new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography

Surface electromyography (sEMG) non-invasively measures signals generated by muscle activity with sufficient sensitivity to detect individual spinal neurons and richness to identify dozens of gestures and their nuances. Wearable wrist-based sEMG sensors have the potential to offer low friction, subtle, information rich, always available human-computer inputs. To this end, we introduce emg2qwerty, a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard, together with ground-truth annotations and reproducible baselines. With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date. These data demonstrate non-trivial, but well defined hierarchical relationships both in terms of the generative process, from neurons to muscles and muscle combinations, as well as in terms of domain shift across users and user sessions. Applying standard modeling techniques from the closely related field of Automatic Speech Recognition (ASR), we show strong baseline performance on predicting key-presses using sEMG signals alone. We believe the richness of this task and dataset will facilitate progress in several problems of interest to both the machine learning and neuroscientific communities. Dataset and code can be accessed at https://github.com/facebookresearch/emg2qwerty.

  • 8 authors
·
Oct 26, 2024

TinyMyo: a Tiny Foundation Model for Flexible EMG Signal Processing at the Edge

Surface electromyography (EMG) is a non-invasive sensing modality used in several domains, including biomechanics, rehabilitation, prosthetic control, and emerging human-machine interaction paradigms. Despite decades of use, significant challenges remain in achieving robust generalization across subjects, recording systems, and acquisition protocols. To tackle these challenges, foundation models (FMs) are gaining traction when targeting end-to-end applications based on EMG signals. Yet, existing EMG FMs remain limited to single downstream tasks and lack deployability on embedded platforms. In this work, we present TinyMyo, a lightweight FM based on a Transformer encoder architecture. The model is pre-trained in a self-supervised manner on publicly available datasets and achieves high reconstruction fidelity with only 3.6M parameters. With minimal task-specific head adaptations, the same backbone is used to tackle multiple downstream tasks, leveraging datasets acquired from diverse sensing locations and hardware platforms. We demonstrate generalization across hand gesture classification, hand kinematic regression, speech production and recognition, with performance comparable to or surpassing the state of the art (SoA), and model size below 5M parameters. We achieve SoA results compared to previous FM-based works on the NinaPro DB5 (89.4pm0.16%), UCI-EMG (97.56pm0.32%), and EPN-612 (96.74pm0.09%) datasets. We report, to the best of our knowledge, the first deployment of an EMG FM on an ultra-low-power microcontroller (GAP9), achieving an average power envelope of 36.45mW. By open-sourcing the pre-trained and the downstream task architectures (https://github.com/pulp-bio/BioFoundation), we aim to provide a flexible resource that can accelerate future research and serve as a common foundation for the EMG community.

PulpBio Pulp Platform Bio
·
Dec 5, 2025

Pain level and pain-related behaviour classification using GRU-based sparsely-connected RNNs

There is a growing body of studies on applying deep learning to biometrics analysis. Certain circumstances, however, could impair the objective measures and accuracy of the proposed biometric data analysis methods. For instance, people with chronic pain (CP) unconsciously adapt specific body movements to protect themselves from injury or additional pain. Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities in this study and classified pain level and pain-related behaviour in the EmoPain database. To achieve this, we proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders using a shared training framework. This architecture is fed by multidimensional data collected from inertial measurement unit (IMU) and surface electromyography (sEMG) sensors. Furthermore, to compensate for variations in the temporal dimension that may not be perfectly represented in the latent space of s-RNNs, we fused hand-crafted features derived from information-theoretic approaches with represented features in the shared hidden state. We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.

  • 5 authors
·
Dec 20, 2022

FLEX: A Large-Scale Multi-Modal Multi-Action Dataset for Fitness Action Quality Assessment

With the increasing awareness of health and the growing desire for aesthetic physique, fitness has become a prevailing trend. However, the potential risks associated with fitness training, especially with weight-loaded fitness actions, cannot be overlooked. Action Quality Assessment (AQA), a technology that quantifies the quality of human action and provides feedback, holds the potential to assist fitness enthusiasts of varying skill levels in achieving better training outcomes. Nevertheless, current AQA methodologies and datasets are limited to single-view competitive sports scenarios and RGB modality and lack professional assessment and guidance of fitness actions. To address this gap, we propose the FLEX dataset, the first multi-modal, multi-action, large-scale dataset that incorporates surface electromyography (sEMG) signals into AQA. FLEX utilizes high-precision MoCap to collect 20 different weight-loaded actions performed by 38 subjects across 3 different skill levels for 10 repetitions each, containing 5 different views of the RGB video, 3D pose, sEMG, and physiological information. Additionally, FLEX incorporates knowledge graphs into AQA, constructing annotation rules in the form of penalty functions that map weight-loaded actions, action keysteps, error types, and feedback. We conducted various baseline methodologies on FLEX, demonstrating that multimodal data, multiview data, and fine-grained annotations significantly enhance model performance. FLEX not only advances AQA methodologies and datasets towards multi-modal and multi-action scenarios but also fosters the integration of artificial intelligence within the fitness domain. Dataset and code are available at https://haoyin116.github.io/FLEX_Dataset.

  • 8 authors
·
Jun 1, 2025

L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection

Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems. While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), recurrent neural networks, and graph-based neural networks, have limitations. These approaches often focus singularly on the temporal dimension or require complex architectures to exploit spatial interrelationships within multivariate time series data. To address these limitations, we introduce L-SFAN, a lightweight CNN architecture incorporating 2D filters designed to meticulously capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors. Our proposed model, enhanced with an oriented global pooling layer and multi-head self-attention mechanism, prioritizes critical features to better understand CLBP and achieves competitive classification accuracy. Experimental results on the EmoPain database demonstrate that our approach not only enhances performance metrics with significantly fewer parameters but also promotes model interpretability, offering valuable insights for clinicians in managing CLBP. This advancement underscores the potential of AI in transforming healthcare practices for chronic conditions like CLBP, providing a sophisticated framework for the nuanced analysis of complex biomedical data.

  • 4 authors
·
Jun 7, 2024

TraHGR: Transformer for Hand Gesture Recognition via ElectroMyography

Deep learning-based Hand Gesture Recognition (HGR) via surface Electromyogram (sEMG) signals has recently shown significant potential for development of advanced myoelectric-controlled prosthesis. Existing deep learning approaches, typically, include only one model as such can hardly maintain acceptable generalization performance in changing scenarios. In this paper, we aim to address this challenge by capitalizing on the recent advances of hybrid models and transformers. In other words, we propose a hybrid framework based on the transformer architecture, which is a relatively new and revolutionizing deep learning model. The proposed hybrid architecture, referred to as the Transformer for Hand Gesture Recognition (TraHGR), consists of two parallel paths followed by a linear layer that acts as a fusion center to integrate the advantage of each module and provide robustness over different scenarios. We evaluated the proposed architecture TraHGR based on the commonly used second Ninapro dataset, referred to as the DB2. The sEMG signals in the DB2 dataset are measured in the real-life conditions from 40 healthy users, each performing 49 gestures. We have conducted extensive set of experiments to test and validate the proposed TraHGR architecture, and have compared its achievable accuracy with more than five recently proposed HGR classification algorithms over the same dataset. We have also compared the results of the proposed TraHGR architecture with each individual path and demonstrated the distinguishing power of the proposed hybrid architecture. The recognition accuracies of the proposed TraHGR architecture are 86.18%, 88.91%, 81.44%, and 93.84%, which are 2.48%, 5.12%, 8.82%, and 4.30% higher than the state-ofthe-art performance for DB2 (49 gestures), DB2-B (17 gestures), DB2-C (23 gestures), and DB2-D (9 gestures), respectively.

  • 4 authors
·
Mar 28, 2022