SynID: Passport Synthetic Dataset for Presentation Attack Detection
Abstract
A new passport dataset is proposed for training Presentation Attack Detection (PAD) systems by combining synthetic data and open-access information to address the challenge of limited availability of real ID documents.
The demand for Presentation Attack Detection (PAD) to identify fraudulent ID documents in remote verification systems has significantly risen in recent years. This increase is driven by several factors, including the rise of remote work, online purchasing, migration, and advancements in synthetic images. Additionally, we have noticed a surge in the number of attacks aimed at the enrolment process. Training a PAD to detect fake ID documents is very challenging because of the limited number of ID documents available due to privacy concerns. This work proposes a new passport dataset generated from a hybrid method that combines synthetic data and open-access information using the ICAO requirement to obtain realistic training and testing images.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper