AgentDevel: Reframing Self-Evolving LLM Agents as Release Engineering
Abstract
AgentDevel presents a release engineering approach for large language model agents that treats them as shippable artifacts and emphasizes stable, auditable improvements through externalized testing and diagnostic processes.
Recent progress in large language model (LLM) agents has largely focused on embedding self-improvement mechanisms inside the agent or searching over many concurrent variants. While these approaches can raise aggregate scores, they often yield unstable and hard-to-audit improvement trajectories, making it difficult to guarantee non-regression or to reason about failures across versions. We reframe agent improvement as release engineering: agents are treated as shippable artifacts, and improvement is externalized into a regression-aware release pipeline. We introduce AgentDevel, a release engineering pipeline that iteratively runs the current agent, produces implementation-blind, symptom-level quality signals from execution traces, synthesizes a single release candidate (RC) via executable diagnosis, and promotes it under flip-centered gating. AgentDevel features three core designs: (i) an implementation-blind LLM critic that characterizes failure appearances without accessing agent internals, (ii) script-based executable diagnosis that aggregates dominant symptom patterns and produces auditable engineering specifications, and (iii) flip-centered gating that prioritizes pass to fail regressions and fail to pass fixes as first-class evidence. Unlike population-based search or in-agent self-refinement, AgentDevel maintains a single canonical version line and emphasizes non-regression as a primary objective. Experiments on execution-heavy benchmarks demonstrate that AgentDevel yields stable improvements with significantly fewer regressions while producing reproducible, auditable artifacts. Overall, AgentDevel provides a practical development discipline for building, debugging, and releasing LLM agents as software development.
Community
Recent progress in large language model (LLM) agents has largely focused on embedding self-improvement mechanisms inside the agent or searching over many concurrent variants. While these approaches can raise aggregate scores, they often yield unstable and hard-to-audit improvement trajectories, making it difficult to guarantee non-regression or to reason about failures across versions. We reframe agent improvement as \textbf{release engineering}: agents are treated as shippable artifacts, and improvement is externalized into a regression-aware release pipeline. We introduce \textbf{AgentDevel}, a release engineering pipeline that iteratively runs the current agent, produces implementation-blind, symptom-level quality signals from execution traces, synthesizes a single release candidate (RC) via executable diagnosis, and promotes it under flip-centered gating. AgentDevel features three core designs: (i) an implementation-blind LLM critic that characterizes failure appearances without accessing agent internals, (ii) script-based executable diagnosis that aggregates dominant symptom patterns and produces auditable engineering specifications, and (iii) flip-centered gating that prioritizes pass to fail regressions and fail to pass fixes as first-class evidence. Unlike population-based search or in-agent self-refinement, AgentDevel maintains a single canonical version line and emphasizes non-regression as a primary objective. Experiments on execution-heavy benchmarks demonstrate that AgentDevel yields stable improvements with significantly fewer regressions while producing reproducible, auditable artifacts. Overall, AgentDevel provides a practical development discipline for building, debugging, and releasing LLM agents as software development.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases (2025)
- AI Agent Systems: Architectures, Applications, and Evaluation (2026)
- Agentic Rubrics as Contextual Verifiers for SWE Agents (2026)
- SWE-EVO: Benchmarking Coding Agents in Long-Horizon Software Evolution Scenarios (2025)
- DoVer: Intervention-Driven Auto Debugging for LLM Multi-Agent Systems (2025)
- BOAD: Discovering Hierarchical Software Engineering Agents via Bandit Optimization (2025)
- Agent2World: Learning to Generate Symbolic World Models via Adaptive Multi-Agent Feedback (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper