- Action de groupe sur la compactification hybride Let X be an algebraic variety over C and G be an algebraic group acting on X whose action is closed. J. Poineau defined a compactification X^urcorner of X(C) by using hybrid Berkovich spaces. We will focus on the extension of the action of G on this compactification by characterising the set U subset X^urcorner where the action is well defined. We will also show that the quotient of U by the action of G is homeomorphic to (X/G)^urcorner, the compactification of (X/G)(C). We then apply these results to X = Rat_d, the space of rational maps and G = SL_2. It gives the results of C. Favre-C. Gong in a more general setting. Furthermore, we get a compactification of M_d = Rat_d/SL_2 where the boundary is made of orbits of non-archimedean rational maps. The results still holds if C is replaced by k a non-trivially valued field and complex analytic spaces by Berkovich spaces over k. 1 authors · Nov 28, 2025
2 Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets We prove rich algebraic structures of the solution space for 2-layer neural networks with quadratic activation and L_2 loss, trained on reasoning tasks in Abelian group (e.g., modular addition). Such a rich structure enables analytical construction of global optimal solutions from partial solutions that only satisfy part of the loss, despite its high nonlinearity. We coin the framework as CoGO (Composing Global Optimizers). Specifically, we show that the weight space over different numbers of hidden nodes of the 2-layer network is equipped with a semi-ring algebraic structure, and the loss function to be optimized consists of monomial potentials, which are ring homomorphism, allowing partial solutions to be composed into global ones by ring addition and multiplication. Our experiments show that around 95% of the solutions obtained by gradient descent match exactly our theoretical constructions. Although the global optimizers constructed only required a small number of hidden nodes, our analysis on gradient dynamics shows that over-parameterization asymptotically decouples training dynamics and is beneficial. We further show that training dynamics favors simpler solutions under weight decay, and thus high-order global optimizers such as perfect memorization are unfavorable. 1 authors · Oct 2, 2024
- Feature emergence via margin maximization: case studies in algebraic tasks Understanding the internal representations learned by neural networks is a cornerstone challenge in the science of machine learning. While there have been significant recent strides in some cases towards understanding how neural networks implement specific target functions, this paper explores a complementary question -- why do networks arrive at particular computational strategies? Our inquiry focuses on the algebraic learning tasks of modular addition, sparse parities, and finite group operations. Our primary theoretical findings analytically characterize the features learned by stylized neural networks for these algebraic tasks. Notably, our main technique demonstrates how the principle of margin maximization alone can be used to fully specify the features learned by the network. Specifically, we prove that the trained networks utilize Fourier features to perform modular addition and employ features corresponding to irreducible group-theoretic representations to perform compositions in general groups, aligning closely with the empirical observations of Nanda et al. and Chughtai et al. More generally, we hope our techniques can help to foster a deeper understanding of why neural networks adopt specific computational strategies. 5 authors · Nov 13, 2023
1 Simple Token-Level Confidence Improves Caption Correctness The ability to judge whether a caption correctly describes an image is a critical part of vision-language understanding. However, state-of-the-art models often misinterpret the correctness of fine-grained details, leading to errors in outputs such as hallucinating objects in generated captions or poor compositional reasoning. In this work, we explore Token-Level Confidence, or TLC, as a simple yet surprisingly effective method to assess caption correctness. Specifically, we fine-tune a vision-language model on image captioning, input an image and proposed caption to the model, and aggregate either algebraic or learned token confidences over words or sequences to estimate image-caption consistency. Compared to sequence-level scores from pretrained models, TLC with algebraic confidence measures achieves a relative improvement in accuracy by 10% on verb understanding in SVO-Probes and outperforms prior state-of-the-art in image and group scores for compositional reasoning in Winoground by a relative 37% and 9%, respectively. When training data are available, a learned confidence estimator provides further improved performance, reducing object hallucination rates in MS COCO Captions by a relative 30% over the original model and setting a new state-of-the-art. 6 authors · May 11, 2023