Assessing LLM Reliability on Temporally Recent Open-Domain Questions
Abstract
Research reveals a semantic-lexical paradox in large language models' responses to recent questions, where high semantic similarity coexists with low lexical overlap, challenging traditional evaluation methods.
Large Language Models (LLMs) are increasingly deployed for open-domain question answering, yet their alignment with human perspectives on temporally recent information remains underexplored. We introduce RECOM (Reddit Evaluation for Correspondence of Models), a benchmark dataset of 15,000 recent Reddit questions from September 2025 paired with community-derived reference answers. We investigate how four open-source LLMs (Llama3.1-8B, Mistral-7B, Gemma-2-9B, and GPT-OSS-20B) respond to these questions, evaluating alignment using lexical metrics (BLEU, ROUGE), semantic similarity (BERTScore, MoverScore, cosine similarity), and logical inference (NLI). Our central finding is a striking semantic-lexical paradox: all models achieve over 99% cosine similarity with references despite less than 8% BLEU-1 overlap, a 90+ percentage point gap indicating that models preserve meaning through extensive paraphrasing rather than lexical reproduction. MoverScore (51-53%) confirms this pattern, occupying an intermediate position that reflects the optimal transport cost of semantic alignment. Furthermore, model scale does not predict performance: Mistral-7B (7B parameters) outperforms GPT-OSS-20B (20B parameters) across all metrics. NLI analysis reveals that contradiction rates remain below 7%, suggesting models rarely generate content that directly conflicts with human consensus. These findings challenge the reliability of lexical metrics for evaluating abstractive generation and argue for multi-dimensional evaluation frameworks that capture semantic fidelity beyond surface-level text matching. The RECOM dataset is publicly available at https://anonymous.4open.science/r/recom-D4B0
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper