File size: 10,359 Bytes
d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e d7d68cb da7f35e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
---
license: gemma
language:
- en
pipeline_tag: text-generation
tags:
- litert
- litert-lm
- gemma
- agent
- tool-calling
- function-calling
- multimodal
- on-device
library_name: litert-lm
---
# Agent Gemma 3n E2B - Tool Calling Edition
A specialized version of **Gemma 3n E2B** optimized for **on-device tool/function calling** with LiteRT-LM. While Google's standard LiteRT-LM models focus on general text generation, this model is specifically designed for agentic workflows with advanced tool calling capabilities.
## Why This Model?
Google's official LiteRT-LM releases provide excellent on-device inference but don't include built-in tool calling support. This model bridges that gap by:
- β
**Native tool/function calling** via Jinja templates
- β
**Multimodal support** (text, vision, audio)
- β
**On-device optimized** - No cloud API required
- β
**INT4 quantized** - Efficient memory usage
- β
**Production ready** - Tested and validated
Perfect for building AI agents that need to interact with external tools, APIs, or functions while running completely on-device.
## Model Details
- **Base Model**: Gemma 3n E2B
- **Format**: LiteRT-LM v1.4.0
- **Quantization**: INT4
- **Size**: ~3.2GB
- **Tokenizer**: SentencePiece
- **Capabilities**:
- Advanced tool/function calling
- Multi-turn conversations with tool interactions
- Vision processing (images)
- Audio processing
- Streaming responses
## Tool Calling Example
The model uses a sophisticated Jinja template that supports OpenAI-style function calling:
```python
from litert_lm import Engine, Conversation
# Load the model
engine = Engine.create("gemma-3n-E2B-it-agent-fixed.litertlm", backend="cpu")
conversation = Conversation.create(engine)
# Define tools the model can use
tools = [
{
"name": "get_weather",
"description": "Get current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City name"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location"]
}
},
{
"name": "search_web",
"description": "Search the internet for information",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"}
},
"required": ["query"]
}
}
]
# Have a conversation with tool calling
message = {
"role": "user",
"content": "What's the weather in San Francisco and latest news about AI?"
}
response = conversation.send_message(message, tools=tools)
print(response)
```
### Example Output
The model will generate structured tool calls:
```
<start_function_call>call:get_weather{location:San Francisco,unit:celsius}<end_function_call>
<start_function_call>call:search_web{query:latest AI news}<end_function_call>
<start_function_response>
```
You then execute the functions and send back results:
```python
# Execute tools (your implementation)
weather = get_weather("San Francisco", "celsius")
news = search_web("latest AI news")
# Send tool responses back
tool_response = {
"role": "tool",
"content": [
{
"name": "get_weather",
"response": {"temperature": 18, "condition": "partly cloudy"}
},
{
"name": "search_web",
"response": {"results": ["OpenAI releases GPT-5...", "..."]}
}
]
}
final_response = conversation.send_message(tool_response)
print(final_response)
# "The weather in San Francisco is 18Β°C and partly cloudy.
# In AI news, OpenAI has released GPT-5..."
```
## Advanced Features
### Multi-Modal Tool Calling
Combine vision, audio, and tool calling:
```python
message = {
"role": "user",
"content": [
{"type": "image", "data": image_bytes},
{"type": "text", "text": "What's in this image? Search for more info about it."}
]
}
response = conversation.send_message(message, tools=[search_tool])
# Model can see the image AND call search functions
```
### Streaming Tool Calls
Get tool calls as they're generated:
```python
def on_token(token):
if "<start_function_call>" in token:
print("Tool being called...")
print(token, end="", flush=True)
conversation.send_message_async(message, tools=tools, callback=on_token)
```
### Nested Tool Execution
The model can chain tool calls:
```python
# User: "Book me a flight to Tokyo and reserve a hotel"
# Model: calls check_flights() β calls book_hotel() β confirms both
```
## Performance
Benchmarked on CPU (no GPU acceleration):
- **Prefill Speed**: 21.20 tokens/sec
- **Decode Speed**: 11.44 tokens/sec
- **Time to First Token**: ~1.6s
- **Cold Start**: ~4.7s
- **Tool Call Latency**: ~100-200ms additional
GPU acceleration provides 3-5x speedup on supported hardware.
## Installation & Usage
### Requirements
1. **LiteRT-LM Runtime** - Build from source:
```bash
git clone https://github.com/google-ai-edge/LiteRT.git
cd LiteRT/LiteRT-LM
bazel build -c opt //runtime/engine:litert_lm_main
```
2. **Supported Platforms**: Linux (clang), macOS, Android
### Quick Start
```bash
# Download model
wget https://huggingface.co/kontextdev/agent-gemma/resolve/main/gemma-3n-E2B-it-agent-fixed.litertlm
# Run with simple prompt
./bazel-bin/runtime/engine/litert_lm_main \
--model_path=gemma-3n-E2B-it-agent-fixed.litertlm \
--backend=cpu \
--input_prompt="Hello, I need help with some tasks"
# Run with GPU (if available)
./bazel-bin/runtime/engine/litert_lm_main \
--model_path=gemma-3n-E2B-it-agent-fixed.litertlm \
--backend=gpu \
--input_prompt="What can you help me with?"
```
### Python API (Recommended)
```python
from litert_lm import Engine, Conversation, SessionConfig
# Initialize
engine = Engine.create("gemma-3n-E2B-it-agent-fixed.litertlm", backend="gpu")
# Configure session
config = SessionConfig(
max_tokens=2048,
temperature=0.7,
top_p=0.9
)
# Start conversation
conversation = Conversation.create(engine, config)
# Define your tools
tools = [...] # Your function definitions
# Chat with tool calling
while True:
user_input = input("You: ")
response = conversation.send_message(
{"role": "user", "content": user_input},
tools=tools
)
# Handle tool calls if present
if has_tool_calls(response):
results = execute_tools(extract_calls(response))
response = conversation.send_message({
"role": "tool",
"content": results
})
print(f"Agent: {response['content']}")
```
## Tool Call Format
The model uses this format for tool interactions:
**Function Declaration** (system/developer role):
```
<start_of_turn>developer
<start_function_declaration>
{
"name": "function_name",
"description": "What it does",
"parameters": {...}
}
<end_function_declaration>
<end_of_turn>
```
**Function Call** (assistant):
```
<start_function_call>call:function_name{arg1:value1,arg2:value2}<end_function_call>
```
**Function Response** (tool role):
```
<start_function_response>response:function_name{result:value}<end_function_response>
```
## Use Cases
### Personal AI Assistant
- Calendar management
- Email sending
- Web searching
- File operations
### IoT & Smart Home
- Device control
- Sensor monitoring
- Automation workflows
- Voice commands
### Development Tools
- Code generation with API calls
- Database queries
- Deployment automation
- Testing & debugging
### Business Applications
- CRM integration
- Data analysis
- Report generation
- Customer support
## Model Architecture
Built on Gemma 3n E2B with 9 optimized components:
```
Section 0: LlmMetadata (Agent Jinja template)
Section 1: SentencePiece Tokenizer
Section 2: TFLite Embedder
Section 3: TFLite Per-Layer Embedder
Section 4: TFLite Audio Encoder (HW accelerated)
Section 5: TFLite End-of-Audio Detector
Section 6: TFLite Vision Adapter
Section 7: TFLite Vision Encoder
Section 8: TFLite Prefill/Decode (INT4)
```
All components are optimized for on-device inference with hardware acceleration support.
## Comparison
| Feature | Standard Gemma LiteRT-LM | This Model |
|---------|-------------------------|------------|
| Text Generation | β
| β
|
| Tool Calling | β | β
|
| Multimodal | β
| β
|
| Streaming | β
| β
|
| On-Device | β
| β
|
| Jinja Templates | Basic | Advanced Agent Template |
| INT4 Quantization | β
| β
|
## Limitations
- **Tool Execution**: The model generates tool calls but doesn't execute them - you need to implement the actual functions
- **Context Window**: Limited to 4096 tokens (configurable)
- **Streaming Tool Calls**: Partial tool calls may need buffering
- **Hardware Requirements**: Minimum 4GB RAM recommended
- **No Native GPU on CPU-only systems**: Falls back to CPU inference
## Tips for Best Results
1. **Clear Tool Descriptions**: Provide detailed function descriptions
2. **Schema Validation**: Validate tool call arguments before execution
3. **Error Handling**: Handle malformed tool calls gracefully
4. **Context Management**: Keep conversation history concise
5. **Temperature**: Use 0.7-0.9 for creative tasks, 0.3-0.5 for precise tool calls
6. **Batching**: Process multiple tool calls in parallel when possible
## License
This model inherits the [Gemma license](https://ai.google.dev/gemma/terms) from the base model.
## Citation
```bibtex
@misc{agent-gemma-litertlm,
title={Agent Gemma 3n E2B - Tool Calling Edition},
author={kontextdev},
year={2025},
publisher={HuggingFace},
howpublished={\url{https://huggingface.co/kontextdev/agent-gemma}}
}
```
## Links
- [LiteRT-LM GitHub](https://github.com/google-ai-edge/LiteRT/tree/main/LiteRT-LM)
- [Gemma Model Family](https://ai.google.dev/gemma)
- [LiteRT Documentation](https://ai.google.dev/edge/litert)
- [Tool Calling Guide](https://ai.google.dev/gemma/docs/function-calling)
## Support
For issues or questions:
- Open an issue on [GitHub](https://github.com/google-ai-edge/LiteRT/issues)
- Check the [LiteRT-LM docs](https://ai.google.dev/edge/litert/inference)
- Community forum: [Google AI Edge](https://discuss.ai.google.dev/)
---
Built with β€οΈ for the on-device AI community
|