are hampered by complex annotation and training requirements. This reliance limits the applicability of RLHF and hinders the development of professional assistants tailored to diverse human preferences. In this work, we introduce Linear Alignment, a novel algorithm that aligns language models with human preferences in one single inference step, eliminating the reliance on data annotation and model training. Linear alignment incorporates a new parameterization for policy optimization under divergence constraints, which enables the extraction of optimal policy in a closed-form manner and facilitates the direct estimation of the aligned response. Extensive experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment across diverse scenarios. Our code and dataset will be published on https://github.com/Wizardcoast/Linear_Alignment.git.
Panacea: Pareto Alignment via Preference Adaptation for LLMs
Current methods for large language model alignment typically use scalar human preference labels. However, this convention tends to oversimplify the multi-dimensional and heterogeneous nature of human preferences, leading to reduced expressivity and even misalignment. This paper presents Panacea, an innovative approach that reframes alignment as a multi-dimensional preference optimization problem. Panacea trains a single model capable of adapting online and Pareto-optimally to diverse sets of preferences without the need for further tuning. A major challenge here is using a low-dimensional preference vector to guide the model's behavior, despite it being governed by an overwhelmingly large number of parameters. To address this, Panacea is designed to use singular value decomposition (SVD)-based low-rank adaptation, which allows the preference vector to be simply injected online as singular values. Theoretically, we prove that Panacea recovers the entire Pareto front with common loss aggregation methods under mild conditions. Moreover, our experiments demonstrate, for the first time, the feasibility of aligning a single LLM to represent a spectrum of human preferences through various optimization methods. Our work marks a step forward in effectively and efficiently aligning models to diverse and intricate human preferences in a controllable and Pareto-optimal manner.
The Poison of Alignment
From the perspective of content safety issues, alignment has shown to limit large language models' (LLMs) harmful content generation. This intentional method of reinforcing models to not respond to certain user inputs seem to be present in many modern open-source instruction tuning datasets such as OpenAssistant or Guanaco. We introduce a novel insight to an instruction-tuned model's performance affected by the presence of alignment in supervised fine-tuning dataset. To be specific, we noticed that alignment acts as if it is poisoning the instruction dataset. Experimentally, we demonstrate that aligned answers significantly worsen the performance of the resulting fine-tuned model's on various reasoning benchmarks such as Big Bench (BBH), Massive Multitask Language Understanding (MMLU), Human Eval, and Discrete Reasoning Over Paragraphs (DROP), performing worse than the counterpart tuned without alignment by 4-33%.
YINYANG-ALIGN: Benchmarking Contradictory Objectives and Proposing Multi-Objective Optimization based DPO for Text-to-Image Alignment
Precise alignment in Text-to-Image (T2I) systems is crucial to ensure that generated visuals not only accurately encapsulate user intents but also conform to stringent ethical and aesthetic benchmarks. Incidents like the Google Gemini fiasco, where misaligned outputs triggered significant public backlash, underscore the critical need for robust alignment mechanisms. In contrast, Large Language Models (LLMs) have achieved notable success in alignment. Building on these advancements, researchers are eager to apply similar alignment techniques, such as Direct Preference Optimization (DPO), to T2I systems to enhance image generation fidelity and reliability. We present YinYangAlign, an advanced benchmarking framework that systematically quantifies the alignment fidelity of T2I systems, addressing six fundamental and inherently contradictory design objectives. Each pair represents fundamental tensions in image generation, such as balancing adherence to user prompts with creative modifications or maintaining diversity alongside visual coherence. YinYangAlign includes detailed axiom datasets featuring human prompts, aligned (chosen) responses, misaligned (rejected) AI-generated outputs, and explanations of the underlying contradictions.
Aligned Music Notation and Lyrics Transcription
The digitization of vocal music scores presents unique challenges that go beyond traditional Optical Music Recognition (OMR) and Optical Character Recognition (OCR), as it necessitates preserving the critical alignment between music notation and lyrics. This alignment is essential for proper interpretation and processing in practical applications. This paper introduces and formalizes, for the first time, the Aligned Music Notation and Lyrics Transcription (AMNLT) challenge, which addresses the complete transcription of vocal scores by jointly considering music symbols, lyrics, and their synchronization. We analyze different approaches to address this challenge, ranging from traditional divide-and-conquer methods that handle music and lyrics separately, to novel end-to-end solutions including direct transcription, unfolding mechanisms, and language modeling. To evaluate these methods, we introduce four datasets of Gregorian chants, comprising both real and synthetic sources, along with custom metrics specifically designed to assess both transcription and alignment accuracy. Our experimental results demonstrate that end-to-end approaches generally outperform heuristic methods in the alignment challenge, with language models showing particular promise in scenarios where sufficient training data is available. This work establishes the first comprehensive framework for AMNLT, providing both theoretical foundations and practical solutions for preserving and digitizing vocal music heritage.
LLM Safety Alignment is Divergence Estimation in Disguise
We propose a theoretical framework demonstrating that popular Large Language Model (LLM) alignment methods, including Reinforcement Learning from Human Feedback (RLHF) and alternatives, fundamentally function as divergence estimators between aligned (preferred or safe) and unaligned (less-preferred or harmful) distributions. This explains the separation phenomenon between safe and harmful prompts in the model hidden representation after alignment. Inspired by the theoretical results, we identify that some alignment methods are better than others in terms of separation and, introduce a new method, KLDO, and further demonstrate the implication of our theories. We advocate for compliance-refusal datasets over preference datasets to enhance safety alignment, supported by both theoretical reasoning and empirical evidence. Additionally, to quantify safety separation, we leverage a distance metric in the representation space and statistically validate its efficacy as a statistical significant indicator of LLM resilience against jailbreak attacks.
Graph Edit Distance with General Costs Using Neural Set Divergence
Graph Edit Distance (GED) measures the (dis-)similarity between two given graphs, in terms of the minimum-cost edit sequence that transforms one graph to the other. However, the exact computation of GED is NP-Hard, which has recently motivated the design of neural methods for GED estimation. However, they do not explicitly account for edit operations with different costs. In response, we propose GRAPHEDX, a neural GED estimator that can work with general costs specified for the four edit operations, viz., edge deletion, edge addition, node deletion and node addition. We first present GED as a quadratic assignment problem (QAP) that incorporates these four costs. Then, we represent each graph as a set of node and edge embeddings and use them to design a family of neural set divergence surrogates. We replace the QAP terms corresponding to each operation with their surrogates. Computing such neural set divergence require aligning nodes and edges of the two graphs. We learn these alignments using a Gumbel-Sinkhorn permutation generator, additionally ensuring that the node and edge alignments are consistent with each other. Moreover, these alignments are cognizant of both the presence and absence of edges between node-pairs. Experiments on several datasets, under a variety of edit cost settings, show that GRAPHEDX consistently outperforms state-of-the-art methods and heuristics in terms of prediction error.
Binary Classifier Optimization for Large Language Model Alignment
Aligning Large Language Models (LLMs) to human preferences through preference optimization has been crucial but labor-intensive, necessitating for each prompt a comparison of both a chosen and a rejected text completion by evaluators. Recently, Kahneman-Tversky Optimization (KTO) has demonstrated that LLMs can be aligned using merely binary "thumbs-up" or "thumbs-down" signals on each prompt-completion pair. In this paper, we present theoretical foundations to explain the successful alignment achieved through these binary signals. Our analysis uncovers a new perspective: optimizing a binary classifier, whose logit is a reward, implicitly induces minimizing the Direct Preference Optimization (DPO) loss. In the process of this discovery, we identified two techniques for effective alignment: reward shift and underlying distribution matching. Consequently, we propose a new algorithm, Binary Classifier Optimization, that integrates the techniques. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO and KTO; and second, on binary signal datasets simulating real-world conditions with divergent underlying distributions between thumbs-up and thumbs-down data. Our model consistently demonstrates effective and robust alignment across two base LLMs and three different binary signal datasets, showcasing the strength of our approach to learning from binary feedback.
Controllable Preference Optimization: Toward Controllable Multi-Objective Alignment
Alignment in artificial intelligence pursues the consistency between model responses and human preferences as well as values. In practice, the multifaceted nature of human preferences inadvertently introduces what is known as the "alignment tax" -a compromise where enhancements in alignment within one objective (e.g.,harmlessness) can diminish performance in others (e.g.,helpfulness). However, existing alignment techniques are mostly unidirectional, leading to suboptimal trade-offs and poor flexibility over various objectives. To navigate this challenge, we argue the prominence of grounding LLMs with evident preferences. We introduce controllable preference optimization (CPO), which explicitly specifies preference scores for different objectives, thereby guiding the model to generate responses that meet the requirements. Our experimental analysis reveals that the aligned models can provide responses that match various preferences among the "3H" (helpfulness, honesty, harmlessness) desiderata. Furthermore, by introducing diverse data and alignment goals, we surpass baseline methods in aligning with single objectives, hence mitigating the impact of the alignment tax and achieving improvements in multi-objective alignment.
Iterative Graph Alignment
By compressing diverse narratives, LLMs go beyond memorization, achieving intelligence by capturing generalizable causal relationships. However, they suffer from local 'representation gaps' due to insufficient training data diversity, limiting their real-world utility, especially in tasks requiring strict alignment to rules. Traditional alignment methods relying on heavy human annotations are inefficient and unscalable. Recent self-alignment techniques also fall short, as they often depend on self-selection based prompting and memorization-based learning. To address these issues, we introduce Iterative Graph Alignment (IGA), an annotation-free rule-based alignment algorithm. A teacher model (VLM) employs Iterative Graph Prompting (IGP) to create logical graphs and reference answers. The student model (LLM) identifies local knowledge gaps by attempting to align its responses with these references, collaborating with helper models to generate diverse answers. These aligned responses are then used for iterative supervised fine-tuning (SFT). Our evaluations across five rule-based scenarios demonstrate IGP's effectiveness, with a 73.12\% alignment improvement in Claude Sonnet 3.5, and Llama3-8B-Instruct achieving an 86.20\% improvement, outperforming Claude Sonnet 3.5 in rule-based alignment.
ASIC: Aligning Sparse in-the-wild Image Collections
We present a method for joint alignment of sparse in-the-wild image collections of an object category. Most prior works assume either ground-truth keypoint annotations or a large dataset of images of a single object category. However, neither of the above assumptions hold true for the long-tail of the objects present in the world. We present a self-supervised technique that directly optimizes on a sparse collection of images of a particular object/object category to obtain consistent dense correspondences across the collection. We use pairwise nearest neighbors obtained from deep features of a pre-trained vision transformer (ViT) model as noisy and sparse keypoint matches and make them dense and accurate matches by optimizing a neural network that jointly maps the image collection into a learned canonical grid. Experiments on CUB and SPair-71k benchmarks demonstrate that our method can produce globally consistent and higher quality correspondences across the image collection when compared to existing self-supervised methods. Code and other material will be made available at https://kampta.github.io/asic.
Alignment For Performance Improvement in Conversation Bots
This paper shows that alignment methods can achieve superior adherence to guardrails compared to instruction fine-tuning alone in conversational agents, also known as bots, within predefined guidelines or 'guardrails'. It examines traditional training approaches such as instruction fine-tuning and the recent advancements in direct alignment methods like Identity Preference Optimization (IPO), and Kahneman-Tversky Optimization (KTO). The effectiveness of alignment techniques both pre and post-instruction tuning is highlighted, illustrating their potential to optimize conversational bots in domains that require strict adherence to specified rules, such as customer care.
NeMo-Aligner: Scalable Toolkit for Efficient Model Alignment
Aligning Large Language Models (LLMs) with human values and preferences is essential for making them helpful and safe. However, building efficient tools to perform alignment can be challenging, especially for the largest and most competent LLMs which often contain tens or hundreds of billions of parameters. We create NeMo-Aligner, a toolkit for model alignment that can efficiently scale to using hundreds of GPUs for training. NeMo-Aligner comes with highly optimized and scalable implementations for major paradigms of model alignment such as: Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO), SteerLM, and Self-Play Fine-Tuning (SPIN). Additionally, our toolkit supports running most of the alignment techniques in a Parameter Efficient Fine-Tuning (PEFT) setting. NeMo-Aligner is designed for extensibility, allowing support for other alignment techniques with minimal effort. It is open-sourced with Apache 2.0 License and we invite community contributions at https://github.com/NVIDIA/NeMo-Aligner
Understanding Cross-Lingual Alignment -- A Survey
Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a large number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key.
Optimal Transport-based Alignment of Learned Character Representations for String Similarity
String similarity models are vital for record linkage, entity resolution, and search. In this work, we present STANCE --a learned model for computing the similarity of two strings. Our approach encodes the characters of each string, aligns the encodings using Sinkhorn Iteration (alignment is posed as an instance of optimal transport) and scores the alignment with a convolutional neural network. We evaluate STANCE's ability to detect whether two strings can refer to the same entity--a task we term alias detection. We construct five new alias detection datasets (and make them publicly available). We show that STANCE or one of its variants outperforms both state-of-the-art and classic, parameter-free similarity models on four of the five datasets. We also demonstrate STANCE's ability to improve downstream tasks by applying it to an instance of cross-document coreference and show that it leads to a 2.8 point improvement in B^3 F1 over the previous state-of-the-art approach.
Do Vision and Language Encoders Represent the World Similarly?
Aligned text-image encoders such as CLIP have become the de facto model for vision-language tasks. Furthermore, modality-specific encoders achieve impressive performances in their respective domains. This raises a central question: does an alignment exist between uni-modal vision and language encoders since they fundamentally represent the same physical world? Analyzing the latent spaces structure of vision and language models on image-caption benchmarks using the Centered Kernel Alignment (CKA), we find that the representation spaces of unaligned and aligned encoders are semantically similar. In the absence of statistical similarity in aligned encoders like CLIP, we show that a possible matching of unaligned encoders exists without any training. We frame this as a seeded graph-matching problem exploiting the semantic similarity between graphs and propose two methods - a Fast Quadratic Assignment Problem optimization, and a novel localized CKA metric-based matching/retrieval. We demonstrate the effectiveness of this on several downstream tasks including cross-lingual, cross-domain caption matching and image classification. Code available at github.com/mayug/0-shot-llm-vision.
Tradeoffs Between Alignment and Helpfulness in Language Models with Representation Engineering
Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. First, we find that under the conditions of our framework, alignment can be guaranteed with representation engineering, and at the same time that helpfulness is harmed in the process. Second, we show that helpfulness is harmed quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.
Melody-Lyrics Matching with Contrastive Alignment Loss
The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.
A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity
While alignment algorithms are now commonly used to tune pre-trained language models towards a user's preferences, we lack explanations for the underlying mechanisms in which models become ``aligned'', thus making it difficult to explain phenomena like jailbreaks. In this work we study a popular algorithm, direct preference optimization (DPO), and the mechanisms by which it reduces toxicity. Namely, we first study how toxicity is represented and elicited in a pre-trained language model, GPT2-medium. We then apply DPO with a carefully crafted pairwise dataset to reduce toxicity. We examine how the resulting model averts toxic outputs, and find that capabilities learned from pre-training are not removed, but rather bypassed. We use this insight to demonstrate a simple method to un-align the model, reverting it back to its toxic behavior.
Leveraging Neural Machine Translation for Word Alignment
The most common tools for word-alignment rely on a large amount of parallel sentences, which are then usually processed according to one of the IBM model algorithms. The training data is, however, the same as for machine translation (MT) systems, especially for neural MT (NMT), which itself is able to produce word-alignments using the trained attention heads. This is convenient because word-alignment is theoretically a viable byproduct of any attention-based NMT, which is also able to provide decoder scores for a translated sentence pair. We summarize different approaches on how word-alignment can be extracted from alignment scores and then explore ways in which scores can be extracted from NMT, focusing on inferring the word-alignment scores based on output sentence and token probabilities. We compare this to the extraction of alignment scores from attention. We conclude with aggregating all of the sources of alignment scores into a simple feed-forward network which achieves the best results when combined alignment extractors are used.
Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions
With the proliferation of large language models (LLMs), the comprehensive alignment of such models across multiple tasks has emerged as a critical area of research. Existing alignment methodologies primarily address single task, such as multi-turn dialogue, coding, mathematical problem-solving, and tool usage. However, AI-driven products that leverage language models usually necessitate a fusion of these abilities to function effectively in real-world scenarios. Moreover, the considerable computational resources required for proper alignment of LLMs underscore the need for a more robust, efficient, and encompassing approach to multi-task alignment, ensuring improved generative performance. In response to these challenges, we introduce a novel technique termed Mixture-of-Instructions (MoI), which employs a strategy of instruction concatenation combined with diverse system prompts to boost the alignment efficiency of language models. We have also compiled a diverse set of seven benchmark datasets to rigorously evaluate the alignment efficacy of the MoI-enhanced language model. Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI. This enhanced model demonstrates significant advancements in generative capabilities across coding, mathematics, and tool use tasks.
SimAlign: High Quality Word Alignments without Parallel Training Data using Static and Contextualized Embeddings
Word alignments are useful for tasks like statistical and neural machine translation (NMT) and cross-lingual annotation projection. Statistical word aligners perform well, as do methods that extract alignments jointly with translations in NMT. However, most approaches require parallel training data, and quality decreases as less training data is available. We propose word alignment methods that require no parallel data. The key idea is to leverage multilingual word embeddings, both static and contextualized, for word alignment. Our multilingual embeddings are created from monolingual data only without relying on any parallel data or dictionaries. We find that alignments created from embeddings are superior for four and comparable for two language pairs compared to those produced by traditional statistical aligners, even with abundant parallel data; e.g., contextualized embeddings achieve a word alignment F1 for English-German that is 5 percentage points higher than eflomal, a high-quality statistical aligner, trained on 100k parallel sentences.
Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models
Alignment, endowing a pre-trained Large language model (LLM) with the ability to follow instructions, is crucial for its real-world applications. Conventional supervised fine-tuning (SFT) methods formalize it as causal language modeling typically with a cross-entropy objective, requiring a large amount of high-quality instruction-response pairs. However, the quality of widely used SFT datasets can not be guaranteed due to the high cost and intensive labor for the creation and maintenance in practice. To overcome the limitations associated with the quality of SFT datasets, we introduce a novel preference-oriented supervised fine-tuning approach, namely PoFT. The intuition is to boost SFT by imposing a particular preference: favoring the target model over aligned LLMs on the same SFT data. This preference encourages the target model to predict a higher likelihood than that predicted by the aligned LLMs, incorporating assessment information on data quality (i.e., predicted likelihood by the aligned LLMs) into the training process. Extensive experiments are conducted, and the results validate the effectiveness of the proposed method. PoFT achieves stable and consistent improvements over the SFT baselines across different training datasets and base models. Moreover, we prove that PoFT can be integrated with existing SFT data filtering methods to achieve better performance, and further improved by following preference optimization procedures, such as DPO.
Baichuan Alignment Technical Report
We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.
Asymptotics of Language Model Alignment
Let p denote a generative language model. Let r denote a reward model that returns a scalar that captures the degree at which a draw from p is preferred. The goal of language model alignment is to alter p to a new distribution phi that results in a higher expected reward while keeping phi close to p. A popular alignment method is the KL-constrained reinforcement learning (RL), which chooses a distribution phi_Delta that maximizes E_{phi_{Delta}} r(y) subject to a relative entropy constraint KL(phi_Delta || p) leq Delta. Another simple alignment method is best-of-N, where N samples are drawn from p and one with highest reward is selected. In this paper, we offer a closed-form characterization of the optimal KL-constrained RL solution. We demonstrate that any alignment method that achieves a comparable trade-off between KL divergence and reward must approximate the optimal KL-constrained RL solution in terms of relative entropy. To further analyze the properties of alignment methods, we introduce two simplifying assumptions: we let the language model be memoryless, and the reward model be linear. Although these assumptions may not reflect complex real-world scenarios, they enable a precise characterization of the asymptotic behavior of both the best-of-N alignment, and the KL-constrained RL method, in terms of information-theoretic quantities. We prove that the reward of the optimal KL-constrained RL solution satisfies a large deviation principle, and we fully characterize its rate function. We also show that the rate of growth of the scaled cumulants of the reward is characterized by a proper Renyi cross entropy. Finally, we show that best-of-N is asymptotically equivalent to KL-constrained RL solution by proving that their expected rewards are asymptotically equal, and concluding that the two distributions must be close in KL divergence.
Aligning Large Language Models with Human: A Survey
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks. Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect (hallucinated) information. Hence, aligning LLMs with human expectations has become an active area of interest within the research community. This survey presents a comprehensive overview of these alignment technologies, including the following aspects. (1) Data collection: the methods for effectively collecting high-quality instructions for LLM alignment, including the use of NLP benchmarks, human annotations, and leveraging strong LLMs. (2) Training methodologies: a detailed review of the prevailing training methods employed for LLM alignment. Our exploration encompasses Supervised Fine-tuning, both Online and Offline human preference training, along with parameter-efficient training mechanisms. (3) Model Evaluation: the methods for evaluating the effectiveness of these human-aligned LLMs, presenting a multifaceted approach towards their assessment. In conclusion, we collate and distill our findings, shedding light on several promising future research avenues in the field. This survey, therefore, serves as a valuable resource for anyone invested in understanding and advancing the alignment of LLMs to better suit human-oriented tasks and expectations. An associated GitHub link collecting the latest papers is available at https://github.com/GaryYufei/AlignLLMHumanSurvey.
sDPO: Don't Use Your Data All at Once
As development of large language models (LLM) progresses, aligning them with human preferences has become increasingly important. We propose stepwise DPO (sDPO), an extension of the recently popularized direct preference optimization (DPO) for alignment tuning. This approach involves dividing the available preference datasets and utilizing them in a stepwise manner, rather than employing it all at once. We demonstrate that this method facilitates the use of more precisely aligned reference models within the DPO training framework. Furthermore, sDPO trains the final model to be more performant, even outperforming other popular LLMs with more parameters.
The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm
A key concern with the concept of "alignment" is the implicit question of "alignment to what?". AI systems are increasingly used across the world, yet safety alignment is often focused on homogeneous monolingual settings. Additionally, preference training and safety measures often overfit to harms common in Western-centric datasets. Here, we explore the viability of different alignment approaches when balancing dual objectives: addressing and optimizing for a non-homogeneous set of languages and cultural preferences while minimizing both global and local harms. We collect the first set of human annotated red-teaming prompts in different languages distinguishing between global and local harm, which serve as a laboratory for understanding the reliability of alignment techniques when faced with preference distributions that are non-stationary across geographies and languages. While this setting is seldom covered by the literature to date, which primarily centers on English harm mitigation, it captures real-world interactions with AI systems around the world. We establish a new precedent for state-of-the-art alignment techniques across 6 languages with minimal degradation in general performance. Our work provides important insights into cross-lingual transfer and novel optimization approaches to safeguard AI systems designed to serve global populations.
LoRA-One: One-Step Full Gradient Could Suffice for Fine-Tuning Large Language Models, Provably and Efficiently
This paper explores how theory can guide and enhance practical algorithms, using Low-Rank Adaptation (LoRA, Hu et al. 2022) in large language models as a case study. We rigorously prove that, under gradient descent, LoRA adapters align with specific singular subspaces of the one-step full fine-tuning gradient. This result suggests that, by properly initializing the adapters using the one-step full gradient, subspace alignment can be achieved immediately and applicable to both linear and nonlinear models. Building on our theory, we propose a theory-driven algorithm, LoRA-One, where the linear convergence (as well as generalization) is built and incorporating preconditioners theoretically helps mitigate the effects of ill-conditioning. Besides, our theory reveals connections between LoRA-One and other gradient-alignment-based methods, helping to clarify misconceptions in the design of such algorithms. LoRA-One achieves significant empirical improvements over LoRA and its variants across benchmarks in natural language understanding, mathematical reasoning, and code generation. Code is available at: https://github.com/YuanheZ/LoRA-One.
Word Alignment by Fine-tuning Embeddings on Parallel Corpora
Word alignment over parallel corpora has a wide variety of applications, including learning translation lexicons, cross-lingual transfer of language processing tools, and automatic evaluation or analysis of translation outputs. The great majority of past work on word alignment has worked by performing unsupervised learning on parallel texts. Recently, however, other work has demonstrated that pre-trained contextualized word embeddings derived from multilingually trained language models (LMs) prove an attractive alternative, achieving competitive results on the word alignment task even in the absence of explicit training on parallel data. In this paper, we examine methods to marry the two approaches: leveraging pre-trained LMs but fine-tuning them on parallel text with objectives designed to improve alignment quality, and proposing methods to effectively extract alignments from these fine-tuned models. We perform experiments on five language pairs and demonstrate that our model can consistently outperform previous state-of-the-art models of all varieties. In addition, we demonstrate that we are able to train multilingual word aligners that can obtain robust performance on different language pairs. Our aligner, AWESOME (Aligning Word Embedding Spaces of Multilingual Encoders), with pre-trained models is available at https://github.com/neulab/awesome-align
Align^2LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation
Recent advances in Multi-modal Large Language Models (MLLMs), such as LLaVA-series models, are driven by massive machine-generated instruction-following data tuning. Such automatic instruction collection pipelines, however, inadvertently introduce significant variability in data quality. This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment, to compress this vast corpus of machine-generated multimodal instructions to a compact and high-quality form: (i) For human preference alignment, we have collected a machine-generated multimodal instruction dataset and established a comprehensive set of both subjective and objective criteria to guide the data quality assessment critically from human experts. By doing so, a reward model was trained on the annotated dataset to internalize the nuanced human understanding of instruction alignment. (ii) For LLM preference alignment, given the instruction selected by the reward model, we propose leveraging the inner LLM used in MLLM to align the writing style of visual instructions with that of the inner LLM itself, resulting in LLM-aligned instruction improvement. Extensive experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%. Impressively, by aggressively reducing the total training sample size from 158k to 14k (9times smaller), our model consistently outperforms its full-size dataset counterpart across various MLLM benchmarks. Our project is available at https://github.com/DCDmllm/Align2LLaVA.
Alignment-Enhanced Decoding:Defending via Token-Level Adaptive Refining of Probability Distributions
Large language models are susceptible to jailbreak attacks, which can result in the generation of harmful content. While prior defenses mitigate these risks by perturbing or inspecting inputs, they ignore competing objectives, the underlying cause of alignment failures. In this paper, we propose Alignment-Enhanced Decoding (AED), a novel defense that employs adaptive decoding to address the root causes of jailbreak issues. We first define the Competitive Index to quantify alignment failures and utilize feedback from self-evaluation to compute post-alignment logits. Then, AED adaptively combines AED and post-alignment logits with the original logits to obtain harmless and helpful distributions. Consequently, our method enhances safety alignment while maintaining helpfulness. We conduct experiments across five models and four common jailbreaks, with the results validating the effectiveness of our approach. Code is available at https://github.com/GIGABaozi/AED.git.
Word Alignment in the Era of Deep Learning: A Tutorial
The word alignment task, despite its prominence in the era of statistical machine translation (SMT), is niche and under-explored today. In this two-part tutorial, we argue for the continued relevance for word alignment. The first part provides a historical background to word alignment as a core component of the traditional SMT pipeline. We zero-in on GIZA++, an unsupervised, statistical word aligner with surprising longevity. Jumping forward to the era of neural machine translation (NMT), we show how insights from word alignment inspired the attention mechanism fundamental to present-day NMT. The second part shifts to a survey approach. We cover neural word aligners, showing the slow but steady progress towards surpassing GIZA++ performance. Finally, we cover the present-day applications of word alignment, from cross-lingual annotation projection, to improving translation.
The Efficiency Spectrum of Large Language Models: An Algorithmic Survey
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains, reshaping the artificial general intelligence landscape. However, the increasing computational and memory demands of these models present substantial challenges, hindering both academic research and practical applications. To address these issues, a wide array of methods, including both algorithmic and hardware solutions, have been developed to enhance the efficiency of LLMs. This survey delivers a comprehensive review of algorithmic advancements aimed at improving LLM efficiency. Unlike other surveys that typically focus on specific areas such as training or model compression, this paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs. Specifically, it covers various topics related to efficiency, including scaling laws, data utilization, architectural innovations, training and tuning strategies, and inference techniques. This paper aims to serve as a valuable resource for researchers and practitioners, laying the groundwork for future innovations in this critical research area. Our repository of relevant references is maintained at url{https://github.com/tding1/Efficient-LLM-Survey}.
Style over Substance: Failure Modes of LLM Judges in Alignment Benchmarking
The release of ChatGPT in November 2022 sparked an explosion of interest in post-training and an avalanche of new preference optimization (PO) methods. These methods claim superior alignment by virtue of better correspondence with human pairwise preferences, often measured by LLM judges. In this work, we attempt to answer the following question -- do LLM-judge preferences translate to progress on other, more concrete metrics for alignment, and if not, why not? We define a concrete metric for alignment, and introduce SOS-Bench, the largest standardized, reproducible LLM meta-benchmark to date. We find that (1) LLM-judgments do not correlate with concrete measures of safety, world knowledge, and instruction following; (2) LLM judges have powerful implicit biases, prioritizing style over factuality and safety; and (3) the supervised fine-tuning (SFT) stage of post-training, and not the PO stage, has the greatest impact on alignment, with data scaling and prompt diversity as the driving factors. Our codebase and complete results can be found at https://github.com/penfever/sos-bench.
Uncovering the Computational Ingredients of Human-Like Representations in LLMs
The ability to translate diverse patterns of inputs into structured patterns of behavior has been thought to rest on both humans' and machines' ability to learn robust representations of relevant concepts. The rapid advancement of transformer-based large language models (LLMs) has led to a diversity of computational ingredients -- architectures, fine tuning methods, and training datasets among others -- but it remains unclear which of these ingredients are most crucial for building models that develop human-like representations. Further, most current LLM benchmarks are not suited to measuring representational alignment between humans and models, making benchmark scores unreliable for assessing if current LLMs are making progress towards becoming useful cognitive models. We address these limitations by first evaluating a set of over 70 models that widely vary in their computational ingredients on a triplet similarity task, a method well established in the cognitive sciences for measuring human conceptual representations, using concepts from the THINGS database. Comparing human and model representations, we find that models that undergo instruction-finetuning and which have larger dimensionality of attention heads are among the most human aligned, while multimodal pretraining and parameter size have limited bearing on alignment. Correlations between alignment scores and scores on existing benchmarks reveal that while some benchmarks (e.g., MMLU) are better suited than others (e.g., MUSR) for capturing representational alignment, no existing benchmark is capable of fully accounting for the variance of alignment scores, demonstrating their insufficiency in capturing human-AI alignment. Taken together, our findings help highlight the computational ingredients most essential for advancing LLMs towards models of human conceptual representation and address a key benchmarking gap in LLM evaluation.
FLAME: Factuality-Aware Alignment for Large Language Models
Alignment is a standard procedure to fine-tune pre-trained large language models (LLMs) to follow natural language instructions and serve as helpful AI assistants. We have observed, however, that the conventional alignment process fails to enhance the factual accuracy of LLMs, and often leads to the generation of more false facts (i.e. hallucination). In this paper, we study how to make the LLM alignment process more factual, by first identifying factors that lead to hallucination in both alignment steps:\ supervised fine-tuning (SFT) and reinforcement learning (RL). In particular, we find that training the LLM on new knowledge or unfamiliar texts can encourage hallucination. This makes SFT less factual as it trains on human labeled data that may be novel to the LLM. Furthermore, reward functions used in standard RL can also encourage hallucination, because it guides the LLM to provide more helpful responses on a diverse set of instructions, often preferring longer and more detailed responses. Based on these observations, we propose factuality-aware alignment, comprised of factuality-aware SFT and factuality-aware RL through direct preference optimization. Experiments show that our proposed factuality-aware alignment guides LLMs to output more factual responses while maintaining instruction-following capability.
Token Alignment via Character Matching for Subword Completion
Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text autocompletion.
Inference-time Alignment in Continuous Space
Aligning large language models with human feedback at inference time has received increasing attention due to its flexibility. Existing methods rely on generating multiple responses from the base policy for search using a reward model, which can be considered as searching in a discrete response space. However, these methods struggle to explore informative candidates when the base policy is weak or the candidate set is small, resulting in limited effectiveness. In this paper, to address this problem, we propose Simple Energy Adaptation (SEA), a simple yet effective algorithm for inference-time alignment. In contrast to expensive search over the discrete space, SEA directly adapts original responses from the base policy toward the optimal one via gradient-based sampling in continuous latent space. Specifically, SEA formulates inference as an iterative optimization procedure on an energy function over actions in the continuous space defined by the optimal policy, enabling simple and effective alignment. For instance, despite its simplicity, SEA outperforms the second-best baseline with a relative improvement of up to 77.51% on AdvBench and 16.36% on MATH. Our code is publicly available at https://github.com/yuanyige/sea
A Survey on Training-free Alignment of Large Language Models
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment
Alignment with human preference is a desired property of large language models (LLMs). Currently, the main alignment approach is based on reinforcement learning from human feedback (RLHF). Despite the effectiveness of RLHF, it is intricate to implement and train, thus recent studies explore how to develop alternative alignment approaches based on supervised fine-tuning (SFT). A major limitation of SFT is that it essentially does imitation learning, which cannot fully understand what are the expected behaviors. To address this issue, we propose an improved alignment approach named FIGA. Different from prior methods, we incorporate fine-grained (i.e., token or phrase level) quality signals that are derived by contrasting good and bad responses. Our approach has made two major contributions. Firstly, we curate a refined alignment dataset that pairs initial responses and the corresponding revised ones. Secondly, we devise a new loss function can leverage fine-grained quality signals to instruct the learning of LLMs for alignment. Extensive experiments have demonstrated the effectiveness of our approaches by comparing a number of competitive baselines.
The Right Time Matters: Data Arrangement Affects Zero-Shot Generalization in Instruction Tuning
Understanding alignment techniques begins with comprehending zero-shot generalization brought by instruction tuning, but little of the mechanism has been understood. Existing work has largely been confined to the task level, without considering that tasks are artificially defined and, to LLMs, merely consist of tokens and representations. To bridge this gap, we investigate zero-shot generalization from the perspective of the data itself. We first demonstrate that zero-shot generalization happens very early during instruction tuning, with loss serving as a stable indicator. Next, we investigate training data arrangement through similarity and granularity perspectives, confirming that the timing of exposure to certain training examples may greatly facilitate generalization on unseen tasks. Finally, we propose a more grounded training data arrangement framework, Test-centric Multi-turn Arrangement, and show its effectiveness in promoting continual learning and further loss reduction. For the first time, we show that zero-shot generalization during instruction tuning is a form of similarity-based generalization between training and test data at the instance level. Our code is released at https://github.com/thunlp/Dynamics-of-Zero-Shot-Generalization.
Reward Steering with Evolutionary Heuristics for Decoding-time Alignment
The widespread applicability and increasing omnipresence of LLMs have instigated a need to align LLM responses to user and stakeholder preferences. Many preference optimization approaches have been proposed that fine-tune LLM parameters to achieve good alignment. However, such parameter tuning is known to interfere with model performance on many tasks. Moreover, keeping up with shifting user preferences is tricky in such a situation. Decoding-time alignment with reward model guidance solves these issues at the cost of increased inference time. However, most of such methods fail to strike the right balance between exploration and exploitation of reward -- often due to the conflated formulation of these two aspects - to give well-aligned responses. To remedy this we decouple these two aspects and implement them in an evolutionary fashion: exploration is enforced by decoding from mutated instructions and exploitation is represented as the periodic replacement of poorly-rewarded generations with well-rewarded ones. Empirical evidences indicate that this strategy outperforms many preference optimization and decode-time alignment approaches on two widely accepted alignment benchmarks AlpacaEval 2 and MT-Bench. Our implementation will be available at: https://darwin-alignment.github.io.
Cascade Reward Sampling for Efficient Decoding-Time Alignment
Aligning large language models (LLMs) with human preferences is essential for their applications. Recently, decoding-time alignment has emerged as an effective plug-and-play technique that avoids fine-tuning model parameters. This approach retains the general utility of pretrained LLMs but often suffers from significant inefficiencies during decoding, primarily due to wasted token generation and excessive reward evaluations. To address these challenges, we introduce Cascade Reward Sampling (CARDS) to resolve both efficiency bottlenecks in decoding-time alignment. Specifically, we develop a segment-level rejection sampling algorithm that minimizes redundant computations of both LLMs and reward models (RMs). Central to CARDS is an uncertainty-based segmentation mechanism, which ensures the accuracy of RMs evaluations on incomplete segments. Furthermore, we provide a detailed analysis of reward scores on segments to elucidate the improved alignment performance. Experimental results demonstrate that CARDS significantly improves decoding efficiency, alignment quality, and general utility compared to existing decoding-time alignment methods, achieving approximately a 70% reduction in decoding time and over 90% win-ties in utility and safety benchmarks.
Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs.
Alleviating the Fear of Losing Alignment in LLM Fine-tuning
Large language models (LLMs) have demonstrated revolutionary capabilities in understanding complex contexts and performing a wide range of tasks. However, LLMs can also answer questions that are unethical or harmful, raising concerns about their applications. To regulate LLMs' responses to such questions, a training strategy called alignment can help. Yet, alignment can be unexpectedly compromised when fine-tuning an LLM for downstream tasks. This paper focuses on recovering the alignment lost during fine-tuning. We observe that there are two distinct directions inherent in an aligned LLM: the aligned direction and the harmful direction. An LLM is inclined to answer questions in the aligned direction while refusing queries in the harmful direction. Therefore, we propose to recover the harmful direction of the fine-tuned model that has been compromised. Specifically, we restore a small subset of the fine-tuned model's weight parameters from the original aligned model using gradient descent. We also introduce a rollback mechanism to avoid aggressive recovery and maintain downstream task performance. Our evaluation on 125 fine-tuned LLMs demonstrates that our method can reduce their harmful rate (percentage of answering harmful questions) from 33.25\% to 1.74\%, without sacrificing task performance much. In contrast, the existing methods either only reduce the harmful rate to a limited extent or significantly impact the normal functionality. Our code is available at https://github.com/kangyangWHU/LLMAlignment
SPARTA ALIGNMENT: Collectively Aligning Multiple Language Models through Combat
We propose SPARTA ALIGNMENT, an algorithm to collectively align multiple LLMs through competition and combat. To complement a single model's lack of diversity in generation and biases in evaluation, multiple LLMs form a "sparta tribe" to compete against each other in fulfilling instructions while serving as judges for the competition of others. For each iteration, one instruction and two models are selected for a duel, the other models evaluate the two responses, and their evaluation scores are aggregated through a adapted elo-ranking based reputation system, where winners/losers of combat gain/lose weight in evaluating others. The peer-evaluated combat results then become preference pairs where the winning response is preferred over the losing one, and all models learn from these preferences at the end of each iteration. SPARTA ALIGNMENT enables the self-evolution of multiple LLMs in an iterative and collective competition process. Extensive experiments demonstrate that SPARTA ALIGNMENT outperforms initial models and 4 self-alignment baselines across 10 out of 12 tasks and datasets with 7.0% average improvement. Further analysis reveals that SPARTA ALIGNMENT generalizes more effectively to unseen tasks and leverages the expertise diversity of participating models to produce more logical, direct and informative outputs.
I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm
Large Language Models (LLMs) have achieved significant advancements, however, the common learning paradigm treats LLMs as passive information repositories, neglecting their potential for active learning and alignment. Some approaches train LLMs using their own generated synthetic data, exploring the possibility of active alignment. However, there is still a huge gap between these one-time alignment methods and the continuous automatic alignment of humans. In this paper, we introduce I-SHEEP, an Iterative Self-EnHancEmEnt Paradigm.This human-like paradigm enables LLMs to continuously self-align from scratch with nothing. Compared to the one-time alignment method Dromedary sun2023principledriven, which refers to the first iteration in this paper, I-SHEEP can significantly enhance capacities on both Qwen and Llama models. I-SHEEP achieves a maximum relative improvement of 78.2\% in the Alpaca Eval, 24.0\% in the MT Bench, and an absolute increase of 8.88\% in the IFEval accuracy over subsequent iterations in Qwen-1.5 72B model. Additionally, I-SHEEP surpasses the base model in various standard benchmark generation tasks, achieving an average improvement of 24.77\% in code generation tasks, 12.04\% in TrivialQA, and 20.29\% in SQuAD. We also provide new insights based on the experiment results. Our codes, datasets, and models are available at https://anonymous.4open.science/r/I-SHEEP.
Alignment Studio: Aligning Large Language Models to Particular Contextual Regulations
The alignment of large language models is usually done by model providers to add or control behaviors that are common or universally understood across use cases and contexts. In contrast, in this article, we present an approach and architecture that empowers application developers to tune a model to their particular values, social norms, laws and other regulations, and orchestrate between potentially conflicting requirements in context. We lay out three main components of such an Alignment Studio architecture: Framers, Instructors, and Auditors that work in concert to control the behavior of a language model. We illustrate this approach with a running example of aligning a company's internal-facing enterprise chatbot to its business conduct guidelines.
Pralekha: An Indic Document Alignment Evaluation Benchmark
Mining parallel document pairs poses a significant challenge because existing sentence embedding models often have limited context windows, preventing them from effectively capturing document-level information. Another overlooked issue is the lack of concrete evaluation benchmarks comprising high-quality parallel document pairs for assessing document-level mining approaches, particularly for Indic languages. In this study, we introduce Pralekha, a large-scale benchmark for document-level alignment evaluation. Pralekha includes over 2 million documents, with a 1:2 ratio of unaligned to aligned pairs, covering 11 Indic languages and English. Using Pralekha, we evaluate various document-level mining approaches across three dimensions: the embedding models, the granularity levels, and the alignment algorithm. To address the challenge of aligning documents using sentence and chunk-level alignments, we propose a novel scoring method, Document Alignment Coefficient (DAC). DAC demonstrates substantial improvements over baseline pooling approaches, particularly in noisy scenarios, achieving average gains of 20-30% in precision and 15-20% in F1 score. These results highlight DAC's effectiveness in parallel document mining for Indic languages.
Turing Representational Similarity Analysis (RSA): A Flexible Method for Measuring Alignment Between Human and Artificial Intelligence
As we consider entrusting Large Language Models (LLMs) with key societal and decision-making roles, measuring their alignment with human cognition becomes critical. This requires methods that can assess how these systems represent information and facilitate comparisons to human understanding across diverse tasks. To meet this need, we developed Turing Representational Similarity Analysis (RSA), a method that uses pairwise similarity ratings to quantify alignment between AIs and humans. We tested this approach on semantic alignment across text and image modalities, measuring how different Large Language and Vision Language Model (LLM and VLM) similarity judgments aligned with human responses at both group and individual levels. GPT-4o showed the strongest alignment with human performance among the models we tested, particularly when leveraging its text processing capabilities rather than image processing, regardless of the input modality. However, no model we studied adequately captured the inter-individual variability observed among human participants. This method helped uncover certain hyperparameters and prompts that could steer model behavior to have more or less human-like qualities at an inter-individual or group level. Turing RSA enables the efficient and flexible quantification of human-AI alignment and complements existing accuracy-based benchmark tasks. We demonstrate its utility across multiple modalities (words, sentences, images) for understanding how LLMs encode knowledge and for examining representational alignment with human cognition.
Fast Best-of-N Decoding via Speculative Rejection
The safe and effective deployment of Large Language Models (LLMs) involves a critical step called alignment, which ensures that the model's responses are in accordance with human preferences. Prevalent alignment techniques, such as DPO, PPO and their variants, align LLMs by changing the pre-trained model weights during a phase called post-training. While predominant, these post-training methods add substantial complexity before LLMs can be deployed. Inference-time alignment methods avoid the complex post-training step and instead bias the generation towards responses that are aligned with human preferences. The best-known inference-time alignment method, called Best-of-N, is as effective as the state-of-the-art post-training procedures. Unfortunately, Best-of-N requires vastly more resources at inference time than standard decoding strategies, which makes it computationally not viable. In this work, we introduce Speculative Rejection, a computationally-viable inference-time alignment algorithm. It generates high-scoring responses according to a given reward model, like Best-of-N does, while being between 16 to 32 times more computationally efficient.
CycleAlign: Iterative Distillation from Black-box LLM to White-box Models for Better Human Alignment
Language models trained on large-scale corpus often generate content that is harmful, toxic, or contrary to human preferences, making their alignment with human values a critical concern. Reinforcement learning from human feedback (RLHF) with algorithms like PPO is a prevalent approach for alignment but is often complex, unstable, and resource-intensive. Recently, ranking-based alignment methods have emerged, offering stability and effectiveness by replacing the RL framework with supervised fine-tuning, but they are costly due to the need for annotated data. Considering that existing large language models (LLMs) like ChatGPT are already relatively well-aligned and cost-friendly, researchers have begun to align the language model with human preference from AI feedback. The common practices, which unidirectionally distill the instruction-following responses from LLMs, are constrained by their bottleneck. Thus we introduce CycleAlign to distill alignment capabilities from parameter-invisible LLMs (black-box) to a parameter-visible model (white-box) in an iterative manner. With in-context learning (ICL) as the core of the cycle, the black-box models are able to rank the model-generated responses guided by human-craft instruction and demonstrations about their preferences. During iterative interaction, the white-box models also have a judgment about responses generated by them. Consequently, the agreement ranking could be viewed as a pseudo label to dynamically update the in-context demonstrations and improve the preference ranking ability of black-box models. Through multiple interactions, the CycleAlign framework could align the white-box model with the black-box model effectively in a low-resource way. Empirical results illustrate that the model fine-tuned by CycleAlign remarkably exceeds existing methods, and achieves the state-of-the-art performance in alignment with human value.
Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing
High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the left-side templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We perform a comprehensive analysis of the extracted data and select 300K high-quality instances. To compare Magpie data with other public instruction datasets, we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that in some tasks, models fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through supervised fine-tuning (SFT) and subsequent feedback learning. We also show that using Magpie solely for SFT can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.
Thought of Search: Planning with Language Models Through The Lens of Efficiency
Among the most important properties of algorithms investigated in computer science are soundness, completeness, and complexity. These properties, however, are rarely analyzed for the vast collection of recently proposed methods for planning with large language models. In this work, we alleviate this gap. We analyse these properties of using LLMs for planning and highlight that recent trends abandon both soundness and completeness for the sake of inefficiency. We propose a significantly more efficient approach that can, at the same time, maintain both soundness and completeness. We exemplify on four representative search problems, comparing to the LLM-based solutions from the literature that attempt to solve these problems. We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100\% accuracy with only a few calls to the LLM. We argue for a responsible use of compute resources; urging research community to investigate sound and complete LLM-based approaches that uphold efficiency.
APE: A Data-Centric Benchmark for Efficient LLM Adaptation in Text Summarization
We present Adjacent Possible Exploration (APE), a simple yet effective method for adapting large language models to specific tasks using minimal computational resources. Unlike traditional fine-tuning that requires extensive compute, APE iteratively fine-tunes models on small, carefully selected data batches (200 examples), retaining only improvements. On news summarization, APE achieves 40 percent BLEU improvement using just a T4 GPU in 60 minutes, matching or exceeding more complex methods like LoRA while remaining conceptually simple. Our approach is particularly valuable for researchers and practitioners with limited computational resources. We provide open-source code and demonstrate APE's effectiveness through both automatic metrics and human evaluation. While inspired by evolutionary theory's "adjacent possible", APE's core insight has a very practical application: small, iterative data perturbations can efficiently guide LLMs toward task-specific performance without expensive retraining.
The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning
The alignment tuning process of large language models (LLMs) typically involves instruction learning through supervised fine-tuning (SFT) and preference tuning via reinforcement learning from human feedback (RLHF). A recent study, LIMA (Zhou et al. 2023), shows that using merely 1K examples for SFT can achieve significant alignment performance as well, suggesting that the effect of alignment tuning might be "superficial." This raises questions about how exactly the alignment tuning transforms a base LLM. We analyze the effect of alignment tuning by examining the token distribution shift between base LLMs and their aligned counterpart. Our findings reveal that base LLMs and their alignment-tuned versions perform nearly identically in decoding on the majority of token positions. Most distribution shifts occur with stylistic tokens. These direct evidence strongly supports the Superficial Alignment Hypothesis suggested by LIMA. Based on these findings, we rethink the alignment of LLMs by posing the research question: how effectively can we align base LLMs without SFT or RLHF? To address this, we introduce a simple, tuning-free alignment method, URIAL. URIAL achieves effective alignment purely through in-context learning (ICL) with base LLMs, requiring as few as three constant stylistic examples and a system prompt. We conduct a fine-grained and interpretable evaluation on a diverse set of examples, named JUST-EVAL-INSTRUCT. Results demonstrate that base LLMs with URIAL can match or even surpass the performance of LLMs aligned with SFT or SFT+RLHF. We show that the gap between tuning-free and tuning-based alignment methods can be significantly reduced through strategic prompting and ICL. Our findings on the superficial nature of alignment tuning and results with URIAL suggest that deeper analysis and theoretical understanding of alignment is crucial to future LLM research.
A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation: the inability to adapt to individual preferences while maintaining alignment with universal human values. Current alignment techniques adopt a one-size-fits-all approach that fails to accommodate users' diverse backgrounds and needs. This paper presents the first comprehensive survey of personalized alignment-a paradigm that enables LLMs to adapt their behavior within ethical boundaries based on individual preferences. We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment, systematically analyzing implementation approaches and evaluating their effectiveness across various scenarios. By examining current techniques, potential risks, and future challenges, this survey provides a structured foundation for developing more adaptable and ethically-aligned LLMs.
Alignment for Honesty
Recent research has made significant strides in applying alignment techniques to enhance the helpfulness and harmlessness of large language models (LLMs) in accordance with human intentions. In this paper, we argue for the importance of alignment for honesty, ensuring that LLMs proactively refuse to answer questions when they lack knowledge, while still not being overly conservative. However, a pivotal aspect of alignment for honesty involves discerning the limits of an LLM's knowledge, which is far from straightforward. This challenge demands comprehensive solutions in terms of metric development, benchmark creation, and training methodologies. In this paper, we address these challenges by first establishing a precise problem definition and defining ``honesty'' inspired by the Analects of Confucius. This serves as a cornerstone for developing metrics that effectively measure an LLM's honesty by quantifying its progress post-alignment. Furthermore, we introduce a flexible training framework which is further instantiated by several efficient fine-tuning techniques that emphasize honesty without sacrificing performance on other tasks. Our extensive experiments reveal that these aligned models show a marked increase in honesty, as indicated by our proposed metrics. We open-source a wealth of resources to facilitate future research at https://github.com/GAIR-NLP/alignment-for-honesty, including honesty-aligned models, training and evaluation datasets for honesty alignment, concept glossary, as well as all relevant source code.
SongMASS: Automatic Song Writing with Pre-training and Alignment Constraint
Automatic song writing aims to compose a song (lyric and/or melody) by machine, which is an interesting topic in both academia and industry. In automatic song writing, lyric-to-melody generation and melody-to-lyric generation are two important tasks, both of which usually suffer from the following challenges: 1) the paired lyric and melody data are limited, which affects the generation quality of the two tasks, considering a lot of paired training data are needed due to the weak correlation between lyric and melody; 2) Strict alignments are required between lyric and melody, which relies on specific alignment modeling. In this paper, we propose SongMASS to address the above challenges, which leverages masked sequence to sequence (MASS) pre-training and attention based alignment modeling for lyric-to-melody and melody-to-lyric generation. Specifically, 1) we extend the original sentence-level MASS pre-training to song level to better capture long contextual information in music, and use a separate encoder and decoder for each modality (lyric or melody); 2) we leverage sentence-level attention mask and token-level attention constraint during training to enhance the alignment between lyric and melody. During inference, we use a dynamic programming strategy to obtain the alignment between each word/syllable in lyric and note in melody. We pre-train SongMASS on unpaired lyric and melody datasets, and both objective and subjective evaluations demonstrate that SongMASS generates lyric and melody with significantly better quality than the baseline method without pre-training or alignment constraint.
AlignBench: Benchmarking Fine-Grained Image-Text Alignment with Synthetic Image-Caption Pairs
Assessing image-text alignment models such as CLIP is crucial for bridging visual and linguistic representations. Yet existing benchmarks rely on rule-based perturbations or short captions, limiting their ability to measure fine-grained alignment. We introduce AlignBench, a benchmark that provides a new indicator of image-text alignment by evaluating detailed image-caption pairs generated by diverse image-to-text and text-to-image models. Each sentence is annotated for correctness, enabling direct assessment of VLMs as alignment evaluators. Benchmarking a wide range of decoder-based VLMs reveals three key findings: (i) CLIP-based models, even those tailored for compositional reasoning, remain nearly blind; (ii) detectors systematically over-score early sentences; and (iii) they show strong self-preference, favoring their own outputs and harming detection performance. Our project page will be available at https://dahlian00.github.io/AlignBench/.
Learning to Mine Aligned Code and Natural Language Pairs from Stack Overflow
For tasks like code synthesis from natural language, code retrieval, and code summarization, data-driven models have shown great promise. However, creating these models require parallel data between natural language (NL) and code with fine-grained alignments. Stack Overflow (SO) is a promising source to create such a data set: the questions are diverse and most of them have corresponding answers with high-quality code snippets. However, existing heuristic methods (e.g., pairing the title of a post with the code in the accepted answer) are limited both in their coverage and the correctness of the NL-code pairs obtained. In this paper, we propose a novel method to mine high-quality aligned data from SO using two sets of features: hand-crafted features considering the structure of the extracted snippets, and correspondence features obtained by training a probabilistic model to capture the correlation between NL and code using neural networks. These features are fed into a classifier that determines the quality of mined NL-code pairs. Experiments using Python and Java as test beds show that the proposed method greatly expands coverage and accuracy over existing mining methods, even when using only a small number of labeled examples. Further, we find that reasonable results are achieved even when training the classifier on one language and testing on another, showing promise for scaling NL-code mining to a wide variety of programming languages beyond those for which we are able to annotate data.
UltraIF: Advancing Instruction Following from the Wild
Instruction-following made modern large language models (LLMs) helpful assistants. However, the key to taming LLMs on complex instructions remains mysterious, for that there are huge gaps between models trained by open-source community and those trained by leading companies. To bridge the gap, we propose a simple and scalable approach UltraIF for building LLMs that can follow complex instructions with open-source data. UltraIF first decomposes real-world user prompts into simpler queries, constraints, and corresponding evaluation questions for the constraints. Then, we train an UltraComposer to compose constraint-associated prompts with evaluation questions. This prompt composer allows us to synthesize complicated instructions as well as filter responses with evaluation questions. In our experiment, for the first time, we successfully align LLaMA-3.1-8B-Base to catch up with its instruct version on 5 instruction-following benchmarks without any benchmark information, using only 8B model as response generator and evaluator. The aligned model also achieved competitive scores on other benchmarks. Moreover, we also show that UltraIF could further improve LLaMA-3.1-8B-Instruct through self-alignment, motivating broader use cases for the method. Our code will be available at https://github.com/kkk-an/UltraIF.
CodeUltraFeedback: An LLM-as-a-Judge Dataset for Aligning Large Language Models to Coding Preferences
Evaluating the alignment of large language models (LLMs) with user-defined coding preferences is a challenging endeavour that requires a deep assessment of LLMs' outputs. Existing methods and benchmarks rely primarily on automated metrics and static analysis tools, which often fail to capture the nuances of user instructions and LLM outputs. To address this gap, we propose using the LLM-as-a-Judge methodology to evaluate the alignment of LLMs with coding preferences. Based on this approach, we present CodeUltraFeedback, a comprehensive dataset designed to facilitate the evaluation and improvement of LLM alignment. CodeUltraFeedback consists of 10,000 coding instructions, each annotated with four responses generated from a diverse pool of 14 LLMs. These responses are ranked based on five distinct coding preferences using GPT-3.5 as a judge, providing both numerical scores and detailed textual feedback. Our analysis of CodeUltraFeedback reveals that responses from GPT-3.5 and GPT-4 are generally preferred over those from open-weight LLMs, highlighting significant differences in alignment between closed and open-weight models. In turn, we explore the usage of CodeUltraFeedback as feedback data to fine-tune and align CodeLlama-7B-Instruct using supervised fine-tuning (SFT) and reinforcement learning from AI feedback (RLAIF) with direct preference optimization (DPO). The resulting aligned CodeLlama-7B-Instruct model outperforms larger LLMs in terms of alignment with coding preferences and shows improved functional correctness on the HumanEval+ benchmark compared to the original instruct model. Therefore, our contributions bridge the gap in preference tuning of LLMs for code and set the stage for further advancements in model alignment and RLAIF in automated software engineering.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
Unsupervised Multilingual Alignment using Wasserstein Barycenter
We study unsupervised multilingual alignment, the problem of finding word-to-word translations between multiple languages without using any parallel data. One popular strategy is to reduce multilingual alignment to the much simplified bilingual setting, by picking one of the input languages as the pivot language that we transit through. However, it is well-known that transiting through a poorly chosen pivot language (such as English) may severely degrade the translation quality, since the assumed transitive relations among all pairs of languages may not be enforced in the training process. Instead of going through a rather arbitrarily chosen pivot language, we propose to use the Wasserstein barycenter as a more informative "mean" language: it encapsulates information from all languages and minimizes all pairwise transportation costs. We evaluate our method on standard benchmarks and demonstrate state-of-the-art performances.
How Transliterations Improve Crosslingual Alignment
Recent studies have shown that post-aligning multilingual pretrained language models (mPLMs) using alignment objectives on both original and transliterated data can improve crosslingual alignment. This improvement further leads to better crosslingual transfer performance. However, it remains unclear how and why a better crosslingual alignment is achieved, as this technique only involves transliterations, and does not use any parallel data. This paper attempts to explicitly evaluate the crosslingual alignment and identify the key elements in transliteration-based approaches that contribute to better performance. For this, we train multiple models under varying setups for two pairs of related languages: (1) Polish and Ukrainian and (2) Hindi and Urdu. To assess alignment, we define four types of similarities based on sentence representations. Our experiments show that adding transliterations alone improves the overall similarities, even for random sentence pairs. With the help of auxiliary alignment objectives, especially the contrastive objective, the model learns to distinguish matched from random pairs, leading to better alignments. However, we also show that better alignment does not always yield better downstream performance, suggesting that further research is needed to clarify the connection between alignment and performance.
AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
Multimodal Large Language Models (MLLMs) are widely regarded as crucial in the exploration of Artificial General Intelligence (AGI). The core of MLLMs lies in their capability to achieve cross-modal alignment. To attain this goal, current MLLMs typically follow a two-phase training paradigm: the pre-training phase and the instruction-tuning phase. Despite their success, there are shortcomings in the modeling of alignment capabilities within these models. Firstly, during the pre-training phase, the model usually assumes that all image-text pairs are uniformly aligned, but in fact the degree of alignment between different image-text pairs is inconsistent. Secondly, the instructions currently used for finetuning incorporate a variety of tasks, different tasks's instructions usually require different levels of alignment capabilities, but previous MLLMs overlook these differentiated alignment needs. To tackle these issues, we propose a new multimodal large language model AlignGPT. In the pre-training stage, instead of treating all image-text pairs equally, we assign different levels of alignment capabilities to different image-text pairs. Then, in the instruction-tuning phase, we adaptively combine these different levels of alignment capabilities to meet the dynamic alignment needs of different instructions. Extensive experimental results show that our model achieves competitive performance on 12 benchmarks.
LLM-Align: Utilizing Large Language Models for Entity Alignment in Knowledge Graphs
Entity Alignment (EA) seeks to identify and match corresponding entities across different Knowledge Graphs (KGs), playing a crucial role in knowledge fusion and integration. Embedding-based entity alignment (EA) has recently gained considerable attention, resulting in the emergence of many innovative approaches. Initially, these approaches concentrated on learning entity embeddings based on the structural features of knowledge graphs (KGs) as defined by relation triples. Subsequent methods have integrated entities' names and attributes as supplementary information to improve the embeddings used for EA. However, existing methods lack a deep semantic understanding of entity attributes and relations. In this paper, we propose a Large Language Model (LLM) based Entity Alignment method, LLM-Align, which explores the instruction-following and zero-shot capabilities of Large Language Models to infer alignments of entities. LLM-Align uses heuristic methods to select important attributes and relations of entities, and then feeds the selected triples of entities to an LLM to infer the alignment results. To guarantee the quality of alignment results, we design a multi-round voting mechanism to mitigate the hallucination and positional bias issues that occur with LLMs. Experiments on three EA datasets, demonstrating that our approach achieves state-of-the-art performance compared to existing EA methods.
AlignIT: Enhancing Prompt Alignment in Customization of Text-to-Image Models
We consider the problem of customizing text-to-image diffusion models with user-supplied reference images. Given new prompts, the existing methods can capture the key concept from the reference images but fail to align the generated image with the prompt. In this work, we seek to address this key issue by proposing new methods that can easily be used in conjunction with existing customization methods that optimize the embeddings/weights at various intermediate stages of the text encoding process. The first contribution of this paper is a dissection of the various stages of the text encoding process leading up to the conditioning vector for text-to-image models. We take a holistic view of existing customization methods and notice that key and value outputs from this process differs substantially from their corresponding baseline (non-customized) models (e.g., baseline stable diffusion). While this difference does not impact the concept being customized, it leads to other parts of the generated image not being aligned with the prompt. Further, we also observe that these keys and values allow independent control various aspects of the final generation, enabling semantic manipulation of the output. Taken together, the features spanning these keys and values, serve as the basis for our next contribution where we fix the aforementioned issues with existing methods. We propose a new post-processing algorithm, AlignIT, that infuses the keys and values for the concept of interest while ensuring the keys and values for all other tokens in the input prompt are unchanged. Our proposed method can be plugged in directly to existing customization methods, leading to a substantial performance improvement in the alignment of the final result with the input prompt while retaining the customization quality.
The Hitchhiker's Guide to Human Alignment with *PO
With the growing utilization of large language models (LLMs) across domains, alignment towards human preferences has become one of the most critical aspects of training models. At the forefront of state-of-the-art human alignment methods are preference optimization methods (*PO). However, prior research has often concentrated on identifying the best-performing method, typically involving a grid search over hyperparameters, which can be impractical for general practitioners. In this paper, we aim to identify the algorithm that, while being performant, is simultaneously more robust to varying hyperparameters, thereby increasing the likelihood of achieving better results. We focus on a realistic out-of-distribution (OOD) scenario that mirrors real-world applications of human alignment, offering practical insights into the strengths and weaknesses of these methods. Furthermore, to better understand the shortcomings of generations from the different methods, we analyze the model generations through the lens of KL divergence of the SFT model and the response length statistics. Our analysis reveals that the widely adopted DPO method consistently produces lengthy responses of inferior quality that are very close to the SFT responses. Motivated by these findings, we propose an embarrassingly simple extension to the DPO algorithm, LN-DPO, resulting in more concise responses without sacrificing quality compared to the policy obtained by vanilla DPO.
Align With Purpose: Optimize Desired Properties in CTC Models with a General Plug-and-Play Framework
Connectionist Temporal Classification (CTC) is a widely used criterion for training supervised sequence-to-sequence (seq2seq) models. It enables learning the relations between input and output sequences, termed alignments, by marginalizing over perfect alignments (that yield the ground truth), at the expense of imperfect alignments. This binary differentiation of perfect and imperfect alignments falls short of capturing other essential alignment properties that hold significance in other real-world applications. Here we propose Align With Purpose, a general Plug-and-Play framework for enhancing a desired property in models trained with the CTC criterion. We do that by complementing the CTC with an additional loss term that prioritizes alignments according to a desired property. Our method does not require any intervention in the CTC loss function, enables easy optimization of a variety of properties, and allows differentiation between both perfect and imperfect alignments. We apply our framework in the domain of Automatic Speech Recognition (ASR) and show its generality in terms of property selection, architectural choice, and scale of training dataset (up to 280,000 hours). To demonstrate the effectiveness of our framework, we apply it to two unrelated properties: emission time and word error rate (WER). For the former, we report an improvement of up to 570ms in latency optimization with a minor reduction in WER, and for the latter, we report a relative improvement of 4.5% WER over the baseline models. To the best of our knowledge, these applications have never been demonstrated to work on a scale of data as large as ours. Notably, our method can be implemented using only a few lines of code, and can be extended to other alignment-free loss functions and to domains other than ASR.
Extracting alignment data in open models
In this work, we show that it is possible to extract significant amounts of alignment training data from a post-trained model -- useful to steer the model to improve certain capabilities such as long-context reasoning, safety, instruction following, and maths. While the majority of related work on memorisation has focused on measuring success of training data extraction through string matching, we argue that embedding models are better suited for our specific goals. Distances measured through a high quality embedding model can identify semantic similarities between strings that a different metric such as edit distance will struggle to capture. In fact, in our investigation, approximate string matching would have severely undercounted (by a conservative estimate of 10times) the amount of data that can be extracted due to trivial artifacts that deflate the metric. Interestingly, we find that models readily regurgitate training data that was used in post-training phases such as SFT or RL. We show that this data can be then used to train a base model, recovering a meaningful amount of the original performance. We believe our work exposes a possibly overlooked risk towards extracting alignment data. Finally, our work opens up an interesting discussion on the downstream effects of distillation practices: since models seem to be regurgitating aspects of their training set, distillation can therefore be thought of as indirectly training on the model's original dataset.
Disentangling Preference Representation and Text Generation for Efficient Individual Preference Alignment
Aligning Large Language Models (LLMs) with general human preferences has been proved crucial in improving the interaction quality between LLMs and human. However, human values are inherently diverse among different individuals, making it insufficient to align LLMs solely with general preferences. To address this, personalizing LLMs according to individual feedback emerges as a promising solution. Nonetheless, this approach presents challenges in terms of the efficiency of alignment algorithms. In this work, we introduce a flexible paradigm for individual preference alignment. Our method fundamentally improves efficiency by disentangling preference representation from text generation in LLMs. We validate our approach across multiple text generation tasks and demonstrate that it can produce aligned quality as well as or better than PEFT-based methods, while reducing additional training time for each new individual preference by 80% to 90% in comparison with them.
SoFA: Shielded On-the-fly Alignment via Priority Rule Following
The alignment problem in Large Language Models (LLMs) involves adapting them to the broad spectrum of human values. This requirement challenges existing alignment methods due to diversity of preferences and regulatory standards. This paper introduces a novel alignment paradigm, priority rule following, which defines rules as the primary control mechanism in each dialog, prioritizing them over user instructions. Our preliminary analysis reveals that even the advanced LLMs, such as GPT-4, exhibit shortcomings in understanding and prioritizing the rules. Therefore, we present PriorityDistill, a semi-automated approach for distilling priority following signals from LLM simulations to ensure robust rule integration and adherence. Our experiments show that this method not only effectively minimizes misalignments utilizing only one general rule but also adapts smoothly to various unseen rules, ensuring they are shielded from hijacking and that the model responds appropriately.
Self-Play with Adversarial Critic: Provable and Scalable Offline Alignment for Language Models
This work studies the challenge of aligning large language models (LLMs) with offline preference data. We focus on alignment by Reinforcement Learning from Human Feedback (RLHF) in particular. While popular preference optimization methods exhibit good empirical performance in practice, they are not theoretically guaranteed to converge to the optimal policy and can provably fail when the data coverage is sparse by classical offline reinforcement learning (RL) results. On the other hand, a recent line of work has focused on theoretically motivated preference optimization methods with provable guarantees, but these are not computationally efficient for large-scale applications like LLM alignment. To bridge this gap, we propose SPAC, a new offline preference optimization method with self-play, inspired by the on-average pessimism technique from the offline RL literature, to be the first provable and scalable approach to LLM alignment. We both provide theoretical analysis for its convergence under single-policy concentrability for the general function approximation setting and demonstrate its competitive empirical performance for LLM alignment on a 7B Mistral model with Open LLM Leaderboard evaluations.
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.
FastJAM: a Fast Joint Alignment Model for Images
Joint Alignment (JA) of images aims to align a collection of images into a unified coordinate frame, such that semantically-similar features appear at corresponding spatial locations. Most existing approaches often require long training times, large-capacity models, and extensive hyperparameter tuning. We introduce FastJAM, a rapid, graph-based method that drastically reduces the computational complexity of joint alignment tasks. FastJAM leverages pairwise matches computed by an off-the-shelf image matcher, together with a rapid nonparametric clustering, to construct a graph representing intra- and inter-image keypoint relations. A graph neural network propagates and aggregates these correspondences, efficiently predicting per-image homography parameters via image-level pooling. Utilizing an inverse-compositional loss, that eliminates the need for a regularization term over the predicted transformations (and thus also obviates the hyperparameter tuning associated with such terms), FastJAM performs image JA quickly and effectively. Experimental results on several benchmarks demonstrate that FastJAM achieves results better than existing modern JA methods in terms of alignment quality, while reducing computation time from hours or minutes to mere seconds. Our code is available at our project webpage, https://bgu-cs-vil.github.io/FastJAM/
Transfer Q Star: Principled Decoding for LLM Alignment
Aligning foundation models is essential for their safe and trustworthy deployment. However, traditional fine-tuning methods are computationally intensive and require updating billions of model parameters. A promising alternative, alignment via decoding, adjusts the response distribution directly without model updates to maximize a target reward r, thus providing a lightweight and adaptable framework for alignment. However, principled decoding methods rely on oracle access to an optimal Q-function (Q^*), which is often unavailable in practice. Hence, prior SoTA methods either approximate this Q^* using Q^{pi_{sft}} (derived from the reference SFT model) or rely on short-term rewards, resulting in sub-optimal decoding performance. In this work, we propose Transfer Q^*, which implicitly estimates the optimal value function for a target reward r through a baseline model rho_{BL} aligned with a baseline reward rho_{BL} (which can be different from the target reward r). Theoretical analyses of Transfer Q^* provide a rigorous characterization of its optimality, deriving an upper bound on the sub-optimality gap and identifying a hyperparameter to control the deviation from the pre-trained reference SFT model based on user needs. Our approach significantly reduces the sub-optimality gap observed in prior SoTA methods and demonstrates superior empirical performance across key metrics such as coherence, diversity, and quality in extensive tests on several synthetic and real datasets.
