HAELT: A Hybrid Attentive Ensemble Learning Transformer Framework for High-Frequency Stock Price Forecasting
Abstract
The Hybrid Attentive Ensemble Learning Transformer (HAELT) combines ResNet, self-attention, and LSTM-Transformer to predict high-frequency stock prices effectively.
High-frequency stock price prediction is challenging due to non-stationarity, noise, and volatility. To tackle these issues, we propose the Hybrid Attentive Ensemble Learning Transformer (HAELT), a deep learning framework combining a ResNet-based noise-mitigation module, temporal self-attention for dynamic focus on relevant history, and a hybrid LSTM-Transformer core that captures both local and long-range dependencies. These components are adaptively ensembled based on recent performance. Evaluated on hourly Apple Inc. (AAPL) data from Jan 2024 to May 2025, HAELT achieves the highest F1-Score on the test set, effectively identifying both upward and downward price movements. This demonstrates HAELT's potential for robust, practical financial forecasting and algorithmic trading.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper