Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAPT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents
We present APT, an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex and creative structures within the Minecraft environment. Unlike previous approaches that primarily concentrate on skill-based open-world tasks or rely on image-based diffusion models for generating voxel-based structures, our method leverages the intrinsic spatial reasoning capabilities of LLMs. By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints that the agent can execute under zero-shot or few-shot learning scenarios. Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process. To rigorously evaluate the agent's performance in this emerging research area, we introduce a comprehensive benchmark consisting of diverse construction tasks designed to test creativity, spatial reasoning, adherence to in-game rules, and the effective integration of multimodal instructions. Experimental results using various GPT-based LLM backends and agent configurations demonstrate the agent's capacity to accurately interpret extensive instructions involving numerous items, their positions, and orientations. The agent successfully produces complex structures complete with internal functionalities such as Redstone-powered systems. A/B testing indicates that the inclusion of a memory module leads to a significant increase in performance, emphasizing its role in enabling continuous learning and the reuse of accumulated experience. Additionally, the agent's unexpected emergence of scaffolding behavior highlights the potential of future LLM-driven agents to utilize subroutine planning and leverage the emergence ability of LLMs to autonomously develop human-like problem-solving techniques.
APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking
Animal pose estimation and tracking (APT) is a fundamental task for detecting and tracking animal keypoints from a sequence of video frames. Previous animal-related datasets focus either on animal tracking or single-frame animal pose estimation, and never on both aspects. The lack of APT datasets hinders the development and evaluation of video-based animal pose estimation and tracking methods, limiting real-world applications, e.g., understanding animal behavior in wildlife conservation. To fill this gap, we make the first step and propose APT-36K, i.e., the first large-scale benchmark for animal pose estimation and tracking. Specifically, APT-36K consists of 2,400 video clips collected and filtered from 30 animal species with 15 frames for each video, resulting in 36,000 frames in total. After manual annotation and careful double-check, high-quality keypoint and tracking annotations are provided for all the animal instances. Based on APT-36K, we benchmark several representative models on the following three tracks: (1) supervised animal pose estimation on a single frame under intra- and inter-domain transfer learning settings, (2) inter-species domain generalization test for unseen animals, and (3) animal pose estimation with animal tracking. Based on the experimental results, we gain some empirical insights and show that APT-36K provides a valuable animal pose estimation and tracking benchmark, offering new challenges and opportunities for future research. The code and dataset will be made publicly available at https://github.com/pandorgan/APT-36K.
HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models
Large language models (LLMs), such as ChatGPT, are prone to generate hallucinations, i.e., content that conflicts with the source or cannot be verified by the factual knowledge. To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation benchmark for Large Language Models (HaluEval), a large collection of generated and human-annotated hallucinated samples for evaluating the performance of LLMs in recognizing hallucination. To generate these samples, we propose a ChatGPT-based two-step framework, i.e., sampling-then-filtering. Besides, we also hire some human labelers to annotate the hallucinations in ChatGPT responses. The empirical results suggest that ChatGPT is likely to generate hallucinated content in specific topics by fabricating unverifiable information (i.e., about 19.5% responses). Moreover, existing LLMs face great challenges in recognizing the hallucinations in texts. However, our experiments also prove that providing external knowledge or adding reasoning steps can help LLMs recognize hallucinations. Our benchmark can be accessed at https://github.com/RUCAIBox/HaluEval.
Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models
Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model
Mobile User Interface Element Detection Via Adaptively Prompt Tuning
Recent object detection approaches rely on pretrained vision-language models for image-text alignment. However, they fail to detect the Mobile User Interface (MUI) element since it contains additional OCR information, which describes its content and function but is often ignored. In this paper, we develop a new MUI element detection dataset named MUI-zh and propose an Adaptively Prompt Tuning (APT) module to take advantage of discriminating OCR information. APT is a lightweight and effective module to jointly optimize category prompts across different modalities. For every element, APT uniformly encodes its visual features and OCR descriptions to dynamically adjust the representation of frozen category prompts. We evaluate the effectiveness of our plug-and-play APT upon several existing CLIP-based detectors for both standard and open-vocabulary MUI element detection. Extensive experiments show that our method achieves considerable improvements on two datasets. The datasets is available at github.com/antmachineintelligence/MUI-zh.
APTv2: Benchmarking Animal Pose Estimation and Tracking with a Large-scale Dataset and Beyond
Animal Pose Estimation and Tracking (APT) is a critical task in detecting and monitoring the keypoints of animals across a series of video frames, which is essential for understanding animal behavior. Past works relating to animals have primarily focused on either animal tracking or single-frame animal pose estimation only, neglecting the integration of both aspects. The absence of comprehensive APT datasets inhibits the progression and evaluation of animal pose estimation and tracking methods based on videos, thereby constraining their real-world applications. To fill this gap, we introduce APTv2, the pioneering large-scale benchmark for animal pose estimation and tracking. APTv2 comprises 2,749 video clips filtered and collected from 30 distinct animal species. Each video clip includes 15 frames, culminating in a total of 41,235 frames. Following meticulous manual annotation and stringent verification, we provide high-quality keypoint and tracking annotations for a total of 84,611 animal instances, split into easy and hard subsets based on the number of instances that exists in the frame. With APTv2 as the foundation, we establish a simple baseline method named \posetrackmethodname and provide benchmarks for representative models across three tracks: (1) single-frame animal pose estimation track to evaluate both intra- and inter-domain transfer learning performance, (2) low-data transfer and generalization track to evaluate the inter-species domain generalization performance, and (3) animal pose tracking track. Our experimental results deliver key empirical insights, demonstrating that APTv2 serves as a valuable benchmark for animal pose estimation and tracking. It also presents new challenges and opportunities for future research. The code and dataset are released at https://github.com/ViTAE-Transformer/APTv2{https://github.com/ViTAE-Transformer/APTv2}.
Diffusion Adversarial Post-Training for One-Step Video Generation
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
