Abstract
AI agents trained on seed games successfully predict human behavior in novel settings without theory modifications, outperforming traditional models and existing human data.
Useful social science theories predict behavior across settings. However, applying a theory to make predictions in new settings is challenging: rarely can it be done without ad hoc modifications to account for setting-specific factors. We argue that AI agents put in simulations of those novel settings offer an alternative for applying theory, requiring minimal or no modifications. We present an approach for building such "general" agents that use theory-grounded natural language instructions, existing empirical data, and knowledge acquired by the underlying AI during training. To demonstrate the approach in settings where no data from that data-generating process exists--as is often the case in applied prediction problems--we design a heterogeneous population of 883,320 novel games. AI agents are constructed using human data from a small set of conceptually related but structurally distinct "seed" games. In preregistered experiments, on average, agents predict initial human play in a random sample of 1,500 games from the population better than (i) a cognitive hierarchy model, (ii) game-theoretic equilibria, and (iii) out-of-the-box agents. For a small set of separate novel games, these simulations predict responses from a new sample of human subjects better even than the most plausibly relevant published human data.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper