Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEvaluating Long-Term Memory for Long-Context Question Answering
In order for large language models to achieve true conversational continuity and benefit from experiential learning, they need memory. While research has focused on the development of complex memory systems, it remains unclear which types of memory are most effective for long-context conversational tasks. We present a systematic evaluation of memory-augmented methods using LoCoMo, a benchmark of synthetic long-context dialogues annotated for question-answering tasks that require diverse reasoning strategies. We analyse full-context prompting, semantic memory through retrieval-augmented generation and agentic memory, episodic memory through in-context learning, and procedural memory through prompt optimization. Our findings show that memory-augmented approaches reduce token usage by over 90% while maintaining competitive accuracy. Memory architecture complexity should scale with model capability, with small foundation models benefitting most from RAG, and strong instruction-tuned reasoning model gaining from episodic learning through reflections and more complex agentic semantic memory. In particular, episodic memory can help LLMs recognise the limits of their own knowledge.
Spatially-Aware Transformer for Embodied Agents
Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation
Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, and LIBERO-5 suites, it achieves 71.9%, 72.7%, and 96.5% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
Episodic Memories Generation and Evaluation Benchmark for Large Language Models
Episodic memory -- the ability to recall specific events grounded in time and space -- is a cornerstone of human cognition, enabling not only coherent storytelling, but also planning and decision-making. Despite their remarkable capabilities, Large Language Models (LLMs) lack a robust mechanism for episodic memory: we argue that integrating episodic memory capabilities into LLM is essential for advancing AI towards human-like cognition, increasing their potential to reason consistently and ground their output in real-world episodic events, hence avoiding confabulations. To address this challenge, we introduce a comprehensive framework to model and evaluate LLM episodic memory capabilities. Drawing inspiration from cognitive science, we develop a structured approach to represent episodic events, encapsulating temporal and spatial contexts, involved entities, and detailed descriptions. We synthesize a unique episodic memory benchmark, free from contamination, and release open source code and datasets to assess LLM performance across various recall and episodic reasoning tasks. Our evaluation of state-of-the-art models, including GPT-4 and Claude variants, Llama 3.1, and o1-mini, reveals that even the most advanced LLMs struggle with episodic memory tasks, particularly when dealing with multiple related events or complex spatio-temporal relationships -- even in contexts as short as 10k-100k tokens.
Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks
Current LLM benchmarks focus on evaluating models' memory of facts and semantic relations, primarily assessing semantic aspects of long-term memory. However, in humans, long-term memory also includes episodic memory, which links memories to their contexts, such as the time and place they occurred. The ability to contextualize memories is crucial for many cognitive tasks and everyday functions. This form of memory has not been evaluated in LLMs with existing benchmarks. To address the gap in evaluating memory in LLMs, we introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology. SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations. We present an initial evaluation dataset, Book-SORT, comprising 36k pairs of segments extracted from 9 books recently added to the public domain. Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book. We find that models can perform the task with high accuracy when relevant text is given in-context during the SORT evaluation. However, when presented with the book text only during training, LLMs' performance on SORT falls short. By allowing to evaluate more aspects of memory, we believe that SORT will aid in the emerging development of memory-augmented models.
Understanding AI Cognition: A Neural Module for Inference Inspired by Human Memory Mechanisms
How humans and machines make sense of current inputs for relation reasoning and question-answering while putting the perceived information into context of our past memories, has been a challenging conundrum in cognitive science and artificial intelligence. Inspired by human brain's memory system and cognitive architectures, we propose a PMI framework that consists of perception, memory and inference components. Notably, the memory module comprises working and long-term memory, with the latter endowed with a higher-order structure to retain more accumulated knowledge and experiences. Through a differentiable competitive write access, current perceptions update working memory, which is later merged with long-term memory via outer product associations, averting memory overflow and minimizing information conflicts. In the inference module, relevant information is retrieved from two separate memory origins and associatively integrated to attain a more comprehensive and precise interpretation of current perceptions. We exploratively apply our PMI to improve prevailing Transformers and CNN models on question-answering tasks like bAbI-20k and Sort-of-CLEVR datasets, as well as relation calculation and image classification tasks, and in each case, our PMI enhancements consistently outshine their original counterparts significantly. Visualization analyses reveal that memory consolidation, along with the interaction and integration of information from diverse memory sources, substantially contributes to the model effectiveness on inference tasks.
Structured Episodic Event Memory
Current approaches to memory in Large Language Models (LLMs) predominantly rely on static Retrieval-Augmented Generation (RAG), which often results in scattered retrieval and fails to capture the structural dependencies required for complex reasoning. For autonomous agents, these passive and flat architectures lack the cognitive organization necessary to model the dynamic and associative nature of long-term interaction. To address this, we propose Structured Episodic Event Memory (SEEM), a hierarchical framework that synergizes a graph memory layer for relational facts with a dynamic episodic memory layer for narrative progression. Grounded in cognitive frame theory, SEEM transforms interaction streams into structured Episodic Event Frames (EEFs) anchored by precise provenance pointers. Furthermore, we introduce an agentic associative fusion and Reverse Provenance Expansion (RPE) mechanism to reconstruct coherent narrative contexts from fragmented evidence. Experimental results on the LoCoMo and LongMemEval benchmarks demonstrate that SEEM significantly outperforms baselines, enabling agents to maintain superior narrative coherence and logical consistency.
Coarse-to-Fine Grounded Memory for LLM Agent Planning
Recent advancements in Large Language Models (LLMs) have driven growing interest in LLM-based agents for complex planning tasks. To avoid costly agent training, many studies adopted memory mechanism that enhances LLM with offline experiences or online trajectory analysis. However, existing works focus on single-granularity memory derived from dynamic environmental interactions, which are inherently constrained by the quality of the collected experiences. This limitation, in turn, constrain the diversity of knowledge and the flexibility of planning. We propose Coarse-to-Fine Grounded Memory (), a novel framework that grounds coarse-to-fine memories with LLM, thereby fully leverage them for flexible adaptation to diverse scenarios. grounds environmental information into coarse-grained focus points to guide experience collection in training tasks, followed by grounding of actionable hybrid-grained tips from each experience. At inference, retrieves task-relevant experiences and tips to support planning. When facing environmental anomalies, the LLM grounds the current situation into fine-grained key information, enabling flexible self-QA reflection and plan correction.
Ella: Embodied Social Agents with Lifelong Memory
We introduce Ella, an embodied social agent capable of lifelong learning within a community in a 3D open world, where agents accumulate experiences and acquire knowledge through everyday visual observations and social interactions. At the core of Ella's capabilities is a structured, long-term multimodal memory system that stores, updates, and retrieves information effectively. It consists of a name-centric semantic memory for organizing acquired knowledge and a spatiotemporal episodic memory for capturing multimodal experiences. By integrating this lifelong memory system with foundation models, Ella retrieves relevant information for decision-making, plans daily activities, builds social relationships, and evolves autonomously while coexisting with other intelligent beings in the open world. We conduct capability-oriented evaluations in a dynamic 3D open world where 15 agents engage in social activities for days and are assessed with a suite of unseen controlled evaluations. Experimental results show that Ella can influence, lead, and cooperate with other agents well to achieve goals, showcasing its ability to learn effectively through observation and social interaction. Our findings highlight the transformative potential of combining structured memory systems with foundation models for advancing embodied intelligence. More videos can be found at https://umass-embodied-agi.github.io/Ella/.
Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents
Long-term memory is one of the key factors influencing the reasoning capabilities of Large Language Model Agents (LLM Agents). Incorporating a memory mechanism that effectively integrates past interactions can significantly enhance decision-making and contextual coherence of LLM Agents. While recent works have made progress in memory storage and retrieval, such as encoding memory into dense vectors for similarity-based search or organizing knowledge in the form of graph, these approaches often fall short in structured memory organization and efficient retrieval. To address these limitations, we propose a Hierarchical Memory (H-MEM) architecture for LLM Agents that organizes and updates memory in a multi-level fashion based on the degree of semantic abstraction. Each memory vector is embedded with a positional index encoding pointing to its semantically related sub-memories in the next layer. During the reasoning phase, an index-based routing mechanism enables efficient, layer-by-layer retrieval without performing exhaustive similarity computations. We evaluate our method on five task settings from the LoCoMo dataset. Experimental results show that our approach consistently outperforms five baseline methods, demonstrating its effectiveness in long-term dialogue scenarios.
Towards A Holistic Landscape of Situated Theory of Mind in Large Language Models
Large Language Models (LLMs) have generated considerable interest and debate regarding their potential emergence of Theory of Mind (ToM). Several recent inquiries reveal a lack of robust ToM in these models and pose a pressing demand to develop new benchmarks, as current ones primarily focus on different aspects of ToM and are prone to shortcuts and data leakage. In this position paper, we seek to answer two road-blocking questions: (1) How can we taxonomize a holistic landscape of machine ToM? (2) What is a more effective evaluation protocol for machine ToM? Following psychological studies, we taxonomize machine ToM into 7 mental state categories and delineate existing benchmarks to identify under-explored aspects of ToM. We argue for a holistic and situated evaluation of ToM to break ToM into individual components and treat LLMs as an agent who is physically situated in environments and socially situated in interactions with humans. Such situated evaluation provides a more comprehensive assessment of mental states and potentially mitigates the risk of shortcuts and data leakage. We further present a pilot study in a grid world setup as a proof of concept. We hope this position paper can facilitate future research to integrate ToM with LLMs and offer an intuitive means for researchers to better position their work in the landscape of ToM. Project page: https://github.com/Mars-tin/awesome-theory-of-mind
Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
MemGen: Weaving Generative Latent Memory for Self-Evolving Agents
Agent memory shapes how Large Language Model (LLM)-powered agents, akin to the human brain, progressively refine themselves through environment interactions. Existing paradigms remain constrained: parametric memory forcibly adjusts model parameters, and retrieval-based memory externalizes experience into structured databases, yet neither captures the fluid interweaving of reasoning and memory that underlies human cognition. To address this gap, we propose MemGen, a dynamic generative memory framework that equips agents with a human-esque cognitive faculty. It consists of a memory trigger, which monitors the agent's reasoning state to decide explicit memory invocation, and a memory weaver, which takes the agent's current state as stimulus to construct a latent token sequence as machine-native memory to enrich its reasoning. In this way, MemGen enables agents to recall and augment latent memory throughout reasoning, producing a tightly interwoven cycle of memory and cognition. Extensive experiments across eight benchmarks show that MemGen surpasses leading external memory systems such as ExpeL and AWM by up to 38.22%, exceeds GRPO by up to 13.44%, and exhibits strong cross-domain generalization ability. More importantly, we find that without explicit supervision, MemGen spontaneously evolves distinct human-like memory faculties, including planning memory, procedural memory, and working memory, suggesting an emergent trajectory toward more naturalistic forms of machine cognition.
Memory as Action: Autonomous Context Curation for Long-Horizon Agentic Tasks
Large Language Models face challenges in long-horizon agentic tasks as their constrained memory is easily overwhelmed by distracting or irrelevant context. Existing working memory methods typically rely on external, heuristic mechanisms that are decoupled from the agent's core policy. In this work, we reframe working memory management as a learnable, intrinsic capability. We propose a novel framework, Memory-as-Action, where an agent actively manages its working memory by executing explicit editing operations as part of a unified policy. This formulation allows an agent, trained via reinforcement learning, to balance memory curation against long-term task objectives under given resource constraints. However, such memory editing actions break the standard assumption of a continuously growing prefix in LLM interactions, leading to what we call trajectory fractures. These non-prefix changes disrupt the causal continuity required by standard policy gradient methods, making those methods inapplicable. To address this, we propose a new algorithm, Dynamic Context Policy Optimization, which enables stable end-to-end reinforcement learning by segmenting trajectories at memory action points and applying trajectory-level advantages to the resulting action segments. Our results demonstrate that jointly optimizing for task reasoning and memory management in an end-to-end fashion not only reduces overall computational consumption but also improves task performance, driven by adaptive context curation strategies tailored to the model's intrinsic capabilities.
MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems
Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.
CAIM: Development and Evaluation of a Cognitive AI Memory Framework for Long-Term Interaction with Intelligent Agents
Large language models (LLMs) have advanced the field of artificial intelligence (AI) and are a powerful enabler for interactive systems. However, they still face challenges in long-term interactions that require adaptation towards the user as well as contextual knowledge and understanding of the ever-changing environment. To overcome these challenges, holistic memory modeling is required to efficiently retrieve and store relevant information across interaction sessions for suitable responses. Cognitive AI, which aims to simulate the human thought process in a computerized model, highlights interesting aspects, such as thoughts, memory mechanisms, and decision-making, that can contribute towards improved memory modeling for LLMs. Inspired by these cognitive AI principles, we propose our memory framework CAIM. CAIM consists of three modules: 1.) The Memory Controller as the central decision unit; 2.) the Memory Retrieval, which filters relevant data for interaction upon request; and 3.) the Post-Thinking, which maintains the memory storage. We compare CAIM against existing approaches, focusing on metrics such as retrieval accuracy, response correctness, contextual coherence, and memory storage. The results demonstrate that CAIM outperforms baseline frameworks across different metrics, highlighting its context-awareness and potential to improve long-term human-AI interactions.
Memory in the Age of AI Agents
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
Memory as Resonance: A Biomimetic Architecture for Infinite Context Memory on Ergodic Phonetic Manifolds
The memory of contemporary Large Language Models is bound by a physical paradox: as they learn, they fill up. The linear accumulation (O(N)) of Key-Value states treats context as a warehouse of static artifacts, eventually forcing a destructive choice between amnesia and latency. We challenge this discrete orthodoxy, proposing that long-term memory is not the storage of items, but the persistence of a trajectory. We introduce Phonetic Trajectory Memory (PTM), a neuro-symbolic architecture that encodes language not as a sequence of tensors, but as a continuous path on an ergodic manifold governed by irrational rotation matrices. By decoupling the navigation (an invariant O(1) geometric signal) from the reconstruction (a probabilistic generative act), PTM achieves a compression magnitude of greater than 3,000x relative to dense caches. We demonstrate that retrieval becomes a process of resonance: the phonetic trace stabilizes the model against hallucination via "Signal Consensus" mechanism, securing up to approximately 92% factual accuracy. While this aggressive abstraction alters generative texture, it unlocks immediate access latency (approximately 34ms) independent of depth. Our results suggest that infinite context does not require infinite silicon; it requires treating memory not as data to be stored, but as a reconstructive process acting on a conserved, undying physical signal.
EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
Large Language Models (LLMs) are increasingly deployed as long-term interactive agents, yet their limited context windows make it difficult to sustain coherent behavior over extended interactions. Existing memory systems often store isolated records and retrieve fragments, limiting their ability to consolidate evolving user states and resolve conflicts. We introduce EverMemOS, a self-organizing memory operating system that implements an engram-inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection performs MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks. We further report a profile study on PersonaMem v2 and qualitative case studies illustrating chat-oriented capabilities such as user profiling and Foresight. Code is available at https://github.com/EverMind-AI/EverMemOS.
mindmap: Spatial Memory in Deep Feature Maps for 3D Action Policies
End-to-end learning of robot control policies, structured as neural networks, has emerged as a promising approach to robotic manipulation. To complete many common tasks, relevant objects are required to pass in and out of a robot's field of view. In these settings, spatial memory - the ability to remember the spatial composition of the scene - is an important competency. However, building such mechanisms into robot learning systems remains an open research problem. We introduce mindmap (Spatial Memory in Deep Feature Maps for 3D Action Policies), a 3D diffusion policy that generates robot trajectories based on a semantic 3D reconstruction of the environment. We show in simulation experiments that our approach is effective at solving tasks where state-of-the-art approaches without memory mechanisms struggle. We release our reconstruction system, training code, and evaluation tasks to spur research in this direction.
Cognitive Memory in Large Language Models
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
Memo: Training Memory-Efficient Embodied Agents with Reinforcement Learning
To enable embodied agents to operate effectively over extended timeframes, it is crucial to develop models that form and access memories to stay contextualized in their environment. In the current paradigm of training transformer-based policies for embodied sequential decision-making tasks, visual inputs often overwhelm the context limits of transformers, while humans can maintain and utilize a lifetime of experience compressed as memories. Significant compression is possible in principle, as much of the input is irrelevant and can be abstracted. However, existing approaches predominantly focus on either recurrent models with fixed-size memory or transformers with full-context reliance. In this work, we propose Memo, a transformer-based architecture and training recipe for reinforcement learning (RL) on memory-intensive, long-horizon tasks. Memo incorporates the creation and retrieval of memory by interleaving periodic summarization tokens with the inputs of a model during training. We demonstrate Memo's effectiveness on a gridworld meta-RL benchmark and a multi-object navigation task in photo-realistic indoor settings. Memo outperforms naive long-context transformer baselines while being more compute and storage efficient. Additionally, Memo generalizes better to longer contexts at inference time and remains robust in streaming settings, where historical context must be truncated to fit inference constraints. Our code is available at: https://github.com/gunshi/memo.
AI Meets Brain: Memory Systems from Cognitive Neuroscience to Autonomous Agents
Memory serves as the pivotal nexus bridging past and future, providing both humans and AI systems with invaluable concepts and experience to navigate complex tasks. Recent research on autonomous agents has increasingly focused on designing efficient memory workflows by drawing on cognitive neuroscience. However, constrained by interdisciplinary barriers, existing works struggle to assimilate the essence of human memory mechanisms. To bridge this gap, we systematically synthesizes interdisciplinary knowledge of memory, connecting insights from cognitive neuroscience with LLM-driven agents. Specifically, we first elucidate the definition and function of memory along a progressive trajectory from cognitive neuroscience through LLMs to agents. We then provide a comparative analysis of memory taxonomy, storage mechanisms, and the complete management lifecycle from both biological and artificial perspectives. Subsequently, we review the mainstream benchmarks for evaluating agent memory. Additionally, we explore memory security from dual perspectives of attack and defense. Finally, we envision future research directions, with a focus on multimodal memory systems and skill acquisition.
RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems
We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.
LightMem: Lightweight and Efficient Memory-Augmented Generation
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
Mem-Gallery: Benchmarking Multimodal Long-Term Conversational Memory for MLLM Agents
Long-term memory is a critical capability for multimodal large language model (MLLM) agents, particularly in conversational settings where information accumulates and evolves over time. However, existing benchmarks either evaluate multi-session memory in text-only conversations or assess multimodal understanding within localized contexts, failing to evaluate how multimodal memory is preserved, organized, and evolved across long-term conversational trajectories. Thus, we introduce Mem-Gallery, a new benchmark for evaluating multimodal long-term conversational memory in MLLM agents. Mem-Gallery features high-quality multi-session conversations grounded in both visual and textual information, with long interaction horizons and rich multimodal dependencies. Building on this dataset, we propose a systematic evaluation framework that assesses key memory capabilities along three functional dimensions: memory extraction and test-time adaptation, memory reasoning, and memory knowledge management. Extensive benchmarking across thirteen memory systems reveals several key findings, highlighting the necessity of explicit multimodal information retention and memory organization, the persistent limitations in memory reasoning and knowledge management, as well as the efficiency bottleneck of current models.
MemVerse: Multimodal Memory for Lifelong Learning Agents
Despite rapid progress in large-scale language and vision models, AI agents still suffer from a fundamental limitation: they cannot remember. Without reliable memory, agents catastrophically forget past experiences, struggle with long-horizon reasoning, and fail to operate coherently in multimodal or interactive environments. We introduce MemVerse, a model-agnostic, plug-and-play memory framework that bridges fast parametric recall with hierarchical retrieval-based memory, enabling scalable and adaptive multimodal intelligence. MemVerse maintains short-term memory for recent context while transforming raw multimodal experiences into structured long-term memories organized as hierarchical knowledge graphs. This design supports continual consolidation, adaptive forgetting, and bounded memory growth. To handle real-time demands, MemVerse introduces a periodic distillation mechanism that compresses essential knowledge from long-term memory into the parametric model, allowing fast, differentiable recall while preserving interpretability. Extensive experiments demonstrate that MemVerse significantly improves multimodal reasoning and continual learning efficiency, empowering agents to remember, adapt, and reason coherently across extended interactions.
Context-Aware Planning and Environment-Aware Memory for Instruction Following Embodied Agents
Accomplishing household tasks requires to plan step-by-step actions considering the consequences of previous actions. However, the state-of-the-art embodied agents often make mistakes in navigating the environment and interacting with proper objects due to imperfect learning by imitating experts or algorithmic planners without such knowledge. To improve both visual navigation and object interaction, we propose to consider the consequence of taken actions by CAPEAM (Context-Aware Planning and Environment-Aware Memory) that incorporates semantic context (e.g., appropriate objects to interact with) in a sequence of actions, and the changed spatial arrangement and states of interacted objects (e.g., location that the object has been moved to) in inferring the subsequent actions. We empirically show that the agent with the proposed CAPEAM achieves state-of-the-art performance in various metrics using a challenging interactive instruction following benchmark in both seen and unseen environments by large margins (up to +10.70% in unseen env.).
EXPEREPAIR: Dual-Memory Enhanced LLM-based Repository-Level Program Repair
Automatically repairing software issues remains a fundamental challenge at the intersection of software engineering and AI. Although recent advancements in Large Language Models (LLMs) have demonstrated potential for repository-level repair tasks, current methodologies exhibit two notable limitations: (1) they often address issues in isolation, neglecting to incorporate insights from previously resolved issues, and (2) they rely on static and rigid prompting strategies, which constrain their ability to generalize across diverse and evolving issue scenarios. Inspired by the dual memory systems of human cognition, where episodic and semantic memories work synergistically to support human reasoning and decision-making, we propose ExpeRepair, a novel LLM-based approach that continuously learns from historical repair experiences through dual-channel knowledge accumulation. ExpeRepair organizes historical repair experiences into two complementary memories: an episodic memory that stores concrete repair demonstrations, and a semantic memory that encodes abstract reflective insights. At inference time, ExpeRepair activates both memory systems by retrieving relevant demonstrations from episodic memory and recalling high-level repair insights from semantic memory. It further enhances adaptability through dynamic prompt composition, synergistically integrating both memory types to replace static prompts with context-aware, experience-driven prompts. Experiments on the SWE-bench Lite benchmark demonstrate that ExpeRepair achieves a pass@1 score of 49.3% with Claude 3.7 Sonnet, outperforming all state-of-the-art open-source methods.
Preference-Aware Memory Update for Long-Term LLM Agents
One of the key factors influencing the reasoning capabilities of LLM-based agents is their ability to leverage long-term memory. Integrating long-term memory mechanisms allows agents to make informed decisions grounded in historical interactions. While recent advances have significantly improved the storage and retrieval components, by encoding memory into dense vectors for similarity search or organizing memory as structured knowledge graphs most existing approaches fall short in memory updating. In particular, they lack mechanisms for dynamically refining preference memory representations in response to evolving user behaviors and contexts. To address this gap, we propose a Preference-Aware Memory Update Mechanism (PAMU) that enables dynamic and personalized memory refinement. By integrating sliding window averages (SW) with exponential moving averages (EMA), PAMU constructs a fused preference-aware representation that captures both short-term fluctuations and long-term user tendencies. We conduct experiments on five task scenarios of the LoCoMo dataset, and the results show that our mechanism can significantly improve the output quality of LLM in five baselines, validating its effectiveness in long-term conversations.
MemoBrain: Executive Memory as an Agentic Brain for Reasoning
Complex reasoning in tool-augmented agent frameworks is inherently long-horizon, causing reasoning traces and transient tool artifacts to accumulate and strain the bounded working context of large language models. Without explicit memory mechanisms, such accumulation disrupts logical continuity and undermines task alignment. This positions memory not as an auxiliary efficiency concern, but as a core component for sustaining coherent, goal-directed reasoning over long horizons. We propose MemoBrain, an executive memory model for tool-augmented agents that constructs a dependency-aware memory over reasoning steps, capturing salient intermediate states and their logical relations. Operating as a co-pilot alongside the reasoning agent, MemoBrain organizes reasoning progress without blocking execution and actively manages the working context. Specifically, it prunes invalid steps, folds completed sub-trajectories, and preserves a compact, high-salience reasoning backbone under a fixed context budget. Together, these mechanisms enable explicit cognitive control over reasoning trajectories rather than passive context accumulation. We evaluate MemoBrain on challenging long-horizon benchmarks, including GAIA, WebWalker, and BrowseComp-Plus, demonstrating consistent improvements over strong baselines.
Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System
Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce Mem4Nav, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.
STMA: A Spatio-Temporal Memory Agent for Long-Horizon Embodied Task Planning
A key objective of embodied intelligence is enabling agents to perform long-horizon tasks in dynamic environments while maintaining robust decision-making and adaptability. To achieve this goal, we propose the Spatio-Temporal Memory Agent (STMA), a novel framework designed to enhance task planning and execution by integrating spatio-temporal memory. STMA is built upon three critical components: (1) a spatio-temporal memory module that captures historical and environmental changes in real time, (2) a dynamic knowledge graph that facilitates adaptive spatial reasoning, and (3) a planner-critic mechanism that iteratively refines task strategies. We evaluate STMA in the TextWorld environment on 32 tasks, involving multi-step planning and exploration under varying levels of complexity. Experimental results demonstrate that STMA achieves a 31.25% improvement in success rate and a 24.7% increase in average score compared to the state-of-the-art model. The results highlight the effectiveness of spatio-temporal memory in advancing the memory capabilities of embodied agents.
SIT-Graph: State Integrated Tool Graph for Multi-Turn Agents
Despite impressive advances in agent systems, multi-turn tool-use scenarios remain challenging. It is mainly because intent is clarified progressively and the environment evolves with each tool call. While reusing past experience is natural, current LLM agents either treat entire trajectories or pre-defined subtasks as indivisible units, or solely exploit tool-to-tool dependencies, hindering adaptation as states and information evolve across turns. In this paper, we propose a State Integrated Tool Graph (SIT-Graph), which enhances multi-turn tool use by exploiting partially overlapping experience. Inspired by human decision-making that integrates episodic and procedural memory, SIT-Graph captures both compact state representations (episodic-like fragments) and tool-to-tool dependencies (procedural-like routines) from historical trajectories. Specifically, we first build a tool graph from accumulated tool-use sequences, and then augment each edge with a compact state summary of the dialog and tool history that may shape the next action. At inference time, SIT-Graph enables a human-like balance between episodic recall and procedural execution: when the next decision requires recalling prior context, the agent retrieves the state summaries stored on relevant edges and uses them to guide its next action; when the step is routine, it follows high-confidence tool dependencies without explicit recall. Experiments across multiple stateful multi-turn tool-use benchmarks show that SIT-Graph consistently outperforms strong memory- and graph-based baselines, delivering more robust tool selection and more effective experience transfer.
Memory Matters More: Event-Centric Memory as a Logic Map for Agent Searching and Reasoning
Large language models (LLMs) are increasingly deployed as intelligent agents that reason, plan, and interact with their environments. To effectively scale to long-horizon scenarios, a key capability for such agents is a memory mechanism that can retain, organize, and retrieve past experiences to support downstream decision-making. However, most existing approaches organize and store memories in a flat manner and rely on simple similarity-based retrieval techniques. Even when structured memory is introduced, existing methods often struggle to explicitly capture the logical relationships among experiences or memory units. Moreover, memory access is largely detached from the constructed structure and still depends on shallow semantic retrieval, preventing agents from reasoning logically over long-horizon dependencies. In this work, we propose CompassMem, an event-centric memory framework inspired by Event Segmentation Theory. CompassMem organizes memory as an Event Graph by incrementally segmenting experiences into events and linking them through explicit logical relations. This graph serves as a logic map, enabling agents to perform structured and goal-directed navigation over memory beyond superficial retrieval, progressively gathering valuable memories to support long-horizon reasoning. Experiments on LoCoMo and NarrativeQA demonstrate that CompassMem consistently improves both retrieval and reasoning performance across multiple backbone models.
Semantic HELM: An Interpretable Memory for Reinforcement Learning
Reinforcement learning agents deployed in the real world often have to cope with partially observable environments. Therefore, most agents employ memory mechanisms to approximate the state of the environment. Recently, there have been impressive success stories in mastering partially observable environments, mostly in the realm of computer games like Dota 2, StarCraft II, or MineCraft. However, none of these methods are interpretable in the sense that it is not comprehensible for humans how the agent decides which actions to take based on its inputs. Yet, human understanding is necessary in order to deploy such methods in high-stake domains like autonomous driving or medical applications. We propose a novel memory mechanism that operates on human language to illuminate the decision-making process. First, we use CLIP to associate visual inputs with language tokens. Then we feed these tokens to a pretrained language model that serves the agent as memory and provides it with a coherent and interpretable representation of the past. Our memory mechanism achieves state-of-the-art performance in environments where memorizing the past is crucial to solve tasks. Further, we present situations where our memory component excels or fails to demonstrate strengths and weaknesses of our new approach.
In-Memory Learning: A Declarative Learning Framework for Large Language Models
The exploration of whether agents can align with their environment without relying on human-labeled data presents an intriguing research topic. Drawing inspiration from the alignment process observed in intelligent organisms, where declarative memory plays a pivotal role in summarizing past experiences, we propose a novel learning framework. The agents adeptly distill insights from past experiences, refining and updating existing notes to enhance their performance in the environment. This entire process transpires within the memory components and is implemented through natural language, so we character this framework as In-memory Learning. We also delve into the key features of benchmarks designed to evaluate the self-improvement process. Through systematic experiments, we demonstrate the effectiveness of our framework and provide insights into this problem.
Remember Me, Refine Me: A Dynamic Procedural Memory Framework for Experience-Driven Agent Evolution
Procedural memory enables large language model (LLM) agents to internalize "how-to" knowledge, theoretically reducing redundant trial-and-error. However, existing frameworks predominantly suffer from a "passive accumulation" paradigm, treating memory as a static append-only archive. To bridge the gap between static storage and dynamic reasoning, we propose ReMe (Remember Me, Refine Me), a comprehensive framework for experience-driven agent evolution. ReMe innovates across the memory lifecycle via three mechanisms: 1) multi-faceted distillation, which extracts fine-grained experiences by recognizing success patterns, analyzing failure triggers and generating comparative insights; 2) context-adaptive reuse, which tailors historical insights to new contexts via scenario-aware indexing; and 3) utility-based refinement, which autonomously adds valid memories and prunes outdated ones to maintain a compact, high-quality experience pool. Extensive experiments on BFCL-V3 and AppWorld demonstrate that ReMe establishes a new state-of-the-art in agent memory system. Crucially, we observe a significant memory-scaling effect: Qwen3-8B equipped with ReMe outperforms larger, memoryless Qwen3-14B, suggesting that self-evolving memory provides a computation-efficient pathway for lifelong learning. We release our code and the reme.library dataset to facilitate further research.
Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents
Large Language Models (LLMs) falter in multi-step interactions -- often hallucinating, repeating actions, or misinterpreting user corrections -- due to reliance on linear, unstructured context. This fragility stems from the lack of persistent memory to track evolving goals and task dependencies, undermining trust in autonomous agents. We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents without fine-tuning. TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning. Departing from linear concatenation and ReAct-style prompting, TME builds a dynamic task graph -- either a tree or directed acyclic graph (DAG) -- to map user inputs to subtasks, align them with prior context, and enable dependency-tracked revisions. Its Task Representation and Intent Management (TRIM) component models task semantics and user intent to ensure accurate interpretation. Across four multi-turn scenarios-trip planning, cooking, meeting scheduling, and shopping cart editing -- TME eliminates 100% of hallucinations and misinterpretations in three tasks, and reduces hallucinations by 66.7% and misinterpretations by 83.3% across 27 user turns, outperforming ReAct. TME's modular design supports plug-and-play deployment and domain-specific customization, adaptable to both personal assistants and enterprise automation. We release TME's codebase, benchmarks, and components as open-source resources, enabling researchers to develop reliable LLM agents. TME's scalable architecture addresses a critical gap in agent performance across complex, interactive settings.
Hindsight is 20/20: Building Agent Memory that Retains, Recalls, and Reflects
Agent memory has been touted as a dimension of growth for LLM-based applications, enabling agents that can accumulate experience, adapt across sessions, and move beyond single-shot question answering. The current generation of agent memory systems treats memory as an external layer that extracts salient snippets from conversations, stores them in vector or graph-based stores, and retrieves top-k items into the prompt of an otherwise stateless model. While these systems improve personalization and context carry-over, they still blur the line between evidence and inference, struggle to organize information over long horizons, and offer limited support for agents that must explain their reasoning. We present Hindsight, a memory architecture that treats agent memory as a structured, first-class substrate for reasoning by organizing it into four logical networks that distinguish world facts, agent experiences, synthesized entity summaries, and evolving beliefs. This framework supports three core operations -- retain, recall, and reflect -- that govern how information is added, accessed, and updated. Under this abstraction, a temporal, entity aware memory layer incrementally turns conversational streams into a structured, queryable memory bank, while a reflection layer reasons over this bank to produce answers and to update information in a traceable way. On key long-horizon conversational memory benchmarks like LongMemEval and LoCoMo, Hindsight with an open-source 20B model lifts overall accuracy from 39% to 83.6% over a full-context baseline with the same backbone and outperforms full context GPT-4o. Scaling the backbone further pushes Hindsight to 91.4% on LongMemEval and up to 89.61% on LoCoMo (vs. 75.78% for the strongest prior open system), consistently outperforming existing memory architectures on multi-session and open-domain questions.
Evo-Memory: Benchmarking LLM Agent Test-time Learning with Self-Evolving Memory
Statefulness is essential for large language model (LLM) agents to perform long-term planning and problem-solving. This makes memory a critical component, yet its management and evolution remain largely underexplored. Existing evaluations mostly focus on static conversational settings, where memory is passively retrieved from dialogue to answer queries, overlooking the dynamic ability to accumulate and reuse experience across evolving task streams. In real-world environments such as interactive problem assistants or embodied agents, LLMs are required to handle continuous task streams, yet often fail to learn from accumulated interactions, losing valuable contextual insights, a limitation that calls for test-time evolution, where LLMs retrieve, integrate, and update memory continuously during deployment. To bridge this gap, we introduce Evo-Memory, a comprehensive streaming benchmark and framework for evaluating self-evolving memory in LLM agents. Evo-Memory structures datasets into sequential task streams, requiring LLMs to search, adapt, and evolve memory after each interaction. We unify and implement over ten representative memory modules and evaluate them across 10 diverse multi-turn goal-oriented and single-turn reasoning and QA datasets. To better benchmark experience reuse, we provide a baseline method, ExpRAG, for retrieving and utilizing prior experience, and further propose ReMem, an action-think-memory refine pipeline that tightly integrates reasoning, task actions, and memory updates to achieve continual improvement.
Convomem Benchmark: Why Your First 150 Conversations Don't Need RAG
We introduce a comprehensive benchmark for conversational memory evaluation containing 75,336 question-answer pairs across diverse categories including user facts, assistant recall, abstention, preferences, temporal changes, and implicit connections. While existing benchmarks have advanced the field, our work addresses fundamental challenges in statistical power, data generation consistency, and evaluation flexibility that limit current memory evaluation frameworks. We examine the relationship between conversational memory and retrieval-augmented generation (RAG). While these systems share fundamental architectural patterns--temporal reasoning, implicit extraction, knowledge updates, and graph representations--memory systems have a unique characteristic: they start from zero and grow progressively with each conversation. This characteristic enables naive approaches that would be impractical for traditional RAG. Consistent with recent findings on long context effectiveness, we observe that simple full-context approaches achieve 70-82% accuracy even on our most challenging multi-message evidence cases, while sophisticated RAG-based memory systems like Mem0 achieve only 30-45% when operating on conversation histories under 150 interactions. Our analysis reveals practical transition points: long context excels for the first 30 conversations, remains viable with manageable trade-offs up to 150 conversations, and typically requires hybrid or RAG approaches beyond that point as costs and latencies become prohibitive. These patterns indicate that the small-corpus advantage of conversational memory--where exhaustive search and complete reranking are feasible--deserves dedicated research attention rather than simply applying general RAG solutions to conversation histories.
Contextual Experience Replay for Self-Improvement of Language Agents
Large language model (LLM) agents have been applied to sequential decision-making tasks such as web navigation, but without any environment-specific experiences, they often fail in these complex tasks. Moreover, current LLM agents are not designed to continually learn from past experiences during inference time, which could be crucial for them to gain these environment-specific experiences. To address this, we propose Contextual Experience Replay (CER), a training-free framework to enable efficient self-improvement for language agents in their context window. Specifically, CER accumulates and synthesizes past experiences into a dynamic memory buffer. These experiences encompass environment dynamics and common decision-making patterns, allowing the agents to retrieve and augment themselves with relevant knowledge in new tasks, enhancing their adaptability in complex environments. We evaluate CER on the challenging WebArena and VisualWebArena benchmarks. On VisualWebArena, CER achieves a competitive performance of 31.9%. On WebArena, CER also gets a competitive average success rate of 36.7%, relatively improving the success rate of the GPT-4o agent baseline by 51.0%. We also conduct a comprehensive analysis on it to prove its efficiency, validity and understand it better.
Enter the Mind Palace: Reasoning and Planning for Long-term Active Embodied Question Answering
As robots become increasingly capable of operating over extended periods -- spanning days, weeks, and even months -- they are expected to accumulate knowledge of their environments and leverage this experience to assist humans more effectively. This paper studies the problem of Long-term Active Embodied Question Answering (LA-EQA), a new task in which a robot must both recall past experiences and actively explore its environment to answer complex, temporally-grounded questions. Unlike traditional EQA settings, which typically focus either on understanding the present environment alone or on recalling a single past observation, LA-EQA challenges an agent to reason over past, present, and possible future states, deciding when to explore, when to consult its memory, and when to stop gathering observations and provide a final answer. Standard EQA approaches based on large models struggle in this setting due to limited context windows, absence of persistent memory, and an inability to combine memory recall with active exploration. To address this, we propose a structured memory system for robots, inspired by the mind palace method from cognitive science. Our method encodes episodic experiences as scene-graph-based world instances, forming a reasoning and planning algorithm that enables targeted memory retrieval and guided navigation. To balance the exploration-recall trade-off, we introduce value-of-information-based stopping criteria that determines when the agent has gathered sufficient information. We evaluate our method on real-world experiments and introduce a new benchmark that spans popular simulation environments and actual industrial sites. Our approach significantly outperforms state-of-the-art baselines, yielding substantial gains in both answer accuracy and exploration efficiency.
Latent learning: episodic memory complements parametric learning by enabling flexible reuse of experiences
When do machine learning systems fail to generalize, and what mechanisms could improve their generalization? Here, we draw inspiration from cognitive science to argue that one weakness of machine learning systems is their failure to exhibit latent learning -- learning information that is not relevant to the task at hand, but that might be useful in a future task. We show how this perspective links failures ranging from the reversal curse in language modeling to new findings on agent-based navigation. We then highlight how cognitive science points to episodic memory as a potential part of the solution to these issues. Correspondingly, we show that a system with an oracle retrieval mechanism can use learning experiences more flexibly to generalize better across many of these challenges. We also identify some of the essential components for effectively using retrieval, including the importance of within-example in-context learning for acquiring the ability to use information across retrieved examples. In summary, our results illustrate one possible contributor to the relative data inefficiency of current machine learning systems compared to natural intelligence, and help to understand how retrieval methods can complement parametric learning to improve generalization.
Human-like Episodic Memory for Infinite Context LLMs
Large language models (LLMs) have shown remarkable capabilities, but still struggle with processing extensive contexts, limiting their ability to maintain coherence and accuracy over long sequences. In contrast, the human brain excels at organising and retrieving episodic experiences across vast temporal scales, spanning a lifetime. In this work, we introduce EM-LLM, a novel approach that integrates key aspects of human episodic memory and event cognition into LLMs, enabling them to effectively handle practically infinite context lengths while maintaining computational efficiency. EM-LLM organises sequences of tokens into coherent episodic events using a combination of Bayesian surprise and graph-theoretic boundary refinement in an on-line fashion. When needed, these events are retrieved through a two-stage memory process, combining similarity-based and temporally contiguous retrieval for efficient and human-like access to relevant information. Experiments on the LongBench dataset demonstrate EM-LLM's superior performance, outperforming the state-of-the-art InfLLM model with an overall relative improvement of 4.3% across various tasks, including a 33% improvement on the PassageRetrieval task. Furthermore, our analysis reveals strong correlations between EM-LLM's event segmentation and human-perceived events, suggesting a bridge between this artificial system and its biological counterpart. This work not only advances LLM capabilities in processing extended contexts but also provides a computational framework for exploring human memory mechanisms, opening new avenues for interdisciplinary research in AI and cognitive science.
Memorization and Knowledge Injection in Gated LLMs
Large Language Models (LLMs) currently struggle to sequentially add new memories and integrate new knowledge. These limitations contrast with the human ability to continuously learn from new experiences and acquire knowledge throughout life. Most existing approaches add memories either through large context windows or external memory buffers (e.g., Retrieval-Augmented Generation), and studies on knowledge injection rarely test scenarios resembling everyday life events. In this work, we introduce a continual learning framework, Memory Embedded in Gated LLMs (MEGa), which injects event memories directly into the weights of LLMs. Each memory is stored in a dedicated set of gated low-rank weights. During inference, a gating mechanism activates relevant memory weights by matching query embeddings to stored memory embeddings. This enables the model to both recall entire memories and answer related questions. On two datasets - fictional characters and Wikipedia events - MEGa outperforms baseline approaches in mitigating catastrophic forgetting. Our model draws inspiration from the complementary memory system of the human brain.
MemoryBank: Enhancing Large Language Models with Long-Term Memory
Revolutionary advancements in Large Language Models have drastically reshaped our interactions with artificial intelligence systems. Despite this, a notable hindrance remains-the deficiency of a long-term memory mechanism within these models. This shortfall becomes increasingly evident in situations demanding sustained interaction, such as personal companion systems and psychological counseling. Therefore, we propose MemoryBank, a novel memory mechanism tailored for LLMs. MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions. To mimic anthropomorphic behaviors and selectively preserve memory, MemoryBank incorporates a memory updating mechanism, inspired by the Ebbinghaus Forgetting Curve theory, which permits the AI to forget and reinforce memory based on time elapsed and the relative significance of the memory, thereby offering a human-like memory mechanism. MemoryBank is versatile in accommodating both closed-source models like ChatGPT and open-source models like ChatGLM. We exemplify application of MemoryBank through the creation of an LLM-based chatbot named SiliconFriend in a long-term AI Companion scenario. Further tuned with psychological dialogs, SiliconFriend displays heightened empathy in its interactions. Experiment involves both qualitative analysis with real-world user dialogs and quantitative analysis with simulated dialogs. In the latter, ChatGPT acts as users with diverse characteristics and generates long-term dialog contexts covering a wide array of topics. The results of our analysis reveal that SiliconFriend, equipped with MemoryBank, exhibits a strong capability for long-term companionship as it can provide emphatic response, recall relevant memories and understand user personality.
MemOS: A Memory OS for AI System
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI), yet their lack of well-defined memory management systems hinders the development of long-context reasoning, continual personalization, and knowledge consistency.Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.While Retrieval-Augmented Generation (RAG) introduces external knowledge in plain text, it remains a stateless workaround without lifecycle control or integration with persistent representations.Recent work has modeled the training and inference cost of LLMs from a memory hierarchy perspective, showing that introducing an explicit memory layer between parameter memory and external retrieval can substantially reduce these costs by externalizing specific knowledge. Beyond computational efficiency, LLMs face broader challenges arising from how information is distributed over time and context, requiring systems capable of managing heterogeneous knowledge spanning different temporal scales and sources. To address this challenge, we propose MemOS, a memory operating system that treats memory as a manageable system resource. It unifies the representation, scheduling, and evolution of plaintext, activation-based, and parameter-level memories, enabling cost-efficient storage and retrieval. As the basic unit, a MemCube encapsulates both memory content and metadata such as provenance and versioning. MemCubes can be composed, migrated, and fused over time, enabling flexible transitions between memory types and bridging retrieval with parameter-based learning. MemOS establishes a memory-centric system framework that brings controllability, plasticity, and evolvability to LLMs, laying the foundation for continual learning and personalized modeling.
From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs
Memory is the process of encoding, storing, and retrieving information, allowing humans to retain experiences, knowledge, skills, and facts over time, and serving as the foundation for growth and effective interaction with the world. It plays a crucial role in shaping our identity, making decisions, learning from past experiences, building relationships, and adapting to changes. In the era of large language models (LLMs), memory refers to the ability of an AI system to retain, recall, and use information from past interactions to improve future responses and interactions. Although previous research and reviews have provided detailed descriptions of memory mechanisms, there is still a lack of a systematic review that summarizes and analyzes the relationship between the memory of LLM-driven AI systems and human memory, as well as how we can be inspired by human memory to construct more powerful memory systems. To achieve this, in this paper, we propose a comprehensive survey on the memory of LLM-driven AI systems. In particular, we first conduct a detailed analysis of the categories of human memory and relate them to the memory of AI systems. Second, we systematically organize existing memory-related work and propose a categorization method based on three dimensions (object, form, and time) and eight quadrants. Finally, we illustrate some open problems regarding the memory of current AI systems and outline possible future directions for memory in the era of large language models.
Beamforming-LLM: What, Where and When Did I Miss?
We present Beamforming-LLM, a system that enables users to semantically recall conversations they may have missed in multi-speaker environments. The system combines spatial audio capture using a microphone array with retrieval-augmented generation (RAG) to support natural language queries such as, "What did I miss when I was following the conversation on dogs?" Directional audio streams are separated using beamforming, transcribed with Whisper, and embedded into a vector database using sentence encoders. Upon receiving a user query, semantically relevant segments are retrieved, temporally aligned with non-attended segments, and summarized using a lightweight large language model (GPT-4o-mini). The result is a user-friendly interface that provides contrastive summaries, spatial context, and timestamped audio playback. This work lays the foundation for intelligent auditory memory systems and has broad applications in assistive technology, meeting summarization, and context-aware personal spatial computing.
Beyond Fact Retrieval: Episodic Memory for RAG with Generative Semantic Workspaces
Large Language Models (LLMs) face fundamental challenges in long-context reasoning: many documents exceed their finite context windows, while performance on texts that do fit degrades with sequence length, necessitating their augmentation with external memory frameworks. Current solutions, which have evolved from retrieval using semantic embeddings to more sophisticated structured knowledge graphs representations for improved sense-making and associativity, are tailored for fact-based retrieval and fail to build the space-time-anchored narrative representations required for tracking entities through episodic events. To bridge this gap, we propose the Generative Semantic Workspace (GSW), a neuro-inspired generative memory framework that builds structured, interpretable representations of evolving situations, enabling LLMs to reason over evolving roles, actions, and spatiotemporal contexts. Our framework comprises an Operator, which maps incoming observations to intermediate semantic structures, and a Reconciler, which integrates these into a persistent workspace that enforces temporal, spatial, and logical coherence. On the Episodic Memory Benchmark (EpBench) huet_episodic_2025 comprising corpora ranging from 100k to 1M tokens in length, GSW outperforms existing RAG based baselines by up to 20\%. Furthermore, GSW is highly efficient, reducing query-time context tokens by 51\% compared to the next most token-efficient baseline, reducing inference time costs considerably. More broadly, GSW offers a concrete blueprint for endowing LLMs with human-like episodic memory, paving the way for more capable agents that can reason over long horizons.
MapAgent: Trajectory-Constructed Memory-Augmented Planning for Mobile Task Automation
The recent advancement of autonomous agents powered by Large Language Models (LLMs) has demonstrated significant potential for automating tasks on mobile devices through graphical user interfaces (GUIs). Despite initial progress, these agents still face challenges when handling complex real-world tasks. These challenges arise from a lack of knowledge about real-life mobile applications in LLM-based agents, which may lead to ineffective task planning and even cause hallucinations. To address these challenges, we propose a novel LLM-based agent framework called MapAgent that leverages memory constructed from historical trajectories to augment current task planning. Specifically, we first propose a trajectory-based memory mechanism that transforms task execution trajectories into a reusable and structured page-memory database. Each page within a trajectory is extracted as a compact yet comprehensive snapshot, capturing both its UI layout and functional context. Secondly, we introduce a coarse-to-fine task planning approach that retrieves relevant pages from the memory database based on similarity and injects them into the LLM planner to compensate for potential deficiencies in understanding real-world app scenarios, thereby achieving more informed and context-aware task planning. Finally, planned tasks are transformed into executable actions through a task executor supported by a dual-LLM architecture, ensuring effective tracking of task progress. Experimental results in real-world scenarios demonstrate that MapAgent achieves superior performance to existing methods. The code will be open-sourced to support further research.
Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions
Memory is a fundamental component of AI systems, underpinning large language models (LLMs) based agents. While prior surveys have focused on memory applications with LLMs, they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric, contextual structured, and contextual unstructured and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We systematically map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future researchThe paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.
3D-Mem: 3D Scene Memory for Embodied Exploration and Reasoning
Constructing compact and informative 3D scene representations is essential for effective embodied exploration and reasoning, especially in complex environments over extended periods. Existing representations, such as object-centric 3D scene graphs, oversimplify spatial relationships by modeling scenes as isolated objects with restrictive textual relationships, making it difficult to address queries requiring nuanced spatial understanding. Moreover, these representations lack natural mechanisms for active exploration and memory management, hindering their application to lifelong autonomy. In this work, we propose 3D-Mem, a novel 3D scene memory framework for embodied agents. 3D-Mem employs informative multi-view images, termed Memory Snapshots, to represent the scene and capture rich visual information of explored regions. It further integrates frontier-based exploration by introducing Frontier Snapshots-glimpses of unexplored areas-enabling agents to make informed decisions by considering both known and potential new information. To support lifelong memory in active exploration settings, we present an incremental construction pipeline for 3D-Mem, as well as a memory retrieval technique for memory management. Experimental results on three benchmarks demonstrate that 3D-Mem significantly enhances agents' exploration and reasoning capabilities in 3D environments, highlighting its potential for advancing applications in embodied AI.
AI-native Memory 2.0: Second Me
Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.
VMem: Consistent Interactive Video Scene Generation with Surfel-Indexed View Memory
We propose a novel memory mechanism to build video generators that can explore environments interactively. Similar results have previously been achieved by out-painting 2D views of the scene while incrementally reconstructing its 3D geometry, which quickly accumulates errors, or by video generators with a short context window, which struggle to maintain scene coherence over the long term. To address these limitations, we introduce Surfel-Indexed View Memory (VMem), a mechanism that remembers past views by indexing them geometrically based on the 3D surface elements (surfels) they have observed. VMem enables the efficient retrieval of the most relevant past views when generating new ones. By focusing only on these relevant views, our method produces consistent explorations of imagined environments at a fraction of the computational cost of using all past views as context. We evaluate our approach on challenging long-term scene synthesis benchmarks and demonstrate superior performance compared to existing methods in maintaining scene coherence and camera control.
MemPromptTSS: Persistent Prompt Memory for Iterative Multi-Granularity Time Series State Segmentation
Web platforms, mobile applications, and connected sensing systems generate multivariate time series with states at multiple levels of granularity, from coarse regimes to fine-grained events. Effective segmentation in these settings requires integrating across granularities while supporting iterative refinement through sparse prompt signals, which provide a compact mechanism for injecting domain knowledge. Yet existing prompting approaches for time series segmentation operate only within local contexts, so the effect of a prompt quickly fades and cannot guide predictions across the entire sequence. To overcome this limitation, we propose MemPromptTSS, a framework for iterative multi-granularity segmentation that introduces persistent prompt memory. A memory encoder transforms prompts and their surrounding subsequences into memory tokens stored in a bank. This persistent memory enables each new prediction to condition not only on local cues but also on all prompts accumulated across iterations, ensuring their influence persists across the entire sequence. Experiments on six datasets covering wearable sensing and industrial monitoring show that MemPromptTSS achieves 23% and 85% accuracy improvements over the best baseline in single- and multi-granularity segmentation under single iteration inference, and provides stronger refinement in iterative inference with average per-iteration gains of 2.66 percentage points compared to 1.19 for PromptTSS. These results highlight the importance of persistent memory for prompt-guided segmentation, establishing MemPromptTSS as a practical and effective framework for real-world applications.
THEANINE: Revisiting Memory Management in Long-term Conversations with Timeline-augmented Response Generation
Large language models (LLMs) are capable of processing lengthy dialogue histories during prolonged interaction with users without additional memory modules; however, their responses tend to overlook or incorrectly recall information from the past. In this paper, we revisit memory-augmented response generation in the era of LLMs. While prior work focuses on getting rid of outdated memories, we argue that such memories can provide contextual cues that help dialogue systems understand the development of past events and, therefore, benefit response generation. We present Theanine, a framework that augments LLMs' response generation with memory timelines -- series of memories that demonstrate the development and causality of relevant past events. Along with Theanine, we introduce TeaFarm, a counterfactual-driven question-answering pipeline addressing the limitation of G-Eval in long-term conversations. Supplementary videos of our methods and the TeaBag dataset for TeaFarm evaluation are in https://theanine-693b0.web.app/.
M+: Extending MemoryLLM with Scalable Long-Term Memory
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths up to 16k tokens, it struggles to retain knowledge beyond 20k tokens. In this work, we address this limitation by introducing M+, a memory-augmented model based on MemoryLLM that significantly enhances long-term information retention. M+ integrates a long-term memory mechanism with a co-trained retriever, dynamically retrieving relevant information during text generation. We evaluate M+ on diverse benchmarks, including long-context understanding and knowledge retention tasks. Experimental results show that M+ significantly outperforms MemoryLLM and recent strong baselines, extending knowledge retention from under 20k to over 160k tokens with similar GPU memory overhead.
FindingDory: A Benchmark to Evaluate Memory in Embodied Agents
Large vision-language models have recently demonstrated impressive performance in planning and control tasks, driving interest in their application to real-world robotics. However, deploying these models for reasoning in embodied contexts is limited by their ability to incorporate long-term experience collected across multiple days and represented by vast collections of images. Current VLMs typically struggle to process more than a few hundred images concurrently, highlighting the need for more efficient mechanisms to handle long-term memory in embodied settings. To effectively evaluate these models for long-horizon control, a benchmark must specifically target scenarios where memory is crucial for success. Existing long-video QA benchmarks overlook embodied challenges like object manipulation and navigation, which demand low-level skills and fine-grained reasoning over past interactions. Moreover, effective memory integration in embodied agents involves both recalling relevant historical information and executing actions based on that information, making it essential to study these aspects together rather than in isolation. In this work, we introduce a new benchmark for long-range embodied tasks in the Habitat simulator. This benchmark evaluates memory-based capabilities across 60 tasks requiring sustained engagement and contextual awareness in an environment. The tasks can also be procedurally extended to longer and more challenging versions, enabling scalable evaluation of memory and reasoning. We also present baselines that integrate state-of-the-art VLMs with low level navigation policies, assessing their performance on these memory-intensive tasks and highlight areas for improvement.
RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models
Large language models (LLMs) have recently emerged as promising tools for solving challenging robotic tasks, even in the presence of action and observation uncertainties. Recent LLM-based decision-making methods (also referred to as LLM-based agents), when paired with appropriate critics, have demonstrated potential in solving complex, long-horizon tasks with relatively few interactions. However, most existing LLM-based agents lack the ability to retain and learn from past interactions - an essential trait of learning-based robotic systems. We propose RAG-Modulo, a framework that enhances LLM-based agents with a memory of past interactions and incorporates critics to evaluate the agents' decisions. The memory component allows the agent to automatically retrieve and incorporate relevant past experiences as in-context examples, providing context-aware feedback for more informed decision-making. Further by updating its memory, the agent improves its performance over time, thereby exhibiting learning. Through experiments in the challenging BabyAI and AlfWorld domains, we demonstrate significant improvements in task success rates and efficiency, showing that the proposed RAG-Modulo framework outperforms state-of-the-art baselines.
Agentic Memory: Learning Unified Long-Term and Short-Term Memory Management for Large Language Model Agents
Large language model (LLM) agents face fundamental limitations in long-horizon reasoning due to finite context windows, making effective memory management critical. Existing methods typically handle long-term memory (LTM) and short-term memory (STM) as separate components, relying on heuristics or auxiliary controllers, which limits adaptability and end-to-end optimization. In this paper, we propose Agentic Memory (AgeMem), a unified framework that integrates LTM and STM management directly into the agent's policy. AgeMem exposes memory operations as tool-based actions, enabling the LLM agent to autonomously decide what and when to store, retrieve, update, summarize, or discard information. To train such unified behaviors, we propose a three-stage progressive reinforcement learning strategy and design a step-wise GRPO to address sparse and discontinuous rewards induced by memory operations. Experiments on five long-horizon benchmarks demonstrate that AgeMem consistently outperforms strong memory-augmented baselines across multiple LLM backbones, achieving improved task performance, higher-quality long-term memory, and more efficient context usage.
A Simple Yet Strong Baseline for Long-Term Conversational Memory of LLM Agents
LLM-based conversational agents still struggle to maintain coherent, personalized interaction over many sessions: fixed context windows limit how much history can be kept in view, and most external memory approaches trade off between coarse retrieval over large chunks and fine-grained but fragmented views of the dialogue. Motivated by neo-Davidsonian event semantics, we propose an event-centric alternative that represents conversational history as short, event-like propositions which bundle together participants, temporal cues, and minimal local context, rather than as independent relation triples or opaque summaries. In contrast to work that aggressively compresses or forgets past content, our design aims to preserve information in a non-compressive form and make it more accessible, rather than more lossy. Concretely, we instruct an LLM to decompose each session into enriched elementary discourse units (EDUs) -- self-contained statements with normalized entities and source turn attributions -- and organize sessions, EDUs, and their arguments in a heterogeneous graph that supports associative recall. On top of this representation we build two simple retrieval-based variants that use dense similarity search and LLM filtering, with an optional graph-based propagation step to connect and aggregate evidence across related EDUs. Experiments on the LoCoMo and LongMemEval_S benchmarks show that these event-centric memories match or surpass strong baselines, while operating with much shorter QA contexts. Our results suggest that structurally simple, event-level memory provides a principled and practical foundation for long-horizon conversational agents. Our code and data will be released at https://github.com/KevinSRR/EMem.
Keep Me Updated! Memory Management in Long-term Conversations
Remembering important information from the past and continuing to talk about it in the present are crucial in long-term conversations. However, previous literature does not deal with cases where the memorized information is outdated, which may cause confusion in later conversations. To address this issue, we present a novel task and a corresponding dataset of memory management in long-term conversations, in which bots keep track of and bring up the latest information about users while conversing through multiple sessions. In order to support more precise and interpretable memory, we represent memory as unstructured text descriptions of key information and propose a new mechanism of memory management that selectively eliminates invalidated or redundant information. Experimental results show that our approach outperforms the baselines that leave the stored memory unchanged in terms of engagingness and humanness, with larger performance gap especially in the later sessions.
HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model
Large Language Model (LLM)-based agents exhibit significant potential across various domains, operating as interactive systems that process environmental observations to generate executable actions for target tasks. The effectiveness of these agents is significantly influenced by their memory mechanism, which records historical experiences as sequences of action-observation pairs. We categorize memory into two types: cross-trial memory, accumulated across multiple attempts, and in-trial memory (working memory), accumulated within a single attempt. While considerable research has optimized performance through cross-trial memory, the enhancement of agent performance through improved working memory utilization remains underexplored. Instead, existing approaches often involve directly inputting entire historical action-observation pairs into LLMs, leading to redundancy in long-horizon tasks. Inspired by human problem-solving strategies, this paper introduces HiAgent, a framework that leverages subgoals as memory chunks to manage the working memory of LLM-based agents hierarchically. Specifically, HiAgent prompts LLMs to formulate subgoals before generating executable actions and enables LLMs to decide proactively to replace previous subgoals with summarized observations, retaining only the action-observation pairs relevant to the current subgoal. Experimental results across five long-horizon tasks demonstrate that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8. Additionally, our analysis shows that HiAgent consistently improves performance across various steps, highlighting its robustness and generalizability. Project Page: https://github.com/HiAgent2024/HiAgent .
Long-Context State-Space Video World Models
Video diffusion models have recently shown promise for world modeling through autoregressive frame prediction conditioned on actions. However, they struggle to maintain long-term memory due to the high computational cost associated with processing extended sequences in attention layers. To overcome this limitation, we propose a novel architecture leveraging state-space models (SSMs) to extend temporal memory without compromising computational efficiency. Unlike previous approaches that retrofit SSMs for non-causal vision tasks, our method fully exploits the inherent advantages of SSMs in causal sequence modeling. Central to our design is a block-wise SSM scanning scheme, which strategically trades off spatial consistency for extended temporal memory, combined with dense local attention to ensure coherence between consecutive frames. We evaluate the long-term memory capabilities of our model through spatial retrieval and reasoning tasks over extended horizons. Experiments on Memory Maze and Minecraft datasets demonstrate that our approach surpasses baselines in preserving long-range memory, while maintaining practical inference speeds suitable for interactive applications.
Memory in Large Language Models: Mechanisms, Evaluation and Evolution
Under a unified operational definition, we define LLM memory as a persistent state written during pretraining, finetuning, or inference that can later be addressed and that stably influences outputs. We propose a four-part taxonomy (parametric, contextual, external, procedural/episodic) and a memory quadruple (location, persistence, write/access path, controllability). We link mechanism, evaluation, and governance via the chain write -> read -> inhibit/update. To avoid distorted comparisons across heterogeneous setups, we adopt a three-setting protocol (parametric only, offline retrieval, online retrieval) that decouples capability from information availability on the same data and timeline. On this basis we build a layered evaluation: parametric (closed-book recall, edit differential, memorization/privacy), contextual (position curves and the mid-sequence drop), external (answer correctness vs snippet attribution/faithfulness), and procedural/episodic (cross-session consistency and timeline replay, E MARS+). The framework integrates temporal governance and leakage auditing (freshness hits, outdated answers, refusal slices) and uncertainty reporting via inter-rater agreement plus paired tests with multiple-comparison correction. For updating and forgetting, we present DMM Gov: coordinating DAPT/TAPT, PEFT, model editing (ROME, MEND, MEMIT, SERAC), and RAG to form an auditable loop covering admission thresholds, rollout, monitoring, rollback, and change audits, with specs for timeliness, conflict handling, and long-horizon consistency. Finally, we give four testable propositions: minimum identifiability; a minimal evaluation card; causally constrained editing with verifiable forgetting; and when retrieval with small-window replay outperforms ultra-long-context reading. This yields a reproducible, comparable, and governable coordinate system for research and deployment.
Controllable Memory Usage: Balancing Anchoring and Innovation in Long-Term Human-Agent Interaction
As LLM-based agents are increasingly used in long-term interactions, cumulative memory is critical for enabling personalization and maintaining stylistic consistency. However, most existing systems adopt an ``all-or-nothing'' approach to memory usage: incorporating all relevant past information can lead to Memory Anchoring, where the agent is trapped by past interactions, while excluding memory entirely results in under-utilization and the loss of important interaction history. We show that an agent's reliance on memory can be modeled as an explicit and user-controllable dimension. We first introduce a behavioral metric of memory dependence to quantify the influence of past interactions on current outputs. We then propose Steerable Memory Agent, SteeM, a framework that allows users to dynamically regulate memory reliance, ranging from a fresh-start mode that promotes innovation to a high-fidelity mode that closely follows interaction history. Experiments across different scenarios demonstrate that our approach consistently outperforms conventional prompting and rigid memory masking strategies, yielding a more nuanced and effective control for personalized human-agent collaboration.
Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
Think Before You Act: Decision Transformers with Internal Working Memory
Large language model (LLM)-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance relies on massive data and compute. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model's performance on previous tasks. In contrast to LLMs' implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Thus inspired, we propose an internal working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in both Atari games and meta-world object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
Emergent Collective Memory in Decentralized Multi-Agent AI Systems
We demonstrate how collective memory emerges in decentralized multi-agent systems through the interplay between individual agent memory and environmental trace communication. Our agents maintain internal memory states while depositing persistent environmental traces, creating a spatially distributed collective memory without centralized control. Comprehensive validation across five environmental conditions (20x20 to 50x50 grids, 5-20 agents, 50 runs per configuration) reveals a critical asymmetry: individual memory alone provides 68.7% performance improvement over no-memory baselines (1563.87 vs 927.23, p < 0.001), while environmental traces without memory fail completely. This demonstrates that memory functions independently but traces require cognitive infrastructure for interpretation. Systematic density-sweep experiments (rho in [0.049, 0.300], up to 625 agents) validate our theoretical phase transition prediction. On realistic large grids (30x30, 50x50), stigmergic coordination dominates above rho ~ 0.20, with traces outperforming memory by 36-41% on composite metrics despite lower food efficiency. The experimental crossover confirms the predicted critical density rho_c = 0.230 within 13% error.
G-Memory: Tracing Hierarchical Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) have demonstrated cognitive and execution capabilities that far exceed those of single LLM agents, yet their capacity for self-evolution remains hampered by underdeveloped memory architectures. Upon close inspection, we are alarmed to discover that prevailing MAS memory mechanisms (1) are overly simplistic, completely disregarding the nuanced inter-agent collaboration trajectories, and (2) lack cross-trial and agent-specific customization, in stark contrast to the expressive memory developed for single agents. To bridge this gap, we introduce G-Memory, a hierarchical, agentic memory system for MAS inspired by organizational memory theory, which manages the lengthy MAS interaction via a three-tier graph hierarchy: insight, query, and interaction graphs. Upon receiving a new user query, G-Memory performs bi-directional memory traversal to retrieve both high-level, generalizable insights that enable the system to leverage cross-trial knowledge, and fine-grained, condensed interaction trajectories that compactly encode prior collaboration experiences. Upon task execution, the entire hierarchy evolves by assimilating new collaborative trajectories, nurturing the progressive evolution of agent teams. Extensive experiments across five benchmarks, three LLM backbones, and three popular MAS frameworks demonstrate that G-Memory improves success rates in embodied action and accuracy in knowledge QA by up to 20.89% and 10.12%, respectively, without any modifications to the original frameworks. Our codes are available at https://github.com/bingreeky/GMemory.
Taming Knowledge Conflicts in Language Models
Language Models (LMs) often encounter knowledge conflicts when parametric memory contradicts contextual knowledge. Previous works attribute this conflict to the interplay between "memory heads" and "context heads", attention heads assumed to promote either memory or context exclusively. In this study, we go beyond this fundamental assumption by uncovering a critical phenomenon we term the "superposition of contextual information and parametric memory", where highly influential attention heads could simultaneously contribute to both memory and context. Building upon this insight, we propose Just Run Twice (JUICE), a test-time attention intervention method that steers LMs toward either parametric beliefs or contextual knowledge without requiring fine-tuning. JUICE identifies a set of reliable attention heads and leverages a dual-run approach to mitigate the superposition effects. Extensive experiments across 11 datasets and 6 model architectures demonstrate that JUICE sets the new state-of-the-art performance and robust generalization, achieving significant and consistent improvement across different domains under various conflict types. Finally, we theoretically analyze knowledge conflict and the superposition of contextual information and parametric memory in attention heads, which further elucidates the effectiveness of JUICE in these settings.
Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory
Large Language Models (LLMs) have demonstrated remarkable prowess in generating contextually coherent responses, yet their fixed context windows pose fundamental challenges for maintaining consistency over prolonged multi-session dialogues. We introduce Mem0, a scalable memory-centric architecture that addresses this issue by dynamically extracting, consolidating, and retrieving salient information from ongoing conversations. Building on this foundation, we further propose an enhanced variant that leverages graph-based memory representations to capture complex relational structures among conversational elements. Through comprehensive evaluations on LOCOMO benchmark, we systematically compare our approaches against six baseline categories: (i) established memory-augmented systems, (ii) retrieval-augmented generation (RAG) with varying chunk sizes and k-values, (iii) a full-context approach that processes the entire conversation history, (iv) an open-source memory solution, (v) a proprietary model system, and (vi) a dedicated memory management platform. Empirical results show that our methods consistently outperform all existing memory systems across four question categories: single-hop, temporal, multi-hop, and open-domain. Notably, Mem0 achieves 26% relative improvements in the LLM-as-a-Judge metric over OpenAI, while Mem0 with graph memory achieves around 2% higher overall score than the base configuration. Beyond accuracy gains, we also markedly reduce computational overhead compared to full-context method. In particular, Mem0 attains a 91% lower p95 latency and saves more than 90% token cost, offering a compelling balance between advanced reasoning capabilities and practical deployment constraints. Our findings highlight critical role of structured, persistent memory mechanisms for long-term conversational coherence, paving the way for more reliable and efficient LLM-driven AI agents.
RealMem: Benchmarking LLMs in Real-World Memory-Driven Interaction
As Large Language Models (LLMs) evolve from static dialogue interfaces to autonomous general agents, effective memory is paramount to ensuring long-term consistency. However, existing benchmarks primarily focus on casual conversation or task-oriented dialogue, failing to capture **"long-term project-oriented"** interactions where agents must track evolving goals. To bridge this gap, we introduce **RealMem**, the first benchmark grounded in realistic project scenarios. RealMem comprises over 2,000 cross-session dialogues across eleven scenarios, utilizing natural user queries for evaluation. We propose a synthesis pipeline that integrates Project Foundation Construction, Multi-Agent Dialogue Generation, and Memory and Schedule Management to simulate the dynamic evolution of memory. Experiments reveal that current memory systems face significant challenges in managing the long-term project states and dynamic context dependencies inherent in real-world projects. Our code and datasets are available at [https://github.com/AvatarMemory/RealMemBench](https://github.com/AvatarMemory/RealMemBench).
Does the Generator Mind its Contexts? An Analysis of Generative Model Faithfulness under Context Transfer
The present study introduces the knowledge-augmented generator, which is specifically designed to produce information that remains grounded in contextual knowledge, regardless of alterations in the context. Previous research has predominantly focused on examining hallucinations stemming from static input, such as in the domains of summarization or machine translation. However, our investigation delves into the faithfulness of generative question answering in the presence of dynamic knowledge. Our objective is to explore the existence of hallucinations arising from parametric memory when contextual knowledge undergoes changes, while also analyzing the underlying causes for their occurrence. In order to efficiently address this issue, we propose a straightforward yet effective measure for detecting such hallucinations. Intriguingly, our investigation uncovers that all models exhibit a tendency to generate previous answers as hallucinations. To gain deeper insights into the underlying causes of this phenomenon, we conduct a series of experiments that verify the critical role played by context in hallucination, both during training and testing, from various perspectives.
CIMemories: A Compositional Benchmark for Contextual Integrity of Persistent Memory in LLMs
Large Language Models (LLMs) increasingly use persistent memory from past interactions to enhance personalization and task performance. However, this memory introduces critical risks when sensitive information is revealed in inappropriate contexts. We present CIMemories, a benchmark for evaluating whether LLMs appropriately control information flow from memory based on task context. CIMemories uses synthetic user profiles with over 100 attributes per user, paired with diverse task contexts in which each attribute may be essential for some tasks but inappropriate for others. Our evaluation reveals that frontier models exhibit up to 69% attribute-level violations (leaking information inappropriately), with lower violation rates often coming at the cost of task utility. Violations accumulate across both tasks and runs: as usage increases from 1 to 40 tasks, GPT-5's violations rise from 0.1% to 9.6%, reaching 25.1% when the same prompt is executed 5 times, revealing arbitrary and unstable behavior in which models leak different attributes for identical prompts. Privacy-conscious prompting does not solve this - models overgeneralize, sharing everything or nothing rather than making nuanced, context-dependent decisions. These findings reveal fundamental limitations that require contextually aware reasoning capabilities, not just better prompting or scaling.
MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models
Large Language Models (LLMs) have emerged as foundational infrastructure in the pursuit of Artificial General Intelligence (AGI). Despite their remarkable capabilities in language perception and generation, current LLMs fundamentally lack a unified and structured architecture for handling memory. They primarily rely on parametric memory (knowledge encoded in model weights) and ephemeral activation memory (context-limited runtime states). While emerging methods like Retrieval-Augmented Generation (RAG) incorporate plaintext memory, they lack lifecycle management and multi-modal integration, limiting their capacity for long-term knowledge evolution. To address this, we introduce MemOS, a memory operating system designed for LLMs that, for the first time, elevates memory to a first-class operational resource. It builds unified mechanisms for representation, organization, and governance across three core memory types: parametric, activation, and plaintext. At its core is the MemCube, a standardized memory abstraction that enables tracking, fusion, and migration of heterogeneous memory, while offering structured, traceable access across tasks and contexts. MemOS establishes a memory-centric execution framework with strong controllability, adaptability, and evolvability. It fills a critical gap in current LLM infrastructure and lays the groundwork for continual adaptation, personalized intelligence, and cross-platform coordination in next-generation intelligent systems.
R^3Mem: Bridging Memory Retention and Retrieval via Reversible Compression
Memory plays a key role in enhancing LLMs' performance when deployed to real-world applications. Existing solutions face trade-offs: explicit memory designs based on external storage require complex management and incur storage overhead, while implicit memory designs that store information via parameters struggle with reliable retrieval. In this paper, we propose R^3Mem, a memory network that optimizes both information Retention and Retrieval through Reversible context compression. Specifically, R^3Mem employs virtual memory tokens to compress and encode infinitely long histories, further enhanced by a hierarchical compression strategy that refines information from document- to entity-level for improved assimilation across granularities. For retrieval, R^3Mem employs a reversible architecture, reconstructing raw data by invoking the model backward with compressed information. Implemented via parameter-efficient fine-tuning, it can integrate seamlessly with any Transformer-based model. Experiments demonstrate that our memory design achieves state-of-the-art performance in long-context language modeling and retrieval-augmented generation tasks. It also significantly outperforms conventional memory modules in long-horizon interaction tasks like conversational agents, showcasing its potential for next-generation retrieval systems.
B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory
We describe a family of architectures to support transductive inference by allowing memory to grow to a finite but a-priori unknown bound while making efficient use of finite resources for inference. Current architectures use such resources to represent data either eidetically over a finite span ("context" in Transformers), or fading over an infinite span (in State Space Models, or SSMs). Recent hybrid architectures have combined eidetic and fading memory, but with limitations that do not allow the designer or the learning process to seamlessly modulate the two, nor to extend the eidetic memory span. We leverage ideas from Stochastic Realization Theory to develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an elementary composable module. The overall architecture can be used to implement models that can access short-term eidetic memory "in-context," permanent structural memory "in-weights," fading memory "in-state," and long-term eidetic memory "in-storage" by natively incorporating retrieval from an asynchronously updated memory. We show that Transformers, existing SSMs such as Mamba, and hybrid architectures such as Jamba are special cases of B'MOJO and describe a basic implementation, to be open sourced, that can be stacked and scaled efficiently in hardware. We test B'MOJO on transductive inference tasks, such as associative recall, where it outperforms existing SSMs and Hybrid models; as a baseline, we test ordinary language modeling where B'MOJO achieves perplexity comparable to similarly-sized Transformers and SSMs up to 1.4B parameters, while being up to 10% faster to train. Finally, we show that B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens, four-fold the length of the longest sequences seen during training.
Embodied Agents Meet Personalization: Exploring Memory Utilization for Personalized Assistance
Embodied agents empowered by large language models (LLMs) have shown strong performance in household object rearrangement tasks. However, these tasks primarily focus on single-turn interactions with simplified instructions, which do not truly reflect the challenges of providing meaningful assistance to users. To provide personalized assistance, embodied agents must understand the unique semantics that users assign to the physical world (e.g., favorite cup, breakfast routine) by leveraging prior interaction history to interpret dynamic, real-world instructions. Yet, the effectiveness of embodied agents in utilizing memory for personalized assistance remains largely underexplored. To address this gap, we present MEMENTO, a personalized embodied agent evaluation framework designed to comprehensively assess memory utilization capabilities to provide personalized assistance. Our framework consists of a two-stage memory evaluation process design that enables quantifying the impact of memory utilization on task performance. This process enables the evaluation of agents' understanding of personalized knowledge in object rearrangement tasks by focusing on its role in goal interpretation: (1) the ability to identify target objects based on personal meaning (object semantics), and (2) the ability to infer object-location configurations from consistent user patterns, such as routines (user patterns). Our experiments across various LLMs reveal significant limitations in memory utilization, with even frontier models like GPT-4o experiencing a 30.5% performance drop when required to reference multiple memories, particularly in tasks involving user patterns. These findings, along with our detailed analyses and case studies, provide valuable insights for future research in developing more effective personalized embodied agents. Project website: https://connoriginal.github.io/MEMENTO
Agentic Learner with Grow-and-Refine Multimodal Semantic Memory
MLLMs exhibit strong reasoning on isolated queries, yet they operate de novo -- solving each problem independently and often repeating the same mistakes. Existing memory-augmented agents mainly store past trajectories for reuse. However, trajectory-based memory suffers from brevity bias, gradually losing essential domain knowledge. More critically, even in truly multimodal problem-solving settings, it records only a single-modality trace of past behavior, failing to preserve how visual attention and logical reasoning jointly contributed to the solution. This is fundamentally misaligned with human cognition: semantic memory is both multimodal and integrated, preserving visual and abstract knowledge through coordinated but distinct representational streams. We thus introduce ViLoMem, a dual-stream memory framework that constructs compact, schema-based memory. It separately encodes visual distraction patterns and logical reasoning errors, enabling MLLMs to learn from their successful and failed experiences. Following a grow-and-refine principle, the system incrementally accumulates and updates multimodal semantic knowledge -- preserving stable, generalizable strategies while avoiding catastrophic forgetting. Across six multimodal benchmarks, ViLoMem consistently improves pass@1 accuracy and substantially reduces repeated visual and logical errors. Ablations confirm the necessity of dual-stream memory with explicit distraction--hallucination separation, demonstrating the value of error-aware multimodal memory for lifelong and cross-domain agentic learning. Our project page will be available at https://weihao-bo.github.io/ViLoMeo-page.
Titans: Learning to Memorize at Test Time
Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.
TokMem: Tokenized Procedural Memory for Large Language Models
Large language models rely heavily on prompts to specify tasks, recall knowledge and guide reasoning. However, this reliance is inefficient as prompts must be re-read at each step, scale poorly across tasks, and lack mechanisms for modular reuse. We introduce TokMem, a tokenized procedural memory that stores recurring procedures as compact, trainable embeddings. Each memory token encodes both an address to a procedure and a control signal that steers generation, enabling targeted behavior with constant-size overhead. To support continual adaptation, TokMem keeps the backbone model frozen, allowing new procedures to be added without interfering with existing ones. We evaluate TokMem on 1,000 tasks for atomic recall, and on function-calling tasks for compositional recall, where it consistently outperforms retrieval-augmented generation while avoiding repeated context overhead, and fine-tuning with far fewer parameters. These results establish TokMem as a scalable and modular alternative to prompt engineering and fine-tuning, offering an explicit procedural memory for LLMs.
Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable performance in long-term human-machine interactions, which basically relies on iterative recalling and reasoning of history to generate high-quality responses. However, such repeated recall-reason steps easily produce biased thoughts, i.e., inconsistent reasoning results when recalling the same history for different questions. On the contrary, humans can keep thoughts in the memory and recall them without repeated reasoning. Motivated by this human capability, we propose a novel memory mechanism called TiM (Think-in-Memory) that enables LLMs to maintain an evolved memory for storing historical thoughts along the conversation stream. The TiM framework consists of two crucial stages: (1) before generating a response, a LLM agent recalls relevant thoughts from memory, and (2) after generating a response, the LLM agent post-thinks and incorporates both historical and new thoughts to update the memory. Thus, TiM can eliminate the issue of repeated reasoning by saving the post-thinking thoughts as the history. Besides, we formulate the basic principles to organize the thoughts in memory based on the well-established operations, (i.e., insert, forget, and merge operations), allowing for dynamic updates and evolution of the thoughts. Furthermore, we introduce Locality-Sensitive Hashing into TiM to achieve efficient retrieval for the long-term conversations. We conduct qualitative and quantitative experiments on real-world and simulated dialogues covering a wide range of topics, demonstrating that equipping existing LLMs with TiM significantly enhances their performance in generating responses for long-term interactions.
Learning to Reason and Memorize with Self-Notes
Large language models have been shown to struggle with limited context memory and multi-step reasoning. We propose a simple method for solving both of these problems by allowing the model to take Self-Notes. Unlike recent scratchpad approaches, the model can deviate from the input context at any time to explicitly think. This allows the model to recall information and perform reasoning on the fly as it reads the context, thus extending its memory and enabling multi-step reasoning. Our experiments on multiple tasks demonstrate that our method can successfully generalize to longer and more complicated instances from their training setup by taking Self-Notes at inference time.
KnowMe-Bench: Benchmarking Person Understanding for Lifelong Digital Companions
Existing long-horizon memory benchmarks mostly use multi-turn dialogues or synthetic user histories, which makes retrieval performance an imperfect proxy for person understanding. We present \BenchName, a publicly releasable benchmark built from long-form autobiographical narratives, where actions, context, and inner thoughts provide dense evidence for inferring stable motivations and decision principles. \BenchName~reconstructs each narrative into a flashback-aware, time-anchored stream and evaluates models with evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning. Across diverse narrative sources, retrieval-augmented systems mainly improve factual accuracy, while errors persist on temporally grounded explanations and higher-level inferences, highlighting the need for memory mechanisms beyond retrieval. Our data is in KnowMeBench{https://github.com/QuantaAlpha/KnowMeBench}.
From reactive to cognitive: brain-inspired spatial intelligence for embodied agents
Spatial cognition enables adaptive goal-directed behavior by constructing internal models of space. Robust biological systems consolidate spatial knowledge into three interconnected forms: landmarks for salient cues, route knowledge for movement trajectories, and survey knowledge for map-like representations. While recent advances in multi-modal large language models (MLLMs) have enabled visual-language reasoning in embodied agents, these efforts lack structured spatial memory and instead operate reactively, limiting their generalization and adaptability in complex real-world environments. Here we present Brain-inspired Spatial Cognition for Navigation (BSC-Nav), a unified framework for constructing and leveraging structured spatial memory in embodied agents. BSC-Nav builds allocentric cognitive maps from egocentric trajectories and contextual cues, and dynamically retrieves spatial knowledge aligned with semantic goals. Integrated with powerful MLLMs, BSC-Nav achieves state-of-the-art efficacy and efficiency across diverse navigation tasks, demonstrates strong zero-shot generalization, and supports versatile embodied behaviors in the real physical world, offering a scalable and biologically grounded path toward general-purpose spatial intelligence.
The Tensor Brain: Semantic Decoding for Perception and Memory
We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of subject-predicate-object (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.
ENGRAM: Effective, Lightweight Memory Orchestration for Conversational Agents
Large language models (LLMs) deployed in user-facing applications require long-horizon consistency: the ability to remember prior interactions, respect user preferences, and ground reasoning in past events. However, contemporary memory systems often adopt complex architectures such as knowledge graphs, multi-stage retrieval pipelines, and OS-style schedulers, which introduce engineering complexity and reproducibility challenges. We present ENGRAM, a lightweight memory system that organizes conversation into three canonical memory types (episodic, semantic, and procedural) through a single router and retriever. Each user turn is converted into typed memory records with normalized schemas and embeddings and stored in a database. At query time, the system retrieves top-k dense neighbors for each type, merges results with simple set operations, and provides the most relevant evidence as context to the model. ENGRAM attains state-of-the-art results on LoCoMo, a multi-session conversational QA benchmark for long-horizon memory, and exceeds the full-context baseline by 15 points on LongMemEval while using only about 1% of the tokens. These results show that careful memory typing and straightforward dense retrieval can enable effective long-term memory management in language models without requiring complex architectures.
Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management
Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference, where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation, (2) summary, hide, and restore, and (3) intelligent search. Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks-PI-LLM (proactive interference) and NeedleBench Multi-Needle Reasoning-demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.
Accumulating Context Changes the Beliefs of Language Models
Language model (LM) assistants are increasingly used in applications such as brainstorming and research. Improvements in memory and context size have allowed these models to become more autonomous, which has also resulted in more text accumulation in their context windows without explicit user intervention. This comes with a latent risk: the belief profiles of models -- their understanding of the world as manifested in their responses or actions -- may silently change as context accumulates. This can lead to subtly inconsistent user experiences, or shifts in behavior that deviate from the original alignment of the models. In this paper, we explore how accumulating context by engaging in interactions and processing text -- talking and reading -- can change the beliefs of language models, as manifested in their responses and behaviors. Our results reveal that models' belief profiles are highly malleable: GPT-5 exhibits a 54.7% shift in its stated beliefs after 10 rounds of discussion about moral dilemmas and queries about safety, while Grok 4 shows a 27.2% shift on political issues after reading texts from the opposing position. We also examine models' behavioral changes by designing tasks that require tool use, where each tool selection corresponds to an implicit belief. We find that these changes align with stated belief shifts, suggesting that belief shifts will be reflected in actual behavior in agentic systems. Our analysis exposes the hidden risk of belief shift as models undergo extended sessions of talking or reading, rendering their opinions and actions unreliable.
Human-inspired Perspectives: A Survey on AI Long-term Memory
With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant. These capabilities are crucial for enhancing the performance of AI systems across a wide range of tasks. However, there is currently no comprehensive survey that systematically investigates AI's long-term memory capabilities, formulates a theoretical framework, and inspires the development of next-generation AI long-term memory systems. This paper begins by systematically introducing the mechanisms of human long-term memory, then explores AI long-term memory mechanisms, establishing a mapping between the two. Based on the mapping relationships identified, we extend the current cognitive architectures and propose the Cognitive Architecture of Self-Adaptive Long-term Memory (SALM). SALM provides a theoretical framework for the practice of AI long-term memory and holds potential for guiding the creation of next-generation long-term memory driven AI systems. Finally, we delve into the future directions and application prospects of AI long-term memory.
Unraveling the Complexity of Memory in RL Agents: an Approach for Classification and Evaluation
The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL). In particular, memory is paramount for tasks that require the utilization of past information, adaptation to novel environments, and improved sample efficiency. However, the term ``memory'' encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent's memory, leads to erroneous judgments about agents' memory capabilities and prevents objective comparison with other memory-enhanced agents. This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types, such as long-term versus short-term memory and declarative versus procedural memory, inspired by cognitive science. Using these definitions, we categorize different classes of agent memory, propose a robust experimental methodology for evaluating the memory capabilities of RL agents, and standardize evaluations. Furthermore, we empirically demonstrate the importance of adhering to the proposed methodology when evaluating different types of agent memory by conducting experiments with different RL agents and what its violation leads to.
There Are a Thousand Hamlets in a Thousand People's Eyes: Enhancing Knowledge-grounded Dialogue with Personal Memory
Knowledge-grounded conversation (KGC) shows great potential in building an engaging and knowledgeable chatbot, and knowledge selection is a key ingredient in it. However, previous methods for knowledge selection only concentrate on the relevance between knowledge and dialogue context, ignoring the fact that age, hobby, education and life experience of an interlocutor have a major effect on his or her personal preference over external knowledge. Without taking the personalization issue into account, it is difficult to select the proper knowledge and generate persona-consistent responses. In this work, we introduce personal memory into knowledge selection in KGC to address the personalization issue. We propose a variational method to model the underlying relationship between one's personal memory and his or her selection of knowledge, and devise a learning scheme in which the forward mapping from personal memory to knowledge and its inverse mapping is included in a closed loop so that they could teach each other. Experiment results show that our method outperforms existing KGC methods significantly on both automatic evaluation and human evaluation.
Retrieval-Augmented Decision Transformer: External Memory for In-context RL
In-context learning (ICL) is the ability of a model to learn a new task by observing a few exemplars in its context. While prevalent in NLP, this capability has recently also been observed in Reinforcement Learning (RL) settings. Prior in-context RL methods, however, require entire episodes in the agent's context. Given that complex environments typically lead to long episodes with sparse rewards, these methods are constrained to simple environments with short episodes. To address these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-DT). RA-DT employs an external memory mechanism to store past experiences from which it retrieves only sub-trajectories relevant for the current situation. The retrieval component in RA-DT does not require training and can be entirely domain-agnostic. We evaluate the capabilities of RA-DT on grid-world environments, robotics simulations, and procedurally-generated video games. On grid-worlds, RA-DT outperforms baselines, while using only a fraction of their context length. Furthermore, we illuminate the limitations of current in-context RL methods on complex environments and discuss future directions. To facilitate future research, we release datasets for four of the considered environments.
Relational recurrent neural networks
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a Relational Memory Core (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
Memory-Augmented Transformers: A Systematic Review from Neuroscience Principles to Technical Solutions
Memory is fundamental to intelligence, enabling learning, reasoning, and adaptability across biological and artificial systems. While Transformer architectures excel at sequence modeling, they face critical limitations in long-range context retention, continual learning, and knowledge integration. This review presents a unified framework bridging neuroscience principles, including dynamic multi-timescale memory, selective attention, and consolidation, with engineering advances in Memory-Augmented Transformers. We organize recent progress through three taxonomic dimensions: functional objectives (context extension, reasoning, knowledge integration, adaptation), memory representations (parameter-encoded, state-based, explicit, hybrid), and integration mechanisms (attention fusion, gated control, associative retrieval). Our analysis of core memory operations (reading, writing, forgetting, and capacity management) reveals a shift from static caches toward adaptive, test-time learning systems. We identify persistent challenges in scalability and interference, alongside emerging solutions including hierarchical buffering and surprise-gated updates. This synthesis provides a roadmap toward cognitively-inspired, lifelong-learning Transformer architectures.
Beyond a Million Tokens: Benchmarking and Enhancing Long-Term Memory in LLMs
Evaluating the abilities of large language models (LLMs) for tasks that require long-term memory and thus long-context reasoning, for example in conversational settings, is hampered by the existing benchmarks, which often lack narrative coherence, cover narrow domains, and only test simple recall-oriented tasks. This paper introduces a comprehensive solution to these challenges. First, we present a novel framework for automatically generating long (up to 10M tokens), coherent, and topically diverse conversations, accompanied by probing questions targeting a wide range of memory abilities. From this, we construct BEAM, a new benchmark comprising 100 conversations and 2,000 validated questions. Second, to enhance model performance, we propose LIGHT-a framework inspired by human cognition that equips LLMs with three complementary memory systems: a long-term episodic memory, a short-term working memory, and a scratchpad for accumulating salient facts. Our experiments on BEAM reveal that even LLMs with 1M token context windows (with and without retrieval-augmentation) struggle as dialogues lengthen. In contrast, LIGHT consistently improves performance across various models, achieving an average improvement of 3.5%-12.69% over the strongest baselines, depending on the backbone LLM. An ablation study further confirms the contribution of each memory component.
Memory^3: Language Modeling with Explicit Memory
The training and inference of large language models (LLMs) are together a costly process that transports knowledge from raw data to meaningful computation. Inspired by the memory hierarchy of the human brain, we reduce this cost by equipping LLMs with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG). Conceptually, with most of its knowledge externalized to explicit memories, the LLM can enjoy a smaller parameter size, training cost, and inference cost, all proportional to the amount of remaining "abstract knowledge". As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs as well as RAG models, and maintains higher decoding speed than RAG. The model is named Memory^3, since explicit memory is the third form of memory in LLMs after implicit memory (model parameters) and working memory (context key-values). We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable and a two-stage pretraining scheme that facilitates memory formation.
RELIC: Interactive Video World Model with Long-Horizon Memory
A truly interactive world model requires three key ingredients: real-time long-horizon streaming, consistent spatial memory, and precise user control. However, most existing approaches address only one of these aspects in isolation, as achieving all three simultaneously is highly challenging-for example, long-term memory mechanisms often degrade real-time performance. In this work, we present RELIC, a unified framework that tackles these three challenges altogether. Given a single image and a text description, RELIC enables memory-aware, long-duration exploration of arbitrary scenes in real time. Built upon recent autoregressive video-diffusion distillation techniques, our model represents long-horizon memory using highly compressed historical latent tokens encoded with both relative actions and absolute camera poses within the KV cache. This compact, camera-aware memory structure supports implicit 3D-consistent content retrieval and enforces long-term coherence with minimal computational overhead. In parallel, we fine-tune a bidirectional teacher video model to generate sequences beyond its original 5-second training horizon, and transform it into a causal student generator using a new memory-efficient self-forcing paradigm that enables full-context distillation over long-duration teacher as well as long student self-rollouts. Implemented as a 14B-parameter model and trained on a curated Unreal Engine-rendered dataset, RELIC achieves real-time generation at 16 FPS while demonstrating more accurate action following, more stable long-horizon streaming, and more robust spatial-memory retrieval compared with prior work. These capabilities establish RELIC as a strong foundation for the next generation of interactive world modeling.
Multimodal Embodied Interactive Agent for Cafe Scene
With the surge in the development of large language models, embodied intelligence has attracted increasing attention. Nevertheless, prior works on embodied intelligence typically encode scene or historical memory in an unimodal manner, either visual or linguistic, which complicates the alignment of the model's action planning with embodied control. To overcome this limitation, we introduce the Multimodal Embodied Interactive Agent (MEIA), capable of translating high-level tasks expressed in natural language into a sequence of executable actions. Specifically, we propose a novel Multimodal Environment Memory (MEM) module, facilitating the integration of embodied control with large models through the visual-language memory of scenes. This capability enables MEIA to generate executable action plans based on diverse requirements and the robot's capabilities. We conduct experiments in a dynamic virtual cafe environment, utilizing multiple large models through zero-shot learning, and carefully design scenarios for various situations. The experimental results showcase the promising performance of our MEIA in various embodied interactive tasks.
MemGPT: Towards LLMs as Operating Systems
Large language models (LLMs) have revolutionized AI, but are constrained by limited context windows, hindering their utility in tasks like extended conversations and document analysis. To enable using context beyond limited context windows, we propose virtual context management, a technique drawing inspiration from hierarchical memory systems in traditional operating systems that provide the appearance of large memory resources through data movement between fast and slow memory. Using this technique, we introduce MemGPT (Memory-GPT), a system that intelligently manages different memory tiers in order to effectively provide extended context within the LLM's limited context window, and utilizes interrupts to manage control flow between itself and the user. We evaluate our OS-inspired design in two domains where the limited context windows of modern LLMs severely handicaps their performance: document analysis, where MemGPT is able to analyze large documents that far exceed the underlying LLM's context window, and multi-session chat, where MemGPT can create conversational agents that remember, reflect, and evolve dynamically through long-term interactions with their users. We release MemGPT code and data for our experiments at https://memgpt.ai.
Learning to Prompt for Continual Learning
The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge. Typical methods rely on a rehearsal buffer or known task identity at test time to retrieve learned knowledge and address forgetting, while this work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time. Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions. In our proposed framework, prompts are small learnable parameters, which are maintained in a memory space. The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity. We conduct comprehensive experiments under popular image classification benchmarks with different challenging continual learning settings, where L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer and is directly applicable to challenging task-agnostic continual learning. Source code is available at https://github.com/google-research/l2p.
VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.8% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval
Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.
Auto-scaling Continuous Memory for GUI Agent
We study how to endow GUI agents with scalable memory that help generalize across unfamiliar interfaces and long-horizon tasks. Prior GUI agents compress past trajectories into text tokens, which balloons context length and misses decisive visual cues (e.g., exact widget size and position). We propose a continuous memory that encodes each GUI trajectory into a fixed-length sequence of continuous embeddings using the VLM itself as an encoder; these embeddings are plugged directly into the backbone's input layer, sharply reducing context cost while preserving fine-grained visual information. As memory size and retrieval depth increase, performance improves monotonically, unlike text memories that degrade with long prompts. To grow memory at low cost, we introduce an auto-scaling data flywheel that (i) discovers new environments via search, (ii) synthesizes tasks with an open-source VLM, (iii) rolls out trajectories with the agent, and (iv) verifies success with the same VLM. Using this pipeline, we collect 100k+ trajectories for about \$4000 and fine-tune only the memory encoder (LoRA on a Q-Former, 1.2\% parameters) with 1,500 samples. On real-world GUI benchmarks, our memory-augmented agent consistently improves success rates under long horizons and distribution shifts. Notably, Qwen-2.5-VL-7B + continuous memory achieves performance comparable to state-of-the-art closed-source models (e.g., GPT-4o, Claude-4).
Pre-Storage Reasoning for Episodic Memory: Shifting Inference Burden to Memory for Personalized Dialogue
Effective long-term memory in conversational AI requires synthesizing information across multiple sessions. However, current systems place excessive reasoning burden on response generation, making performance significantly dependent on model sizes. We introduce PREMem (Pre-storage Reasoning for Episodic Memory), a novel approach that shifts complex reasoning processes from inference to memory construction. PREMem extracts fine-grained memory fragments categorized into factual, experiential, and subjective information; it then establishes explicit relationships between memory items across sessions, capturing evolution patterns like extensions, transformations, and implications. By performing this reasoning during pre-storage rather than when generating a response, PREMem creates enriched representations while reducing computational demands during interactions. Experiments show significant performance improvements across all model sizes, with smaller models achieving results comparable to much larger baselines while maintaining effectiveness even with constrained token budgets. Code and dataset are available at https://github.com/sangyeop-kim/PREMem.
Large Language Model Situational Awareness Based Planning
This work pioneers evaluating emergent planning capabilities based on situational awareness in large language models. We contribute (i) novel benchmarks and metrics for standardized assessment; (ii) a unique dataset to spur progress; and (iii) demonstrations that prompting and multi-agent schemes significantly enhance planning performance in context-sensitive planning tasks. Positioning this within a situated agent and automated planning research, we highlight inherent reliability challenges--efficiently mapping world states to actions without environmental guidance remains open despite simulated domain advances. Although out-of-scope, limitations around validation methodology and data availability indicate exciting directions, including fine-tuning on expanded planning corpora and optimizations for triggering fast latent planning. By conclusively demonstrating current methods' promise and limitations via rigorous comparison, we catalyze investigating reliable goal-directed reasoning for situated agents.
Video World Models with Long-term Spatial Memory
Emerging world models autoregressively generate video frames in response to actions, such as camera movements and text prompts, among other control signals. Due to limited temporal context window sizes, these models often struggle to maintain scene consistency during revisits, leading to severe forgetting of previously generated environments. Inspired by the mechanisms of human memory, we introduce a novel framework to enhancing long-term consistency of video world models through a geometry-grounded long-term spatial memory. Our framework includes mechanisms to store and retrieve information from the long-term spatial memory and we curate custom datasets to train and evaluate world models with explicitly stored 3D memory mechanisms. Our evaluations show improved quality, consistency, and context length compared to relevant baselines, paving the way towards long-term consistent world generation.
MemEvolve: Meta-Evolution of Agent Memory Systems
Self-evolving memory systems are unprecedentedly reshaping the evolutionary paradigm of large language model (LLM)-based agents. Prior work has predominantly relied on manually engineered memory architectures to store trajectories, distill experience, and synthesize reusable tools, enabling agents to evolve on the fly within environment interactions. However, this paradigm is fundamentally constrained by the staticity of the memory system itself: while memory facilitates agent-level evolving, the underlying memory architecture cannot be meta-adapted to diverse task contexts. To address this gap, we propose MemEvolve, a meta-evolutionary framework that jointly evolves agents' experiential knowledge and their memory architecture, allowing agent systems not only to accumulate experience but also to progressively refine how they learn from it. To ground MemEvolve in prior research and foster openness in future self-evolving systems, we introduce EvolveLab, a unified self-evolving memory codebase that distills twelve representative memory systems into a modular design space (encode, store, retrieve, manage), providing both a standardized implementation substrate and a fair experimental arena. Extensive evaluations on four challenging agentic benchmarks demonstrate that MemEvolve achieves (I) substantial performance gains, improving frameworks such as SmolAgent and Flash-Searcher by up to 17.06%; and (II) strong cross-task and cross-LLM generalization, designing memory architectures that transfer effectively across diverse benchmarks and backbone models.
Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization
As the general capabilities of artificial intelligence (AI) agents continue to evolve, their ability to learn to master multiple complex tasks through experience remains a key challenge. Current LLM agents, particularly those based on proprietary language models, typically rely on prompts to incorporate knowledge about the target tasks. This approach does not allow the agent to internalize this information and instead relies on ever-expanding prompts to sustain its functionality in diverse scenarios. This resembles a system of notes used by a person affected by anterograde amnesia, the inability to form new memories. In this paper, we propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for either cumbersome note systems or prior high-quality demonstration data. Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights via a context distillation training procedure. We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent that, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in tasksets requiring correct sequencing of information retrieval, tool use, and question answering.
Linking In-context Learning in Transformers to Human Episodic Memory
Understanding the connections between artificial and biological intelligent systems can reveal fundamental principles underlying general intelligence. While many artificial intelligence (AI) models have a neuroscience counterpart, such connections are largely missing in Transformer models and the self-attention mechanism. Here, we examine the relationship between attention heads and human episodic memory. We focus on the induction heads, which contribute to the in-context learning capabilities of Transformer-based large language models (LLMs). We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval (CMR) model of human episodic memory. Our analyses of LLMs pre-trained on extensive text data show that CMR-like heads often emerge in the intermediate model layers and that their behavior qualitatively mirrors the memory biases seen in humans. Our findings uncover a parallel between the computational mechanisms of LLMs and human memory, offering valuable insights into both research fields.
