Automated Bridge Component Recognition using Video Data
Abstract
Video-based bridge component recognition is achieved through CNNs with recurrent architectures that leverage temporal context from multiple frames to improve accuracy over single-frame approaches.
This paper investigates the automated recognition of structural bridge components using video data. Although understanding video data for structural inspections is straightforward for human inspectors, the implementation of the same task using machine learning methods has not been fully realized. In particular, single-frame image processing techniques, such as convolutional neural networks (CNNs), are not expected to identify structural components accurately when the image is a close-up view, lacking contextual information regarding where on the structure the image originates. Inspired by the significant progress in video processing techniques, this study investigates automated bridge component recognition using video data, where the information from the past frames is used to augment the understanding of the current frame. A new simulated video dataset is created to train the machine learning algorithms. Then, convolutional Neural Networks (CNNs) with recurrent architectures are designed and applied to implement the automated bridge component recognition task. Results are presented for simulated video data, as well as video collected in the field.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper