--- {} --- ```py with open('./literary_form_classifier/model.pkl', 'rb') as fin: model = pickle.load(fin) with open('./literary_form_classifier/vectorizer.pkl', 'rb') as fin: vectorizer = pickle.load(fin) texts = ... X_infer = vectorizer.transform(texts) preds = model.predict(X_infer) ``` Model performance on test set: | Predicted
Actual | Skjønnlitteratur | Faglitteratur | Sum | |----------------------|------------------|---------------|--------| | **Skjønnlitteratur** | 12 141 | 79 | 12 220 | | **Faglitteratur** | 804 | 27 611 | 28 415 | | **Sum** | 12 945 | 27 690 | 40 635 | Accuracy: 97.83%, F1 Score: 96.49%, Precision: 99.35%, Specificity: 99.71%, Sensitivity: 93.79%, MCC: 95.00%