Remove source
Browse files- README.md +5 -2
- activation/activation_kernels.cu +0 -244
- activation/cuda_compat.h +0 -49
- activation/dispatch_utils.h +0 -83
- build.toml +0 -18
- flake.lock +0 -168
- flake.nix +0 -17
- tests/__init__.py +0 -0
- tests/__pycache__/__init__.cpython-312.pyc +0 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/__pycache__/__init__.cpython-312.pyc +0 -0
- tests/kernels/__pycache__/allclose_default.cpython-312.pyc +0 -0
- tests/kernels/__pycache__/test_activation.cpython-312-pytest-8.4.2.pyc +0 -0
- tests/kernels/__pycache__/utils.cpython-312.pyc +0 -0
- tests/kernels/allclose_default.py +0 -14
- tests/kernels/test_activation.py +0 -206
- tests/kernels/utils.py +0 -73
- torch-ext/activation/__init__.py +0 -75
- torch-ext/activation/layers.py +0 -179
- torch-ext/torch_binding.cpp +0 -52
- torch-ext/torch_binding.h +0 -26
README.md
CHANGED
|
@@ -1,10 +1,13 @@
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
-
- kernel
|
| 4 |
---
|
| 5 |
|
| 6 |

|
| 7 |
|
| 8 |
## Activation
|
| 9 |
|
| 10 |
-
Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
+
- kernel
|
| 4 |
---
|
| 5 |
|
| 6 |

|
| 7 |
|
| 8 |
## Activation
|
| 9 |
|
| 10 |
+
Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
|
| 11 |
+
|
| 12 |
+
Kernel source: https://github.com/huggingface/kernels-community/tree/main/activation
|
| 13 |
+
|
activation/activation_kernels.cu
DELETED
|
@@ -1,244 +0,0 @@
|
|
| 1 |
-
#include <ATen/cuda/CUDAContext.h>
|
| 2 |
-
#include <torch/all.h>
|
| 3 |
-
#include <c10/cuda/CUDAGuard.h>
|
| 4 |
-
|
| 5 |
-
#include <cmath>
|
| 6 |
-
|
| 7 |
-
#include "cuda_compat.h"
|
| 8 |
-
#include "dispatch_utils.h"
|
| 9 |
-
|
| 10 |
-
namespace vllm {
|
| 11 |
-
|
| 12 |
-
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
|
| 13 |
-
bool act_first>
|
| 14 |
-
__device__ __forceinline__ scalar_t compute(const scalar_t& x,
|
| 15 |
-
const scalar_t& y) {
|
| 16 |
-
return act_first ? ACT_FN(x) * y : x * ACT_FN(y);
|
| 17 |
-
}
|
| 18 |
-
// Activation and gating kernel template.
|
| 19 |
-
|
| 20 |
-
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
|
| 21 |
-
bool act_first>
|
| 22 |
-
__global__ void act_and_mul_kernel(
|
| 23 |
-
scalar_t* __restrict__ out, // [..., d]
|
| 24 |
-
const scalar_t* __restrict__ input, // [..., 2, d]
|
| 25 |
-
const int d) {
|
| 26 |
-
const int64_t token_idx = blockIdx.x;
|
| 27 |
-
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
| 28 |
-
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
|
| 29 |
-
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
|
| 30 |
-
out[token_idx * d + idx] = compute<scalar_t, ACT_FN, act_first>(x, y);
|
| 31 |
-
}
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
-
template <typename T>
|
| 35 |
-
__device__ __forceinline__ T silu_kernel(const T& x) {
|
| 36 |
-
// x * sigmoid(x)
|
| 37 |
-
return (T)(((float)x) / (1.0f + expf((float)-x)));
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
template <typename T>
|
| 41 |
-
__device__ __forceinline__ T gelu_kernel(const T& x) {
|
| 42 |
-
// Equivalent to PyTorch GELU with 'none' approximation.
|
| 43 |
-
// Refer to:
|
| 44 |
-
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L36-L38
|
| 45 |
-
const float f = (float)x;
|
| 46 |
-
constexpr float ALPHA = M_SQRT1_2;
|
| 47 |
-
return (T)(f * 0.5f * (1.0f + erf(f * ALPHA)));
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
template <typename T>
|
| 51 |
-
__device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
| 52 |
-
// Equivalent to PyTorch GELU with 'tanh' approximation.
|
| 53 |
-
// Refer to:
|
| 54 |
-
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L25-L30
|
| 55 |
-
const float f = (float)x;
|
| 56 |
-
constexpr float BETA = M_SQRT2 * M_2_SQRTPI * 0.5f;
|
| 57 |
-
constexpr float KAPPA = 0.044715;
|
| 58 |
-
float x_cube = f * f * f;
|
| 59 |
-
float inner = BETA * (f + KAPPA * x_cube);
|
| 60 |
-
return (T)(0.5f * f * (1.0f + ::tanhf(inner)));
|
| 61 |
-
}
|
| 62 |
-
|
| 63 |
-
} // namespace vllm
|
| 64 |
-
|
| 65 |
-
// Launch activation and gating kernel.
|
| 66 |
-
// Use ACT_FIRST (bool) indicating whether to apply the activation function
|
| 67 |
-
// first.
|
| 68 |
-
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL, ACT_FIRST) \
|
| 69 |
-
int d = input.size(-1) / 2; \
|
| 70 |
-
int64_t num_tokens = input.numel() / input.size(-1); \
|
| 71 |
-
dim3 grid(num_tokens); \
|
| 72 |
-
dim3 block(std::min(d, 1024)); \
|
| 73 |
-
if (num_tokens == 0) { \
|
| 74 |
-
return; \
|
| 75 |
-
} \
|
| 76 |
-
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
| 77 |
-
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
| 78 |
-
VLLM_DISPATCH_FLOATING_TYPES( \
|
| 79 |
-
input.scalar_type(), "act_and_mul_kernel", [&] { \
|
| 80 |
-
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>, ACT_FIRST> \
|
| 81 |
-
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
|
| 82 |
-
input.data_ptr<scalar_t>(), d); \
|
| 83 |
-
});
|
| 84 |
-
|
| 85 |
-
void silu_and_mul(torch::Tensor& out, // [..., d]
|
| 86 |
-
torch::Tensor& input) // [..., 2 * d]
|
| 87 |
-
{
|
| 88 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel, true);
|
| 89 |
-
}
|
| 90 |
-
|
| 91 |
-
void mul_and_silu(torch::Tensor& out, // [..., d]
|
| 92 |
-
torch::Tensor& input) // [..., 2 * d]
|
| 93 |
-
{
|
| 94 |
-
// The difference between mul_and_silu and silu_and_mul is that mul_and_silu
|
| 95 |
-
// applies the silu to the latter half of the input.
|
| 96 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel, false);
|
| 97 |
-
}
|
| 98 |
-
|
| 99 |
-
void gelu_and_mul(torch::Tensor& out, // [..., d]
|
| 100 |
-
torch::Tensor& input) // [..., 2 * d]
|
| 101 |
-
{
|
| 102 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel, true);
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
void gelu_tanh_and_mul(torch::Tensor& out, // [..., d]
|
| 106 |
-
torch::Tensor& input) // [..., 2 * d]
|
| 107 |
-
{
|
| 108 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel, true);
|
| 109 |
-
}
|
| 110 |
-
|
| 111 |
-
namespace vllm {
|
| 112 |
-
|
| 113 |
-
template <typename T>
|
| 114 |
-
__device__ __forceinline__ T fatrelu_kernel(const T& x, const float threshold) {
|
| 115 |
-
const float f = (float)x;
|
| 116 |
-
return (T)(f > threshold ? f : 0.0f);
|
| 117 |
-
}
|
| 118 |
-
|
| 119 |
-
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&, const float)>
|
| 120 |
-
__global__ void act_and_mul_kernel_with_param(
|
| 121 |
-
scalar_t* __restrict__ out, const scalar_t* __restrict__ input, const int d,
|
| 122 |
-
const float param) {
|
| 123 |
-
const int64_t token_idx = blockIdx.x;
|
| 124 |
-
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
| 125 |
-
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
|
| 126 |
-
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
|
| 127 |
-
out[token_idx * d + idx] = ACT_FN(x, param) * y;
|
| 128 |
-
}
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
} // namespace vllm
|
| 132 |
-
|
| 133 |
-
#define LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(KERNEL, PARAM) \
|
| 134 |
-
int d = input.size(-1) / 2; \
|
| 135 |
-
int64_t num_tokens = input.numel() / input.size(-1); \
|
| 136 |
-
dim3 grid(num_tokens); \
|
| 137 |
-
dim3 block(std::min(d, 1024)); \
|
| 138 |
-
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
| 139 |
-
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
| 140 |
-
VLLM_DISPATCH_FLOATING_TYPES( \
|
| 141 |
-
input.scalar_type(), "act_and_mul_kernel_with_param", [&] { \
|
| 142 |
-
vllm::act_and_mul_kernel_with_param<scalar_t, KERNEL<scalar_t>> \
|
| 143 |
-
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
|
| 144 |
-
input.data_ptr<scalar_t>(), d, \
|
| 145 |
-
PARAM); \
|
| 146 |
-
});
|
| 147 |
-
|
| 148 |
-
void fatrelu_and_mul(torch::Tensor& out, // [..., d],
|
| 149 |
-
torch::Tensor& input, // [..., 2 * d]
|
| 150 |
-
double threshold) {
|
| 151 |
-
LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(vllm::fatrelu_kernel, threshold);
|
| 152 |
-
}
|
| 153 |
-
namespace vllm {
|
| 154 |
-
|
| 155 |
-
// Element-wise activation kernel template.
|
| 156 |
-
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
|
| 157 |
-
__global__ void activation_kernel(
|
| 158 |
-
scalar_t* __restrict__ out, // [..., d]
|
| 159 |
-
const scalar_t* __restrict__ input, // [..., d]
|
| 160 |
-
const int d) {
|
| 161 |
-
const int64_t token_idx = blockIdx.x;
|
| 162 |
-
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
| 163 |
-
const scalar_t x = VLLM_LDG(&input[token_idx * d + idx]);
|
| 164 |
-
out[token_idx * d + idx] = ACT_FN(x);
|
| 165 |
-
}
|
| 166 |
-
}
|
| 167 |
-
|
| 168 |
-
} // namespace vllm
|
| 169 |
-
|
| 170 |
-
// Launch element-wise activation kernel.
|
| 171 |
-
#define LAUNCH_ACTIVATION_KERNEL(KERNEL) \
|
| 172 |
-
int d = input.size(-1); \
|
| 173 |
-
int64_t num_tokens = input.numel() / d; \
|
| 174 |
-
dim3 grid(num_tokens); \
|
| 175 |
-
dim3 block(std::min(d, 1024)); \
|
| 176 |
-
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
| 177 |
-
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
| 178 |
-
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "activation_kernel", [&] { \
|
| 179 |
-
vllm::activation_kernel<scalar_t, KERNEL<scalar_t>> \
|
| 180 |
-
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
|
| 181 |
-
input.data_ptr<scalar_t>(), d); \
|
| 182 |
-
});
|
| 183 |
-
|
| 184 |
-
namespace vllm {
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
template <typename T>
|
| 188 |
-
__device__ __forceinline__ T gelu_new_kernel(const T& x) {
|
| 189 |
-
const float x3 = (float)(x * x * x);
|
| 190 |
-
const T t = (T)tanhf((T)(0.79788456f * (float)(x + (T)(0.044715f * x3))));
|
| 191 |
-
return ((T)0.5) * x * (((T)1.0) + t);
|
| 192 |
-
}
|
| 193 |
-
|
| 194 |
-
template <typename T>
|
| 195 |
-
__device__ __forceinline__ T gelu_fast_kernel(const T& x) {
|
| 196 |
-
const float f = (float)x;
|
| 197 |
-
const T t =
|
| 198 |
-
(T)tanhf(((T)(f * 0.79788456f)) * (((T)1.0) + (T)(0.044715f * f) * x));
|
| 199 |
-
return ((T)0.5) * x * (((T)1.0) + t);
|
| 200 |
-
}
|
| 201 |
-
|
| 202 |
-
template <typename T>
|
| 203 |
-
__device__ __forceinline__ T gelu_quick_kernel(const T& x) {
|
| 204 |
-
// x * sigmoid(1.702 * x)
|
| 205 |
-
return (T)(((float)x) / (1.0f + expf(-1.702f * (float)x)));
|
| 206 |
-
}
|
| 207 |
-
|
| 208 |
-
} // namespace vllm
|
| 209 |
-
|
| 210 |
-
void gelu_new(torch::Tensor& out, // [..., d]
|
| 211 |
-
torch::Tensor& input) // [..., d]
|
| 212 |
-
{
|
| 213 |
-
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_new_kernel);
|
| 214 |
-
}
|
| 215 |
-
|
| 216 |
-
void gelu_fast(torch::Tensor& out, // [..., d]
|
| 217 |
-
torch::Tensor& input) // [..., d]
|
| 218 |
-
{
|
| 219 |
-
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
|
| 220 |
-
}
|
| 221 |
-
|
| 222 |
-
void gelu_quick(torch::Tensor& out, // [..., d]
|
| 223 |
-
torch::Tensor& input) // [..., d]
|
| 224 |
-
{
|
| 225 |
-
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_quick_kernel);
|
| 226 |
-
}
|
| 227 |
-
|
| 228 |
-
void gelu(torch::Tensor& out, // [..., d]
|
| 229 |
-
torch::Tensor& input) // [..., d]
|
| 230 |
-
{
|
| 231 |
-
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_kernel);
|
| 232 |
-
}
|
| 233 |
-
|
| 234 |
-
void gelu_tanh(torch::Tensor& out, // [..., d]
|
| 235 |
-
torch::Tensor& input) // [..., d]
|
| 236 |
-
{
|
| 237 |
-
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_tanh_kernel);
|
| 238 |
-
}
|
| 239 |
-
|
| 240 |
-
void silu(torch::Tensor& out, // [..., d]
|
| 241 |
-
torch::Tensor& input) // [..., d]
|
| 242 |
-
{
|
| 243 |
-
LAUNCH_ACTIVATION_KERNEL(vllm::silu_kernel);
|
| 244 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
activation/cuda_compat.h
DELETED
|
@@ -1,49 +0,0 @@
|
|
| 1 |
-
#pragma once
|
| 2 |
-
|
| 3 |
-
#ifdef USE_ROCM
|
| 4 |
-
#include <hip/hip_runtime.h>
|
| 5 |
-
#endif
|
| 6 |
-
|
| 7 |
-
#if defined(USE_ROCM) && defined(__GFX9__)
|
| 8 |
-
#define WARP_SIZE 64
|
| 9 |
-
#else
|
| 10 |
-
#define WARP_SIZE 32
|
| 11 |
-
#endif
|
| 12 |
-
|
| 13 |
-
#ifndef USE_ROCM
|
| 14 |
-
#define VLLM_LDG(arg) __ldg(arg)
|
| 15 |
-
#else
|
| 16 |
-
#define VLLM_LDG(arg) *(arg)
|
| 17 |
-
#endif
|
| 18 |
-
|
| 19 |
-
#ifndef USE_ROCM
|
| 20 |
-
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) \
|
| 21 |
-
__shfl_xor_sync(uint32_t(-1), var, lane_mask)
|
| 22 |
-
#define VLLM_SHFL_XOR_SYNC_WIDTH(var, lane_mask, width) \
|
| 23 |
-
__shfl_xor_sync(uint32_t(-1), var, lane_mask, width)
|
| 24 |
-
#else
|
| 25 |
-
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) __shfl_xor(var, lane_mask)
|
| 26 |
-
#define VLLM_SHFL_XOR_SYNC_WIDTH(var, lane_mask, width) \
|
| 27 |
-
__shfl_xor(var, lane_mask, width)
|
| 28 |
-
#endif
|
| 29 |
-
|
| 30 |
-
#ifndef USE_ROCM
|
| 31 |
-
#define VLLM_SHFL_SYNC(var, src_lane) __shfl_sync(uint32_t(-1), var, src_lane)
|
| 32 |
-
#else
|
| 33 |
-
#define VLLM_SHFL_SYNC(var, src_lane) __shfl(var, src_lane)
|
| 34 |
-
#endif
|
| 35 |
-
|
| 36 |
-
#ifndef USE_ROCM
|
| 37 |
-
#define VLLM_SHFL_DOWN_SYNC(var, lane_delta) \
|
| 38 |
-
__shfl_down_sync(uint32_t(-1), var, lane_delta)
|
| 39 |
-
#else
|
| 40 |
-
#define VLLM_SHFL_DOWN_SYNC(var, lane_delta) __shfl_down(var, lane_delta)
|
| 41 |
-
#endif
|
| 42 |
-
|
| 43 |
-
#ifndef USE_ROCM
|
| 44 |
-
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
|
| 45 |
-
cudaFuncSetAttribute(FUNC, cudaFuncAttributeMaxDynamicSharedMemorySize, VAL)
|
| 46 |
-
#else
|
| 47 |
-
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
|
| 48 |
-
hipFuncSetAttribute(FUNC, hipFuncAttributeMaxDynamicSharedMemorySize, VAL)
|
| 49 |
-
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
activation/dispatch_utils.h
DELETED
|
@@ -1,83 +0,0 @@
|
|
| 1 |
-
/*
|
| 2 |
-
* Adapted from
|
| 3 |
-
* https://github.com/pytorch/pytorch/blob/v2.0.1/aten/src/ATen/Dispatch.h
|
| 4 |
-
*/
|
| 5 |
-
#pragma once
|
| 6 |
-
|
| 7 |
-
#include <torch/all.h>
|
| 8 |
-
|
| 9 |
-
// Need a special dispatch case macro since we will nest the FP8 dispatch.
|
| 10 |
-
// Instead of the usual 'scalar_t', this names the dispatched type 'fp8_t'.
|
| 11 |
-
#define AT_DISPATCH_FP8_CASE(enum_type, ...) \
|
| 12 |
-
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, fp8_t, __VA_ARGS__)
|
| 13 |
-
|
| 14 |
-
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
| 15 |
-
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
| 16 |
-
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
| 17 |
-
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
|
| 18 |
-
|
| 19 |
-
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
| 20 |
-
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
| 21 |
-
|
| 22 |
-
// ROCm devices might use either fn or fnuz, so set up dispatch table for both.
|
| 23 |
-
// A host-based check at runtime will create a preferred FP8 type for ROCm
|
| 24 |
-
// such that the correct kernel is dispatched.
|
| 25 |
-
#ifdef USE_ROCM
|
| 26 |
-
#define VLLM_DISPATCH_CASE_FP8_TYPES(...) \
|
| 27 |
-
AT_DISPATCH_FP8_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
| 28 |
-
AT_DISPATCH_FP8_CASE(at::ScalarType::Float8_e4m3fnuz, __VA_ARGS__)
|
| 29 |
-
|
| 30 |
-
#define VLLM_DISPATCH_CASE_QUANT_TYPES(...) \
|
| 31 |
-
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
| 32 |
-
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fnuz, __VA_ARGS__) \
|
| 33 |
-
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__)
|
| 34 |
-
#else
|
| 35 |
-
#define VLLM_DISPATCH_CASE_FP8_TYPES(...) \
|
| 36 |
-
AT_DISPATCH_FP8_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__)
|
| 37 |
-
|
| 38 |
-
#define VLLM_DISPATCH_CASE_QUANT_TYPES(...) \
|
| 39 |
-
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
| 40 |
-
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__)
|
| 41 |
-
#endif
|
| 42 |
-
|
| 43 |
-
// When using this dispatch macro, the type is 'fp8_t' not 'scalar_t'.
|
| 44 |
-
// See AT_DISPATCH_FP8_CASE above.
|
| 45 |
-
#define VLLM_DISPATCH_FP8_TYPES(TYPE, NAME, ...) \
|
| 46 |
-
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FP8_TYPES(__VA_ARGS__))
|
| 47 |
-
|
| 48 |
-
#define VLLM_DISPATCH_QUANT_TYPES(TYPE, NAME, ...) \
|
| 49 |
-
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_QUANT_TYPES(__VA_ARGS__))
|
| 50 |
-
|
| 51 |
-
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
|
| 52 |
-
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
| 53 |
-
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
| 54 |
-
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
| 55 |
-
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
|
| 56 |
-
|
| 57 |
-
#define VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(TYPE, NAME, ...) \
|
| 58 |
-
AT_DISPATCH_SWITCH(TYPE, NAME, \
|
| 59 |
-
VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(__VA_ARGS__))
|
| 60 |
-
|
| 61 |
-
#define VLLM_DISPATCH_CASE_INTEGRAL_TYPES(...) \
|
| 62 |
-
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
|
| 63 |
-
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
|
| 64 |
-
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
|
| 65 |
-
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
|
| 66 |
-
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
|
| 67 |
-
|
| 68 |
-
#define VLLM_DISPATCH_CASE_INTEGRAL_AND_UNSIGNED_TYPES(...) \
|
| 69 |
-
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
|
| 70 |
-
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
|
| 71 |
-
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
|
| 72 |
-
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
|
| 73 |
-
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__) \
|
| 74 |
-
AT_DISPATCH_CASE(at::ScalarType::UInt16, __VA_ARGS__) \
|
| 75 |
-
AT_DISPATCH_CASE(at::ScalarType::UInt32, __VA_ARGS__) \
|
| 76 |
-
AT_DISPATCH_CASE(at::ScalarType::UInt64, __VA_ARGS__)
|
| 77 |
-
|
| 78 |
-
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
|
| 79 |
-
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
|
| 80 |
-
|
| 81 |
-
#define VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(TYPE, NAME, ...) \
|
| 82 |
-
AT_DISPATCH_SWITCH( \
|
| 83 |
-
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_AND_UNSIGNED_TYPES(__VA_ARGS__))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build.toml
DELETED
|
@@ -1,18 +0,0 @@
|
|
| 1 |
-
[general]
|
| 2 |
-
name = "activation"
|
| 3 |
-
universal = false
|
| 4 |
-
|
| 5 |
-
[torch]
|
| 6 |
-
src = [
|
| 7 |
-
"torch-ext/torch_binding.cpp",
|
| 8 |
-
"torch-ext/torch_binding.h",
|
| 9 |
-
]
|
| 10 |
-
|
| 11 |
-
[kernel.activation]
|
| 12 |
-
backend = "cuda"
|
| 13 |
-
depends = ["torch"]
|
| 14 |
-
src = [
|
| 15 |
-
"activation/activation_kernels.cu",
|
| 16 |
-
"activation/cuda_compat.h",
|
| 17 |
-
"activation/dispatch_utils.h",
|
| 18 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flake.lock
DELETED
|
@@ -1,168 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"nodes": {
|
| 3 |
-
"flake-compat": {
|
| 4 |
-
"locked": {
|
| 5 |
-
"lastModified": 1747046372,
|
| 6 |
-
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
| 7 |
-
"owner": "edolstra",
|
| 8 |
-
"repo": "flake-compat",
|
| 9 |
-
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
| 10 |
-
"type": "github"
|
| 11 |
-
},
|
| 12 |
-
"original": {
|
| 13 |
-
"owner": "edolstra",
|
| 14 |
-
"repo": "flake-compat",
|
| 15 |
-
"type": "github"
|
| 16 |
-
}
|
| 17 |
-
},
|
| 18 |
-
"flake-compat_2": {
|
| 19 |
-
"locked": {
|
| 20 |
-
"lastModified": 1747046372,
|
| 21 |
-
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
| 22 |
-
"owner": "edolstra",
|
| 23 |
-
"repo": "flake-compat",
|
| 24 |
-
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
| 25 |
-
"type": "github"
|
| 26 |
-
},
|
| 27 |
-
"original": {
|
| 28 |
-
"owner": "edolstra",
|
| 29 |
-
"repo": "flake-compat",
|
| 30 |
-
"type": "github"
|
| 31 |
-
}
|
| 32 |
-
},
|
| 33 |
-
"flake-utils": {
|
| 34 |
-
"inputs": {
|
| 35 |
-
"systems": "systems"
|
| 36 |
-
},
|
| 37 |
-
"locked": {
|
| 38 |
-
"lastModified": 1731533236,
|
| 39 |
-
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 40 |
-
"owner": "numtide",
|
| 41 |
-
"repo": "flake-utils",
|
| 42 |
-
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 43 |
-
"type": "github"
|
| 44 |
-
},
|
| 45 |
-
"original": {
|
| 46 |
-
"owner": "numtide",
|
| 47 |
-
"repo": "flake-utils",
|
| 48 |
-
"type": "github"
|
| 49 |
-
}
|
| 50 |
-
},
|
| 51 |
-
"flake-utils_2": {
|
| 52 |
-
"inputs": {
|
| 53 |
-
"systems": "systems_2"
|
| 54 |
-
},
|
| 55 |
-
"locked": {
|
| 56 |
-
"lastModified": 1731533236,
|
| 57 |
-
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 58 |
-
"owner": "numtide",
|
| 59 |
-
"repo": "flake-utils",
|
| 60 |
-
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 61 |
-
"type": "github"
|
| 62 |
-
},
|
| 63 |
-
"original": {
|
| 64 |
-
"owner": "numtide",
|
| 65 |
-
"repo": "flake-utils",
|
| 66 |
-
"type": "github"
|
| 67 |
-
}
|
| 68 |
-
},
|
| 69 |
-
"hf-nix": {
|
| 70 |
-
"inputs": {
|
| 71 |
-
"flake-compat": "flake-compat_2",
|
| 72 |
-
"flake-utils": "flake-utils_2",
|
| 73 |
-
"nixpkgs": "nixpkgs"
|
| 74 |
-
},
|
| 75 |
-
"locked": {
|
| 76 |
-
"lastModified": 1759493343,
|
| 77 |
-
"narHash": "sha256-8fhl0gwMAnOkQbogPIVq+Fha+Yeq52FaRXfwF+F9Q+k=",
|
| 78 |
-
"owner": "huggingface",
|
| 79 |
-
"repo": "hf-nix",
|
| 80 |
-
"rev": "b1fc3a18b52447a0f24bc6884418edc5e66082b9",
|
| 81 |
-
"type": "github"
|
| 82 |
-
},
|
| 83 |
-
"original": {
|
| 84 |
-
"owner": "huggingface",
|
| 85 |
-
"repo": "hf-nix",
|
| 86 |
-
"type": "github"
|
| 87 |
-
}
|
| 88 |
-
},
|
| 89 |
-
"kernel-builder": {
|
| 90 |
-
"inputs": {
|
| 91 |
-
"flake-compat": "flake-compat",
|
| 92 |
-
"flake-utils": "flake-utils",
|
| 93 |
-
"hf-nix": "hf-nix",
|
| 94 |
-
"nixpkgs": [
|
| 95 |
-
"kernel-builder",
|
| 96 |
-
"hf-nix",
|
| 97 |
-
"nixpkgs"
|
| 98 |
-
]
|
| 99 |
-
},
|
| 100 |
-
"locked": {
|
| 101 |
-
"lastModified": 1759516823,
|
| 102 |
-
"narHash": "sha256-UJVvZHtS9c64Dm4iZRaOKWB+VHI7jzcazGH57KXWeg8=",
|
| 103 |
-
"owner": "huggingface",
|
| 104 |
-
"repo": "kernel-builder",
|
| 105 |
-
"rev": "e13610a05f67b7296be9ead89ad172a0a088a1c3",
|
| 106 |
-
"type": "github"
|
| 107 |
-
},
|
| 108 |
-
"original": {
|
| 109 |
-
"owner": "huggingface",
|
| 110 |
-
"repo": "kernel-builder",
|
| 111 |
-
"type": "github"
|
| 112 |
-
}
|
| 113 |
-
},
|
| 114 |
-
"nixpkgs": {
|
| 115 |
-
"locked": {
|
| 116 |
-
"lastModified": 1755963616,
|
| 117 |
-
"narHash": "sha256-6yD0ww/S8n+U2uPYcJZ3DRURP8Kx036GRpR2uPNZroE=",
|
| 118 |
-
"owner": "nixos",
|
| 119 |
-
"repo": "nixpkgs",
|
| 120 |
-
"rev": "73e96df7cff5783f45e21342a75a1540c4eddce4",
|
| 121 |
-
"type": "github"
|
| 122 |
-
},
|
| 123 |
-
"original": {
|
| 124 |
-
"owner": "nixos",
|
| 125 |
-
"ref": "nixos-unstable-small",
|
| 126 |
-
"repo": "nixpkgs",
|
| 127 |
-
"type": "github"
|
| 128 |
-
}
|
| 129 |
-
},
|
| 130 |
-
"root": {
|
| 131 |
-
"inputs": {
|
| 132 |
-
"kernel-builder": "kernel-builder"
|
| 133 |
-
}
|
| 134 |
-
},
|
| 135 |
-
"systems": {
|
| 136 |
-
"locked": {
|
| 137 |
-
"lastModified": 1681028828,
|
| 138 |
-
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 139 |
-
"owner": "nix-systems",
|
| 140 |
-
"repo": "default",
|
| 141 |
-
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 142 |
-
"type": "github"
|
| 143 |
-
},
|
| 144 |
-
"original": {
|
| 145 |
-
"owner": "nix-systems",
|
| 146 |
-
"repo": "default",
|
| 147 |
-
"type": "github"
|
| 148 |
-
}
|
| 149 |
-
},
|
| 150 |
-
"systems_2": {
|
| 151 |
-
"locked": {
|
| 152 |
-
"lastModified": 1681028828,
|
| 153 |
-
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 154 |
-
"owner": "nix-systems",
|
| 155 |
-
"repo": "default",
|
| 156 |
-
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 157 |
-
"type": "github"
|
| 158 |
-
},
|
| 159 |
-
"original": {
|
| 160 |
-
"owner": "nix-systems",
|
| 161 |
-
"repo": "default",
|
| 162 |
-
"type": "github"
|
| 163 |
-
}
|
| 164 |
-
}
|
| 165 |
-
},
|
| 166 |
-
"root": "root",
|
| 167 |
-
"version": 7
|
| 168 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flake.nix
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
description = "Flake for activation kernels";
|
| 3 |
-
|
| 4 |
-
inputs = {
|
| 5 |
-
kernel-builder.url = "github:huggingface/kernel-builder";
|
| 6 |
-
};
|
| 7 |
-
|
| 8 |
-
outputs =
|
| 9 |
-
{
|
| 10 |
-
self,
|
| 11 |
-
kernel-builder,
|
| 12 |
-
}:
|
| 13 |
-
kernel-builder.lib.genFlakeOutputs {
|
| 14 |
-
inherit self;
|
| 15 |
-
path = ./.;
|
| 16 |
-
};
|
| 17 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/__init__.py
DELETED
|
File without changes
|
tests/__pycache__/__init__.cpython-312.pyc
DELETED
|
Binary file (142 Bytes)
|
|
|
tests/kernels/__init__.py
DELETED
|
File without changes
|
tests/kernels/__pycache__/__init__.cpython-312.pyc
DELETED
|
Binary file (150 Bytes)
|
|
|
tests/kernels/__pycache__/allclose_default.cpython-312.pyc
DELETED
|
Binary file (842 Bytes)
|
|
|
tests/kernels/__pycache__/test_activation.cpython-312-pytest-8.4.2.pyc
DELETED
|
Binary file (11.7 kB)
|
|
|
tests/kernels/__pycache__/utils.cpython-312.pyc
DELETED
|
Binary file (2.75 kB)
|
|
|
tests/kernels/allclose_default.py
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
|
| 3 |
-
# Reference default values of atol and rtol are from
|
| 4 |
-
# https://github.com/pytorch/pytorch/blob/6d96beb6bec24d73ee3f080bac54d2104068f675/test/test_transformers.py#L67
|
| 5 |
-
default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float: 1e-5}
|
| 6 |
-
default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float: 1.3e-6}
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def get_default_atol(output) -> float:
|
| 10 |
-
return default_atol[output.dtype]
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def get_default_rtol(output) -> float:
|
| 14 |
-
return default_rtol[output.dtype]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/kernels/test_activation.py
DELETED
|
@@ -1,206 +0,0 @@
|
|
| 1 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
-
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
| 3 |
-
|
| 4 |
-
import math
|
| 5 |
-
import random
|
| 6 |
-
from typing import Type
|
| 7 |
-
|
| 8 |
-
import activation
|
| 9 |
-
import pytest
|
| 10 |
-
import torch
|
| 11 |
-
import torch.nn.functional as F
|
| 12 |
-
|
| 13 |
-
from .utils import opcheck
|
| 14 |
-
from .allclose_default import get_default_atol, get_default_rtol
|
| 15 |
-
|
| 16 |
-
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
| 17 |
-
NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing
|
| 18 |
-
D = [512, 13824] # Arbitrary values for testing
|
| 19 |
-
SEEDS = [0]
|
| 20 |
-
CUDA_DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def gelu_fast(x: torch.Tensor) -> torch.Tensor:
|
| 24 |
-
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x)))
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def gelu_new(x: torch.Tensor) -> torch.Tensor:
|
| 28 |
-
c = math.sqrt(2.0 / math.pi)
|
| 29 |
-
return 0.5 * x * (1.0 + torch.tanh(c * (x + 0.044715 * torch.pow(x, 3.0))))
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def gelu_quick(x: torch.Tensor) -> torch.Tensor:
|
| 33 |
-
return x * torch.sigmoid(1.702 * x)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def fatrelu_and_mul(x: torch.Tensor, threshold: float) -> torch.Tensor:
|
| 37 |
-
d = x.shape[-1] // 2
|
| 38 |
-
x1 = x[..., :d]
|
| 39 |
-
x2 = x[..., d:]
|
| 40 |
-
x1 = F.threshold(x1, threshold, 0.0)
|
| 41 |
-
return x1 * x2
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def silu_and_mul(x: torch.Tensor) -> torch.Tensor:
|
| 45 |
-
d = x.shape[-1] // 2
|
| 46 |
-
return F.silu(x[..., :d]) * x[..., d:]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def mul_and_silu(x: torch.Tensor) -> torch.Tensor:
|
| 50 |
-
d = x.shape[-1] // 2
|
| 51 |
-
return x[..., :d] * F.silu(x[..., d:])
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def gelu_and_mul(x: torch.Tensor, approximate: str) -> torch.Tensor:
|
| 55 |
-
d = x.shape[-1] // 2
|
| 56 |
-
return F.gelu(x[..., :d], approximate=approximate) * x[..., d:]
|
| 57 |
-
|
| 58 |
-
def gelu(x: torch.Tensor) -> torch.Tensor:
|
| 59 |
-
return F.gelu(x)
|
| 60 |
-
|
| 61 |
-
def gelu_tanh(x: torch.Tensor) -> torch.Tensor:
|
| 62 |
-
return F.gelu(x, approximate="tanh")
|
| 63 |
-
|
| 64 |
-
def silu(x: torch.Tensor) -> torch.Tensor:
|
| 65 |
-
return F.silu(x)
|
| 66 |
-
|
| 67 |
-
@pytest.mark.parametrize(
|
| 68 |
-
"activation_name", ["silu_and_mul", "mul_and_silu", "gelu", "gelu_tanh", "fatrelu"]
|
| 69 |
-
)
|
| 70 |
-
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
| 71 |
-
@pytest.mark.parametrize("d", D)
|
| 72 |
-
@pytest.mark.parametrize("dtype", DTYPES)
|
| 73 |
-
@pytest.mark.parametrize("seed", SEEDS)
|
| 74 |
-
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
| 75 |
-
@torch.inference_mode()
|
| 76 |
-
def test_act_and_mul(
|
| 77 |
-
activation_name: str,
|
| 78 |
-
num_tokens: int,
|
| 79 |
-
d: int,
|
| 80 |
-
dtype: torch.dtype,
|
| 81 |
-
seed: int,
|
| 82 |
-
device: str,
|
| 83 |
-
) -> None:
|
| 84 |
-
random.seed(seed)
|
| 85 |
-
torch.manual_seed(seed)
|
| 86 |
-
torch.set_default_device(device)
|
| 87 |
-
x = torch.randn(num_tokens, 2 * d, dtype=dtype)
|
| 88 |
-
if activation_name == "silu_and_mul":
|
| 89 |
-
torch_fn = silu_and_mul
|
| 90 |
-
fn = activation.silu_and_mul
|
| 91 |
-
op = activation.ops.silu_and_mul
|
| 92 |
-
layer = activation.layers.SiluAndMul()
|
| 93 |
-
elif activation_name == "mul_and_silu":
|
| 94 |
-
torch_fn = mul_and_silu
|
| 95 |
-
fn = activation.mul_and_silu
|
| 96 |
-
op = activation.ops.mul_and_silu
|
| 97 |
-
layer = activation.layers.MulAndSilu()
|
| 98 |
-
elif activation_name == "gelu":
|
| 99 |
-
torch_fn = lambda x: gelu_and_mul(x, "none")
|
| 100 |
-
fn = activation.gelu_and_mul
|
| 101 |
-
op = activation.ops.gelu_and_mul
|
| 102 |
-
layer = activation.layers.GeluAndMul()
|
| 103 |
-
elif activation_name == "gelu_tanh":
|
| 104 |
-
torch_fn = lambda x: gelu_and_mul(x, "tanh")
|
| 105 |
-
fn = activation.gelu_tanh_and_mul
|
| 106 |
-
op = activation.ops.gelu_tanh_and_mul
|
| 107 |
-
layer = activation.layers.GeluTanhAndMul()
|
| 108 |
-
elif activation_name == "fatrelu":
|
| 109 |
-
threshold = random.uniform(0, 1)
|
| 110 |
-
torch_fn = lambda x: fatrelu_and_mul(x, threshold)
|
| 111 |
-
fn = lambda out, x: activation.fatrelu_and_mul(out, x, threshold)
|
| 112 |
-
op = activation.ops.fatrelu_and_mul
|
| 113 |
-
layer = activation.layers.FatreluAndMul(threshold)
|
| 114 |
-
|
| 115 |
-
out_shape = x.shape[:-1] + (x.shape[-1] // 2,)
|
| 116 |
-
out = torch.empty(out_shape, dtype=x.dtype, device=x.device)
|
| 117 |
-
out = fn(out, x)
|
| 118 |
-
mod_out = layer(x)
|
| 119 |
-
ref_out = torch_fn(x)
|
| 120 |
-
|
| 121 |
-
# The SiLU, GELU and FatReLU implementations are equivalent to the native
|
| 122 |
-
# PyTorch implementations, so we can do exact comparison.
|
| 123 |
-
torch.testing.assert_close(out, ref_out, atol=0.0, rtol=0.0)
|
| 124 |
-
torch.testing.assert_close(mod_out, ref_out, atol=0.0, rtol=0.0)
|
| 125 |
-
|
| 126 |
-
d = x.shape[-1] // 2
|
| 127 |
-
output_shape = x.shape[:-1] + (d,)
|
| 128 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 129 |
-
if activation_name == "fatrelu":
|
| 130 |
-
opcheck(op, (out, x, threshold))
|
| 131 |
-
else:
|
| 132 |
-
opcheck(op, (out, x))
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
@pytest.mark.parametrize(
|
| 136 |
-
"activation_fns",
|
| 137 |
-
[
|
| 138 |
-
(
|
| 139 |
-
gelu_fast,
|
| 140 |
-
activation.gelu_fast,
|
| 141 |
-
activation.ops.gelu_fast,
|
| 142 |
-
activation.layers.FastGELU,
|
| 143 |
-
),
|
| 144 |
-
(
|
| 145 |
-
gelu_new,
|
| 146 |
-
activation.gelu_new,
|
| 147 |
-
activation.ops.gelu_new,
|
| 148 |
-
activation.layers.NewGELU,
|
| 149 |
-
),
|
| 150 |
-
(
|
| 151 |
-
gelu_quick,
|
| 152 |
-
activation.gelu_quick,
|
| 153 |
-
activation.ops.gelu_quick,
|
| 154 |
-
activation.layers.QuickGELU,
|
| 155 |
-
),
|
| 156 |
-
(
|
| 157 |
-
gelu_tanh,
|
| 158 |
-
activation.gelu_tanh,
|
| 159 |
-
activation.ops.gelu_tanh,
|
| 160 |
-
activation.layers.GeluTanh,
|
| 161 |
-
),
|
| 162 |
-
(
|
| 163 |
-
silu,
|
| 164 |
-
activation.silu,
|
| 165 |
-
activation.ops.silu,
|
| 166 |
-
activation.layers.Silu,
|
| 167 |
-
),
|
| 168 |
-
(
|
| 169 |
-
gelu,
|
| 170 |
-
activation.gelu,
|
| 171 |
-
activation.ops.gelu,
|
| 172 |
-
activation.layers.Gelu
|
| 173 |
-
),
|
| 174 |
-
],
|
| 175 |
-
)
|
| 176 |
-
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
| 177 |
-
@pytest.mark.parametrize("d", D)
|
| 178 |
-
@pytest.mark.parametrize("dtype", DTYPES)
|
| 179 |
-
@pytest.mark.parametrize("seed", SEEDS)
|
| 180 |
-
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
| 181 |
-
@torch.inference_mode()
|
| 182 |
-
def test_activation(
|
| 183 |
-
activation_fns,
|
| 184 |
-
num_tokens: int,
|
| 185 |
-
d: int,
|
| 186 |
-
dtype: torch.dtype,
|
| 187 |
-
seed: int,
|
| 188 |
-
device: str,
|
| 189 |
-
) -> None:
|
| 190 |
-
torch.manual_seed(seed)
|
| 191 |
-
torch.set_default_device(device)
|
| 192 |
-
x = torch.randn(num_tokens, d, dtype=dtype)
|
| 193 |
-
torch_fn, fn, op, cls = activation_fns
|
| 194 |
-
layer = cls()
|
| 195 |
-
out = fn(torch.empty_like(x), x)
|
| 196 |
-
layer_out = layer(x)
|
| 197 |
-
ref_out = torch_fn(x)
|
| 198 |
-
torch.testing.assert_close(
|
| 199 |
-
out, ref_out, atol=get_default_atol(out), rtol=get_default_rtol(out)
|
| 200 |
-
)
|
| 201 |
-
torch.testing.assert_close(
|
| 202 |
-
out, layer_out, atol=get_default_atol(out), rtol=get_default_rtol(out)
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
out = torch.empty_like(x)
|
| 206 |
-
opcheck(op, (out, x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/kernels/utils.py
DELETED
|
@@ -1,73 +0,0 @@
|
|
| 1 |
-
"""Kernel test utils"""
|
| 2 |
-
|
| 3 |
-
import itertools
|
| 4 |
-
import random
|
| 5 |
-
import unittest
|
| 6 |
-
from numbers import Number
|
| 7 |
-
from typing import Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
|
| 8 |
-
|
| 9 |
-
import pytest
|
| 10 |
-
import torch
|
| 11 |
-
from torch._prims_common import TensorLikeType
|
| 12 |
-
|
| 13 |
-
# For now, disable "test_aot_dispatch_dynamic" since there are some
|
| 14 |
-
# bugs related to this test in PyTorch 2.4.
|
| 15 |
-
DEFAULT_OPCHECK_TEST_UTILS: Tuple[str, ...] = (
|
| 16 |
-
"test_schema",
|
| 17 |
-
"test_autograd_registration",
|
| 18 |
-
"test_faketensor",
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
ALL_OPCHECK_TEST_UTILS: Tuple[str, ...] = (
|
| 22 |
-
"test_schema",
|
| 23 |
-
"test_autograd_registration",
|
| 24 |
-
"test_faketensor",
|
| 25 |
-
"test_aot_dispatch_dynamic",
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# Copied/modified from torch._refs.__init__.py
|
| 30 |
-
def fp8_allclose(
|
| 31 |
-
a: TensorLikeType,
|
| 32 |
-
b: TensorLikeType,
|
| 33 |
-
rtol: float = 1e-05,
|
| 34 |
-
atol: float = 1e-08,
|
| 35 |
-
equal_nan: bool = False,
|
| 36 |
-
) -> bool:
|
| 37 |
-
"""
|
| 38 |
-
Reference implementation of torch.allclose
|
| 39 |
-
"""
|
| 40 |
-
torch._refs._check_close_args(name="torch.allclose", a=a, b=b, rtol=rtol, atol=atol)
|
| 41 |
-
|
| 42 |
-
return bool(
|
| 43 |
-
torch.all(
|
| 44 |
-
torch.isclose(
|
| 45 |
-
a.double(), b.double(), rtol=rtol, atol=atol, equal_nan=equal_nan
|
| 46 |
-
)
|
| 47 |
-
).item()
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
# A special version of op check that has a restricted default set of test_utils
|
| 52 |
-
# and a patched version of allclose that supports fp8 types.
|
| 53 |
-
def opcheck(
|
| 54 |
-
op: Union[
|
| 55 |
-
torch._ops.OpOverload,
|
| 56 |
-
torch._ops.OpOverloadPacket,
|
| 57 |
-
torch._library.custom_ops.CustomOpDef,
|
| 58 |
-
],
|
| 59 |
-
args: Tuple[Any, ...],
|
| 60 |
-
kwargs: Optional[Dict[str, Any]] = None,
|
| 61 |
-
*,
|
| 62 |
-
test_utils: Union[str, Sequence[str]] = ALL_OPCHECK_TEST_UTILS,
|
| 63 |
-
raise_exception: bool = True,
|
| 64 |
-
cond: bool = True
|
| 65 |
-
) -> Dict[str, str]:
|
| 66 |
-
with unittest.mock.patch("torch.allclose", new=fp8_allclose):
|
| 67 |
-
return (
|
| 68 |
-
torch.library.opcheck(
|
| 69 |
-
op, args, kwargs, test_utils=test_utils, raise_exception=raise_exception
|
| 70 |
-
)
|
| 71 |
-
if cond
|
| 72 |
-
else {}
|
| 73 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch-ext/activation/__init__.py
DELETED
|
@@ -1,75 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
|
| 3 |
-
from ._ops import ops
|
| 4 |
-
|
| 5 |
-
from . import layers
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 9 |
-
ops.silu_and_mul(out, x)
|
| 10 |
-
return out
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 14 |
-
ops.mul_and_silu(out, x)
|
| 15 |
-
return out
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 19 |
-
ops.gelu_and_mul(out, x)
|
| 20 |
-
return out
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 24 |
-
ops.gelu_tanh_and_mul(out, x)
|
| 25 |
-
return out
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
| 29 |
-
ops.fatrelu_and_mul(out, x, threshold)
|
| 30 |
-
return out
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 34 |
-
ops.gelu(out, x)
|
| 35 |
-
return out
|
| 36 |
-
|
| 37 |
-
def silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 38 |
-
ops.silu(out, x)
|
| 39 |
-
return out
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 43 |
-
ops.gelu_tanh(out, x)
|
| 44 |
-
return out
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 48 |
-
ops.gelu_fast(out, x)
|
| 49 |
-
return out
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 53 |
-
ops.gelu_new(out, x)
|
| 54 |
-
return out
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 58 |
-
ops.gelu_quick(out, x)
|
| 59 |
-
return out
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
__all__ = [
|
| 63 |
-
"silu_and_mul",
|
| 64 |
-
"mul_and_silu",
|
| 65 |
-
"gelu_and_mul",
|
| 66 |
-
"gelu_tanh_and_mul",
|
| 67 |
-
"fatrelu_and_mul",
|
| 68 |
-
"gelu_fast",
|
| 69 |
-
"gelu_new",
|
| 70 |
-
"gelu_quick",
|
| 71 |
-
"gelu_tanh",
|
| 72 |
-
"silu",
|
| 73 |
-
"gelu",
|
| 74 |
-
"layers",
|
| 75 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch-ext/activation/layers.py
DELETED
|
@@ -1,179 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
class SiluAndMul(nn.Module):
|
| 8 |
-
"""An activation function for SwiGLU.
|
| 9 |
-
|
| 10 |
-
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
| 11 |
-
|
| 12 |
-
Shapes:
|
| 13 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
| 14 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 15 |
-
"""
|
| 16 |
-
|
| 17 |
-
can_torch_compile: bool = True
|
| 18 |
-
|
| 19 |
-
def forward(self, x: torch.Tensor):
|
| 20 |
-
d = x.shape[-1] // 2
|
| 21 |
-
output_shape = x.shape[:-1] + (d,)
|
| 22 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 23 |
-
ops.silu_and_mul(out, x)
|
| 24 |
-
return out
|
| 25 |
-
|
| 26 |
-
class Silu(nn.Module):
|
| 27 |
-
"""An activation function for SiLU.
|
| 28 |
-
|
| 29 |
-
The function computes x -> silu(x).
|
| 30 |
-
|
| 31 |
-
Shapes:
|
| 32 |
-
x: (num_tokens, d) or (batch_size, seq_len, d)
|
| 33 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
can_torch_compile: bool = True
|
| 37 |
-
|
| 38 |
-
def forward(self, x: torch.Tensor):
|
| 39 |
-
out = torch.empty_like(x)
|
| 40 |
-
ops.silu(out, x)
|
| 41 |
-
return out
|
| 42 |
-
|
| 43 |
-
class Gelu(nn.Module):
|
| 44 |
-
"""An activation function for GELU.
|
| 45 |
-
|
| 46 |
-
The function computes x -> gelu(x).
|
| 47 |
-
|
| 48 |
-
Shapes:
|
| 49 |
-
x: (num_tokens, d) or (batch_size, seq_len, d)
|
| 50 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
can_torch_compile: bool = True
|
| 54 |
-
|
| 55 |
-
def forward(self, x: torch.Tensor):
|
| 56 |
-
out = torch.empty_like(x)
|
| 57 |
-
ops.gelu(out, x)
|
| 58 |
-
return out
|
| 59 |
-
|
| 60 |
-
class GeluTanh(nn.Module):
|
| 61 |
-
"""An activation function for GELU with `tanh` approximation.
|
| 62 |
-
|
| 63 |
-
The function computes x -> gelu_tanh(x).
|
| 64 |
-
|
| 65 |
-
Shapes:
|
| 66 |
-
x: (num_tokens, d) or (batch_size, seq_len, d)
|
| 67 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 68 |
-
"""
|
| 69 |
-
|
| 70 |
-
can_torch_compile: bool = True
|
| 71 |
-
|
| 72 |
-
def forward(self, x: torch.Tensor):
|
| 73 |
-
out = torch.empty_like(x)
|
| 74 |
-
ops.gelu_tanh(out, x)
|
| 75 |
-
return out
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
class MulAndSilu(nn.Module):
|
| 79 |
-
"""An activation function for SwiGLU.
|
| 80 |
-
|
| 81 |
-
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
| 82 |
-
|
| 83 |
-
Shapes:
|
| 84 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
| 85 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 86 |
-
"""
|
| 87 |
-
|
| 88 |
-
can_torch_compile: bool = True
|
| 89 |
-
|
| 90 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 91 |
-
d = x.shape[-1] // 2
|
| 92 |
-
output_shape = x.shape[:-1] + (d,)
|
| 93 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 94 |
-
ops.mul_and_silu(out, x)
|
| 95 |
-
return out
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
class GeluAndMul(nn.Module):
|
| 99 |
-
"""An activation function for GeGLU.
|
| 100 |
-
|
| 101 |
-
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
| 102 |
-
|
| 103 |
-
Shapes:
|
| 104 |
-
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
| 105 |
-
return: (batch_size, seq_len, d) or (num_tokens, d)
|
| 106 |
-
"""
|
| 107 |
-
|
| 108 |
-
can_torch_compile: bool = True
|
| 109 |
-
|
| 110 |
-
def forward(self, x: torch.Tensor):
|
| 111 |
-
d = x.shape[-1] // 2
|
| 112 |
-
output_shape = x.shape[:-1] + (d,)
|
| 113 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 114 |
-
ops.gelu_and_mul(out, x)
|
| 115 |
-
return out
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
class GeluTanhAndMul(nn.Module):
|
| 119 |
-
can_torch_compile: bool = True
|
| 120 |
-
|
| 121 |
-
def forward(self, x: torch.Tensor):
|
| 122 |
-
d = x.shape[-1] // 2
|
| 123 |
-
output_shape = x.shape[:-1] + (d,)
|
| 124 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 125 |
-
ops.gelu_tanh_and_mul(out, x)
|
| 126 |
-
return out
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
class FatreluAndMul(nn.Module):
|
| 130 |
-
"""An activation function for FATReLU.
|
| 131 |
-
|
| 132 |
-
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
| 133 |
-
d = x.shape[-1] // 2.
|
| 134 |
-
This is used in openbmb/MiniCPM-S-1B-sft.
|
| 135 |
-
|
| 136 |
-
Shapes:
|
| 137 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
| 138 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 139 |
-
"""
|
| 140 |
-
|
| 141 |
-
can_torch_compile: bool = True
|
| 142 |
-
|
| 143 |
-
def __init__(self, threshold: float = 0.0):
|
| 144 |
-
super().__init__()
|
| 145 |
-
self.threshold = threshold
|
| 146 |
-
|
| 147 |
-
def forward(self, x: torch.Tensor):
|
| 148 |
-
d = x.shape[-1] // 2
|
| 149 |
-
output_shape = x.shape[:-1] + (d,)
|
| 150 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 151 |
-
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 152 |
-
return out
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
class FastGELU(nn.Module):
|
| 156 |
-
can_torch_compile: bool = True
|
| 157 |
-
|
| 158 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 159 |
-
out = torch.empty_like(x)
|
| 160 |
-
ops.gelu_fast(out, x)
|
| 161 |
-
return out
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
class NewGELU(nn.Module):
|
| 165 |
-
can_torch_compile: bool = True
|
| 166 |
-
|
| 167 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 168 |
-
out = torch.empty_like(x)
|
| 169 |
-
ops.gelu_new(out, x)
|
| 170 |
-
return out
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
class QuickGELU(nn.Module):
|
| 174 |
-
can_torch_compile: bool = True
|
| 175 |
-
|
| 176 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 177 |
-
out = torch.empty_like(x)
|
| 178 |
-
ops.gelu_quick(out, x)
|
| 179 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch-ext/torch_binding.cpp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#include <torch/library.h>
|
| 2 |
-
|
| 3 |
-
#include "registration.h"
|
| 4 |
-
#include "torch_binding.h"
|
| 5 |
-
|
| 6 |
-
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
| 7 |
-
// Activation ops
|
| 8 |
-
// Activation function used in SwiGLU.
|
| 9 |
-
ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
|
| 10 |
-
ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);
|
| 11 |
-
|
| 12 |
-
ops.def("mul_and_silu(Tensor! out, Tensor input) -> ()");
|
| 13 |
-
ops.impl("mul_and_silu", torch::kCUDA, &mul_and_silu);
|
| 14 |
-
|
| 15 |
-
// Activation function used in GeGLU with `none` approximation.
|
| 16 |
-
ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
|
| 17 |
-
ops.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);
|
| 18 |
-
|
| 19 |
-
// Activation function used in GeGLU with `tanh` approximation.
|
| 20 |
-
ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
|
| 21 |
-
ops.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);
|
| 22 |
-
|
| 23 |
-
// FATReLU implementation.
|
| 24 |
-
ops.def("fatrelu_and_mul(Tensor! out, Tensor input, float threshold) -> ()");
|
| 25 |
-
ops.impl("fatrelu_and_mul", torch::kCUDA, &fatrelu_and_mul);
|
| 26 |
-
|
| 27 |
-
// GELU implementation used in GPT-2.
|
| 28 |
-
ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
|
| 29 |
-
ops.impl("gelu_new", torch::kCUDA, &gelu_new);
|
| 30 |
-
|
| 31 |
-
// Approximate GELU implementation.
|
| 32 |
-
ops.def("gelu_fast(Tensor! out, Tensor input) -> ()");
|
| 33 |
-
ops.impl("gelu_fast", torch::kCUDA, &gelu_fast);
|
| 34 |
-
|
| 35 |
-
// Quick GELU implementation.
|
| 36 |
-
ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
|
| 37 |
-
ops.impl("gelu_quick", torch::kCUDA, &gelu_quick);
|
| 38 |
-
|
| 39 |
-
// GELU with `tanh` approximation.
|
| 40 |
-
ops.def("gelu_tanh(Tensor! out, Tensor input) -> ()");
|
| 41 |
-
ops.impl("gelu_tanh", torch::kCUDA, &gelu_tanh);
|
| 42 |
-
|
| 43 |
-
// SiLU implementation.
|
| 44 |
-
ops.def("silu(Tensor! out, Tensor input) -> ()");
|
| 45 |
-
ops.impl("silu", torch::kCUDA, &silu);
|
| 46 |
-
|
| 47 |
-
// GELU with none approximation.
|
| 48 |
-
ops.def("gelu(Tensor! out, Tensor input) -> ()");
|
| 49 |
-
ops.impl("gelu", torch::kCUDA, &gelu);
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch-ext/torch_binding.h
DELETED
|
@@ -1,26 +0,0 @@
|
|
| 1 |
-
#pragma once
|
| 2 |
-
|
| 3 |
-
#include <torch/torch.h>
|
| 4 |
-
|
| 5 |
-
void silu_and_mul(torch::Tensor &out, torch::Tensor &input);
|
| 6 |
-
|
| 7 |
-
void mul_and_silu(torch::Tensor& out, torch::Tensor& input);
|
| 8 |
-
|
| 9 |
-
void gelu_and_mul(torch::Tensor &out, torch::Tensor &input);
|
| 10 |
-
|
| 11 |
-
void gelu_tanh_and_mul(torch::Tensor &out, torch::Tensor &input);
|
| 12 |
-
|
| 13 |
-
void fatrelu_and_mul(torch::Tensor &out, torch::Tensor &input,
|
| 14 |
-
double threshold);
|
| 15 |
-
|
| 16 |
-
void gelu_new(torch::Tensor &out, torch::Tensor &input);
|
| 17 |
-
|
| 18 |
-
void gelu_fast(torch::Tensor &out, torch::Tensor &input);
|
| 19 |
-
|
| 20 |
-
void gelu_quick(torch::Tensor &out, torch::Tensor &input);
|
| 21 |
-
|
| 22 |
-
void gelu_tanh(torch::Tensor &out, torch::Tensor &input);
|
| 23 |
-
|
| 24 |
-
void silu(torch::Tensor &out, torch::Tensor &input);
|
| 25 |
-
|
| 26 |
-
void gelu(torch::Tensor &out, torch::Tensor &input);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|