import torch from diffsynth import ModelManager, FluxImagePipeline, download_models from diffsynth.controlnets.processors import Annotator import numpy as np from PIL import Image download_models(["FLUX.1-dev"]) model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda") model_manager.load_models([ "models/FLUX/FLUX.1-dev/text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2", "models/FLUX/FLUX.1-dev/ae.safetensors", "models/ostris/Flex.2-preview/Flex.2-preview.safetensors" ]) pipe = FluxImagePipeline.from_model_manager(model_manager) image = pipe( prompt="portrait of a beautiful Asian girl, long hair, red t-shirt, sunshine, beach", num_inference_steps=50, embedded_guidance=3.5, seed=0 ) image.save("image_1.jpg") mask = np.zeros((1024, 1024, 3), dtype=np.uint8) mask[200:400, 400:700] = 255 mask = Image.fromarray(mask) mask.save("image_mask.jpg") inpaint_image = image image = pipe( prompt="portrait of a beautiful Asian girl with sunglasses, long hair, red t-shirt, sunshine, beach", num_inference_steps=50, embedded_guidance=3.5, flex_inpaint_image=inpaint_image, flex_inpaint_mask=mask, seed=4 ) image.save("image_2.jpg") control_image = Annotator("canny")(image) control_image.save("image_control.jpg") image = pipe( prompt="portrait of a beautiful Asian girl with sunglasses, long hair, yellow t-shirt, sunshine, beach", num_inference_steps=50, embedded_guidance=3.5, flex_control_image=control_image, seed=4 ) image.save("image_3.jpg")