|
|
import torch, warnings, glob, os, types |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from einops import repeat, reduce |
|
|
from typing import Optional, Union |
|
|
from dataclasses import dataclass |
|
|
from modelscope import snapshot_download |
|
|
from einops import rearrange |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from tqdm import tqdm |
|
|
from typing import Optional |
|
|
from typing_extensions import Literal |
|
|
|
|
|
from ..utils import BasePipeline, ModelConfig, PipelineUnit, PipelineUnitRunner |
|
|
from ..models import ModelManager, load_state_dict |
|
|
from ..models.wan_video_dit import WanModel, RMSNorm, sinusoidal_embedding_1d |
|
|
from ..models.wan_video_dit_s2v import rope_precompute |
|
|
from ..models.wan_video_text_encoder import WanTextEncoder, T5RelativeEmbedding, T5LayerNorm |
|
|
from ..models.wan_video_vae import WanVideoVAE, RMS_norm, CausalConv3d, Upsample |
|
|
from ..models.wan_video_image_encoder import WanImageEncoder |
|
|
from ..models.wan_video_vace import VaceWanModel |
|
|
from ..models.wan_video_motion_controller import WanMotionControllerModel |
|
|
from ..models.wan_video_animate_adapter import WanAnimateAdapter |
|
|
from ..models.wan_video_mot import MotWanModel |
|
|
from ..models.longcat_video_dit import LongCatVideoTransformer3DModel |
|
|
from ..schedulers.flow_match import FlowMatchScheduler |
|
|
from ..prompters import WanPrompter |
|
|
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear, WanAutoCastLayerNorm |
|
|
from ..lora import GeneralLoRALoader |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoPipeline(BasePipeline): |
|
|
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.bfloat16, tokenizer_path=None): |
|
|
super().__init__( |
|
|
device=device, torch_dtype=torch_dtype, |
|
|
height_division_factor=16, width_division_factor=16, time_division_factor=4, time_division_remainder=1 |
|
|
) |
|
|
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True) |
|
|
self.prompter = WanPrompter(tokenizer_path=tokenizer_path) |
|
|
self.text_encoder: WanTextEncoder = None |
|
|
self.image_encoder: WanImageEncoder = None |
|
|
self.dit: WanModel = None |
|
|
self.dit2: WanModel = None |
|
|
self.vae: WanVideoVAE = None |
|
|
self.motion_controller: WanMotionControllerModel = None |
|
|
self.vace: VaceWanModel = None |
|
|
self.vace2: VaceWanModel = None |
|
|
self.vap: MotWanModel = None |
|
|
self.animate_adapter: WanAnimateAdapter = None |
|
|
self.in_iteration_models = ("dit", "motion_controller", "vace", "animate_adapter", "vap") |
|
|
self.in_iteration_models_2 = ("dit2", "motion_controller", "vace2", "animate_adapter", "vap") |
|
|
self.unit_runner = PipelineUnitRunner() |
|
|
self.units = [ |
|
|
WanVideoUnit_ShapeChecker(), |
|
|
WanVideoUnit_NoiseInitializer(), |
|
|
WanVideoUnit_PromptEmbedder(), |
|
|
WanVideoUnit_S2V(), |
|
|
WanVideoUnit_InputVideoEmbedder(), |
|
|
WanVideoUnit_ImageEmbedderVAE(), |
|
|
WanVideoUnit_ImageEmbedderCLIP(), |
|
|
WanVideoUnit_ImageEmbedderFused(), |
|
|
WanVideoUnit_FunControl(), |
|
|
WanVideoUnit_FunReference(), |
|
|
WanVideoUnit_FunCameraControl(), |
|
|
WanVideoUnit_SpeedControl(), |
|
|
WanVideoUnit_VACE(), |
|
|
WanVideoPostUnit_AnimateVideoSplit(), |
|
|
WanVideoPostUnit_AnimatePoseLatents(), |
|
|
WanVideoPostUnit_AnimateFacePixelValues(), |
|
|
WanVideoPostUnit_AnimateInpaint(), |
|
|
WanVideoUnit_VAP(), |
|
|
WanVideoUnit_UnifiedSequenceParallel(), |
|
|
WanVideoUnit_TeaCache(), |
|
|
WanVideoUnit_CfgMerger(), |
|
|
WanVideoUnit_LongCatVideo(), |
|
|
] |
|
|
self.post_units = [ |
|
|
WanVideoPostUnit_S2V(), |
|
|
] |
|
|
self.model_fn = model_fn_wan_video |
|
|
|
|
|
def load_lora( |
|
|
self, |
|
|
module: torch.nn.Module, |
|
|
lora_config: Union[ModelConfig, str] = None, |
|
|
alpha=1, |
|
|
hotload=False, |
|
|
state_dict=None, |
|
|
): |
|
|
if state_dict is None: |
|
|
if isinstance(lora_config, str): |
|
|
lora = load_state_dict(lora_config, torch_dtype=self.torch_dtype, device=self.device) |
|
|
else: |
|
|
lora_config.download_if_necessary() |
|
|
lora = load_state_dict(lora_config.path, torch_dtype=self.torch_dtype, device=self.device) |
|
|
else: |
|
|
lora = state_dict |
|
|
if hotload: |
|
|
for name, module in module.named_modules(): |
|
|
if isinstance(module, AutoWrappedLinear): |
|
|
lora_a_name = f'{name}.lora_A.default.weight' |
|
|
lora_b_name = f'{name}.lora_B.default.weight' |
|
|
if lora_a_name in lora and lora_b_name in lora: |
|
|
module.lora_A_weights.append(lora[lora_a_name] * alpha) |
|
|
module.lora_B_weights.append(lora[lora_b_name]) |
|
|
else: |
|
|
loader = GeneralLoRALoader(torch_dtype=self.torch_dtype, device=self.device) |
|
|
loader.load(module, lora, alpha=alpha) |
|
|
|
|
|
def training_loss(self, **inputs): |
|
|
max_timestep_boundary = int(inputs.get("max_timestep_boundary", 1) * self.scheduler.num_train_timesteps) |
|
|
min_timestep_boundary = int(inputs.get("min_timestep_boundary", 0) * self.scheduler.num_train_timesteps) |
|
|
timestep_id = torch.randint(min_timestep_boundary, max_timestep_boundary, (1,)) |
|
|
timestep = self.scheduler.timesteps[timestep_id].to(dtype=self.torch_dtype, device=self.device) |
|
|
|
|
|
inputs["latents"] = self.scheduler.add_noise(inputs["input_latents"], inputs["noise"], timestep) |
|
|
training_target = self.scheduler.training_target(inputs["input_latents"], inputs["noise"], timestep) |
|
|
|
|
|
noise_pred = self.model_fn(**inputs, timestep=timestep) |
|
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float()) |
|
|
loss = loss * self.scheduler.training_weight(timestep) |
|
|
return loss |
|
|
|
|
|
|
|
|
def enable_vram_management(self, num_persistent_param_in_dit=None, vram_limit=None, vram_buffer=0.5): |
|
|
self.vram_management_enabled = True |
|
|
if num_persistent_param_in_dit is not None: |
|
|
vram_limit = None |
|
|
else: |
|
|
if vram_limit is None: |
|
|
vram_limit = self.get_vram() |
|
|
vram_limit = vram_limit - vram_buffer |
|
|
if self.text_encoder is not None: |
|
|
dtype = next(iter(self.text_encoder.parameters())).dtype |
|
|
enable_vram_management( |
|
|
self.text_encoder, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
torch.nn.Embedding: AutoWrappedModule, |
|
|
T5RelativeEmbedding: AutoWrappedModule, |
|
|
T5LayerNorm: AutoWrappedModule, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device="cpu", |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
vram_limit=vram_limit, |
|
|
) |
|
|
if self.dit is not None: |
|
|
from ..models.longcat_video_dit import LayerNorm_FP32, RMSNorm_FP32 |
|
|
dtype = next(iter(self.dit.parameters())).dtype |
|
|
device = "cpu" if vram_limit is not None else self.device |
|
|
enable_vram_management( |
|
|
self.dit, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
torch.nn.Conv3d: AutoWrappedModule, |
|
|
torch.nn.LayerNorm: WanAutoCastLayerNorm, |
|
|
RMSNorm: AutoWrappedModule, |
|
|
torch.nn.Conv2d: AutoWrappedModule, |
|
|
torch.nn.Conv1d: AutoWrappedModule, |
|
|
torch.nn.Embedding: AutoWrappedModule, |
|
|
LayerNorm_FP32: AutoWrappedModule, |
|
|
RMSNorm_FP32: AutoWrappedModule, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device=device, |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
max_num_param=num_persistent_param_in_dit, |
|
|
overflow_module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device="cpu", |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
vram_limit=vram_limit, |
|
|
) |
|
|
if self.dit2 is not None: |
|
|
dtype = next(iter(self.dit2.parameters())).dtype |
|
|
device = "cpu" if vram_limit is not None else self.device |
|
|
enable_vram_management( |
|
|
self.dit2, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
torch.nn.Conv3d: AutoWrappedModule, |
|
|
torch.nn.LayerNorm: WanAutoCastLayerNorm, |
|
|
RMSNorm: AutoWrappedModule, |
|
|
torch.nn.Conv2d: AutoWrappedModule, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device=device, |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
max_num_param=num_persistent_param_in_dit, |
|
|
overflow_module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device="cpu", |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
vram_limit=vram_limit, |
|
|
) |
|
|
if self.vae is not None: |
|
|
dtype = next(iter(self.vae.parameters())).dtype |
|
|
enable_vram_management( |
|
|
self.vae, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
torch.nn.Conv2d: AutoWrappedModule, |
|
|
RMS_norm: AutoWrappedModule, |
|
|
CausalConv3d: AutoWrappedModule, |
|
|
Upsample: AutoWrappedModule, |
|
|
torch.nn.SiLU: AutoWrappedModule, |
|
|
torch.nn.Dropout: AutoWrappedModule, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device=self.device, |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
) |
|
|
if self.image_encoder is not None: |
|
|
dtype = next(iter(self.image_encoder.parameters())).dtype |
|
|
enable_vram_management( |
|
|
self.image_encoder, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
torch.nn.Conv2d: AutoWrappedModule, |
|
|
torch.nn.LayerNorm: AutoWrappedModule, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device="cpu", |
|
|
computation_dtype=dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
) |
|
|
if self.motion_controller is not None: |
|
|
dtype = next(iter(self.motion_controller.parameters())).dtype |
|
|
enable_vram_management( |
|
|
self.motion_controller, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device="cpu", |
|
|
computation_dtype=dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
) |
|
|
if self.vace is not None: |
|
|
device = "cpu" if vram_limit is not None else self.device |
|
|
enable_vram_management( |
|
|
self.vace, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
torch.nn.Conv3d: AutoWrappedModule, |
|
|
torch.nn.LayerNorm: AutoWrappedModule, |
|
|
RMSNorm: AutoWrappedModule, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device=device, |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
vram_limit=vram_limit, |
|
|
) |
|
|
if self.audio_encoder is not None: |
|
|
|
|
|
dtype = next(iter(self.audio_encoder.parameters())).dtype |
|
|
enable_vram_management( |
|
|
self.audio_encoder, |
|
|
module_map = { |
|
|
torch.nn.Linear: AutoWrappedLinear, |
|
|
torch.nn.LayerNorm: AutoWrappedModule, |
|
|
torch.nn.Conv1d: AutoWrappedModule, |
|
|
}, |
|
|
module_config = dict( |
|
|
offload_dtype=dtype, |
|
|
offload_device="cpu", |
|
|
onload_dtype=dtype, |
|
|
onload_device="cpu", |
|
|
computation_dtype=self.torch_dtype, |
|
|
computation_device=self.device, |
|
|
), |
|
|
) |
|
|
|
|
|
|
|
|
def initialize_usp(self): |
|
|
import torch.distributed as dist |
|
|
from xfuser.core.distributed import initialize_model_parallel, init_distributed_environment |
|
|
dist.init_process_group(backend="nccl", init_method="env://") |
|
|
init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size()) |
|
|
initialize_model_parallel( |
|
|
sequence_parallel_degree=dist.get_world_size(), |
|
|
ring_degree=1, |
|
|
ulysses_degree=dist.get_world_size(), |
|
|
) |
|
|
torch.cuda.set_device(dist.get_rank()) |
|
|
|
|
|
|
|
|
def enable_usp(self): |
|
|
from xfuser.core.distributed import get_sequence_parallel_world_size |
|
|
from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward |
|
|
|
|
|
for block in self.dit.blocks: |
|
|
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn) |
|
|
self.dit.forward = types.MethodType(usp_dit_forward, self.dit) |
|
|
if self.dit2 is not None: |
|
|
for block in self.dit2.blocks: |
|
|
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn) |
|
|
self.dit2.forward = types.MethodType(usp_dit_forward, self.dit2) |
|
|
self.sp_size = get_sequence_parallel_world_size() |
|
|
self.use_unified_sequence_parallel = True |
|
|
|
|
|
|
|
|
@staticmethod |
|
|
def from_pretrained( |
|
|
torch_dtype: torch.dtype = torch.bfloat16, |
|
|
device: Union[str, torch.device] = "cuda", |
|
|
model_configs: list[ModelConfig] = [], |
|
|
tokenizer_config: ModelConfig = ModelConfig(model_id="Wan-AI/Wan2.1-T2V-1.3B", origin_file_pattern="google/*"), |
|
|
audio_processor_config: ModelConfig = None, |
|
|
redirect_common_files: bool = True, |
|
|
use_usp=False, |
|
|
): |
|
|
|
|
|
if redirect_common_files: |
|
|
redirect_dict = { |
|
|
"models_t5_umt5-xxl-enc-bf16.pth": "Wan-AI/Wan2.1-T2V-1.3B", |
|
|
"Wan2.1_VAE.pth": "Wan-AI/Wan2.1-T2V-1.3B", |
|
|
"models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth": "Wan-AI/Wan2.1-I2V-14B-480P", |
|
|
} |
|
|
for model_config in model_configs: |
|
|
if model_config.origin_file_pattern is None or model_config.model_id is None: |
|
|
continue |
|
|
if model_config.origin_file_pattern in redirect_dict and model_config.model_id != redirect_dict[model_config.origin_file_pattern]: |
|
|
print(f"To avoid repeatedly downloading model files, ({model_config.model_id}, {model_config.origin_file_pattern}) is redirected to ({redirect_dict[model_config.origin_file_pattern]}, {model_config.origin_file_pattern}). You can use `redirect_common_files=False` to disable file redirection.") |
|
|
model_config.model_id = redirect_dict[model_config.origin_file_pattern] |
|
|
|
|
|
|
|
|
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype) |
|
|
if use_usp: pipe.initialize_usp() |
|
|
|
|
|
|
|
|
model_manager = ModelManager() |
|
|
for model_config in model_configs: |
|
|
model_config.download_if_necessary(use_usp=use_usp) |
|
|
model_manager.load_model( |
|
|
model_config.path, |
|
|
device=model_config.offload_device or device, |
|
|
torch_dtype=model_config.offload_dtype or torch_dtype |
|
|
) |
|
|
|
|
|
|
|
|
pipe.text_encoder = model_manager.fetch_model("wan_video_text_encoder") |
|
|
dit = model_manager.fetch_model("wan_video_dit", index=2) |
|
|
if isinstance(dit, list): |
|
|
pipe.dit, pipe.dit2 = dit |
|
|
else: |
|
|
pipe.dit = dit |
|
|
pipe.vae = model_manager.fetch_model("wan_video_vae") |
|
|
pipe.image_encoder = model_manager.fetch_model("wan_video_image_encoder") |
|
|
pipe.motion_controller = model_manager.fetch_model("wan_video_motion_controller") |
|
|
vace = model_manager.fetch_model("wan_video_vace", index=2) |
|
|
pipe.vap = model_manager.fetch_model("wan_video_vap") |
|
|
if isinstance(vace, list): |
|
|
pipe.vace, pipe.vace2 = vace |
|
|
else: |
|
|
pipe.vace = vace |
|
|
pipe.audio_encoder = model_manager.fetch_model("wans2v_audio_encoder") |
|
|
pipe.animate_adapter = model_manager.fetch_model("wan_video_animate_adapter") |
|
|
|
|
|
|
|
|
if pipe.vae is not None: |
|
|
pipe.height_division_factor = pipe.vae.upsampling_factor * 2 |
|
|
pipe.width_division_factor = pipe.vae.upsampling_factor * 2 |
|
|
|
|
|
|
|
|
tokenizer_config.download_if_necessary(use_usp=use_usp) |
|
|
pipe.prompter.fetch_models(pipe.text_encoder) |
|
|
pipe.prompter.fetch_tokenizer(tokenizer_config.path) |
|
|
|
|
|
if audio_processor_config is not None: |
|
|
audio_processor_config.download_if_necessary(use_usp=use_usp) |
|
|
from transformers import Wav2Vec2Processor |
|
|
pipe.audio_processor = Wav2Vec2Processor.from_pretrained(audio_processor_config.path) |
|
|
|
|
|
if use_usp: pipe.enable_usp() |
|
|
return pipe |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
|
|
|
prompt: str, |
|
|
negative_prompt: Optional[str] = "", |
|
|
|
|
|
input_image: Optional[Image.Image] = None, |
|
|
|
|
|
end_image: Optional[Image.Image] = None, |
|
|
|
|
|
input_video: Optional[list[Image.Image]] = None, |
|
|
denoising_strength: Optional[float] = 1.0, |
|
|
|
|
|
input_audio: Optional[np.array] = None, |
|
|
audio_embeds: Optional[torch.Tensor] = None, |
|
|
audio_sample_rate: Optional[int] = 16000, |
|
|
s2v_pose_video: Optional[list[Image.Image]] = None, |
|
|
s2v_pose_latents: Optional[torch.Tensor] = None, |
|
|
motion_video: Optional[list[Image.Image]] = None, |
|
|
|
|
|
control_video: Optional[list[Image.Image]] = None, |
|
|
reference_image: Optional[Image.Image] = None, |
|
|
|
|
|
camera_control_direction: Optional[Literal["Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"]] = None, |
|
|
camera_control_speed: Optional[float] = 1/54, |
|
|
camera_control_origin: Optional[tuple] = (0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), |
|
|
|
|
|
vace_video: Optional[list[Image.Image]] = None, |
|
|
vace_video_mask: Optional[Image.Image] = None, |
|
|
vace_reference_image: Optional[Image.Image] = None, |
|
|
vace_scale: Optional[float] = 1.0, |
|
|
|
|
|
animate_pose_video: Optional[list[Image.Image]] = None, |
|
|
animate_face_video: Optional[list[Image.Image]] = None, |
|
|
animate_inpaint_video: Optional[list[Image.Image]] = None, |
|
|
animate_mask_video: Optional[list[Image.Image]] = None, |
|
|
|
|
|
vap_video: Optional[list[Image.Image]] = None, |
|
|
vap_prompt: Optional[str] = " ", |
|
|
negative_vap_prompt: Optional[str] = " ", |
|
|
|
|
|
seed: Optional[int] = None, |
|
|
rand_device: Optional[str] = "cpu", |
|
|
|
|
|
height: Optional[int] = 480, |
|
|
width: Optional[int] = 832, |
|
|
num_frames=81, |
|
|
|
|
|
cfg_scale: Optional[float] = 5.0, |
|
|
cfg_merge: Optional[bool] = False, |
|
|
|
|
|
switch_DiT_boundary: Optional[float] = 0.875, |
|
|
|
|
|
num_inference_steps: Optional[int] = 50, |
|
|
sigma_shift: Optional[float] = 5.0, |
|
|
|
|
|
motion_bucket_id: Optional[int] = None, |
|
|
|
|
|
longcat_video: Optional[list[Image.Image]] = None, |
|
|
|
|
|
tiled: Optional[bool] = True, |
|
|
tile_size: Optional[tuple[int, int]] = (30, 52), |
|
|
tile_stride: Optional[tuple[int, int]] = (15, 26), |
|
|
|
|
|
sliding_window_size: Optional[int] = None, |
|
|
sliding_window_stride: Optional[int] = None, |
|
|
|
|
|
tea_cache_l1_thresh: Optional[float] = None, |
|
|
tea_cache_model_id: Optional[str] = "", |
|
|
|
|
|
progress_bar_cmd=tqdm, |
|
|
): |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift) |
|
|
|
|
|
|
|
|
inputs_posi = { |
|
|
"prompt": prompt, |
|
|
"vap_prompt": vap_prompt, |
|
|
"tea_cache_l1_thresh": tea_cache_l1_thresh, "tea_cache_model_id": tea_cache_model_id, "num_inference_steps": num_inference_steps, |
|
|
} |
|
|
inputs_nega = { |
|
|
"negative_prompt": negative_prompt, |
|
|
"negative_vap_prompt": negative_vap_prompt, |
|
|
"tea_cache_l1_thresh": tea_cache_l1_thresh, "tea_cache_model_id": tea_cache_model_id, "num_inference_steps": num_inference_steps, |
|
|
} |
|
|
inputs_shared = { |
|
|
"input_image": input_image, |
|
|
"end_image": end_image, |
|
|
"input_video": input_video, "denoising_strength": denoising_strength, |
|
|
"control_video": control_video, "reference_image": reference_image, |
|
|
"camera_control_direction": camera_control_direction, "camera_control_speed": camera_control_speed, "camera_control_origin": camera_control_origin, |
|
|
"vace_video": vace_video, "vace_video_mask": vace_video_mask, "vace_reference_image": vace_reference_image, "vace_scale": vace_scale, |
|
|
"seed": seed, "rand_device": rand_device, |
|
|
"height": height, "width": width, "num_frames": num_frames, |
|
|
"cfg_scale": cfg_scale, "cfg_merge": cfg_merge, |
|
|
"sigma_shift": sigma_shift, |
|
|
"motion_bucket_id": motion_bucket_id, |
|
|
"longcat_video": longcat_video, |
|
|
"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride, |
|
|
"sliding_window_size": sliding_window_size, "sliding_window_stride": sliding_window_stride, |
|
|
"input_audio": input_audio, "audio_sample_rate": audio_sample_rate, "s2v_pose_video": s2v_pose_video, "audio_embeds": audio_embeds, "s2v_pose_latents": s2v_pose_latents, "motion_video": motion_video, |
|
|
"animate_pose_video": animate_pose_video, "animate_face_video": animate_face_video, "animate_inpaint_video": animate_inpaint_video, "animate_mask_video": animate_mask_video, |
|
|
"vap_video": vap_video, |
|
|
} |
|
|
for unit in self.units: |
|
|
inputs_shared, inputs_posi, inputs_nega = self.unit_runner(unit, self, inputs_shared, inputs_posi, inputs_nega) |
|
|
|
|
|
|
|
|
self.load_models_to_device(self.in_iteration_models) |
|
|
models = {name: getattr(self, name) for name in self.in_iteration_models} |
|
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
|
|
|
|
if timestep.item() < switch_DiT_boundary * self.scheduler.num_train_timesteps and self.dit2 is not None and not models["dit"] is self.dit2: |
|
|
self.load_models_to_device(self.in_iteration_models_2) |
|
|
models["dit"] = self.dit2 |
|
|
models["vace"] = self.vace2 |
|
|
|
|
|
|
|
|
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) |
|
|
|
|
|
|
|
|
noise_pred_posi = self.model_fn(**models, **inputs_shared, **inputs_posi, timestep=timestep) |
|
|
if cfg_scale != 1.0: |
|
|
if cfg_merge: |
|
|
noise_pred_posi, noise_pred_nega = noise_pred_posi.chunk(2, dim=0) |
|
|
else: |
|
|
noise_pred_nega = self.model_fn(**models, **inputs_shared, **inputs_nega, timestep=timestep) |
|
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
|
else: |
|
|
noise_pred = noise_pred_posi |
|
|
|
|
|
|
|
|
inputs_shared["latents"] = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], inputs_shared["latents"]) |
|
|
if "first_frame_latents" in inputs_shared: |
|
|
inputs_shared["latents"][:, :, 0:1] = inputs_shared["first_frame_latents"] |
|
|
|
|
|
|
|
|
if vace_reference_image is not None or (animate_pose_video is not None and animate_face_video is not None): |
|
|
if vace_reference_image is not None and isinstance(vace_reference_image, list): |
|
|
f = len(vace_reference_image) |
|
|
else: |
|
|
f = 1 |
|
|
inputs_shared["latents"] = inputs_shared["latents"][:, :, f:] |
|
|
|
|
|
for unit in self.post_units: |
|
|
inputs_shared, _, _ = self.unit_runner(unit, self, inputs_shared, inputs_posi, inputs_nega) |
|
|
|
|
|
self.load_models_to_device(['vae']) |
|
|
video = self.vae.decode(inputs_shared["latents"], device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
video = self.vae_output_to_video(video) |
|
|
self.load_models_to_device([]) |
|
|
|
|
|
return video |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_ShapeChecker(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(input_params=("height", "width", "num_frames")) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, height, width, num_frames): |
|
|
height, width, num_frames = pipe.check_resize_height_width(height, width, num_frames) |
|
|
return {"height": height, "width": width, "num_frames": num_frames} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_NoiseInitializer(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(input_params=("height", "width", "num_frames", "seed", "rand_device", "vace_reference_image")) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, height, width, num_frames, seed, rand_device, vace_reference_image): |
|
|
length = (num_frames - 1) // 4 + 1 |
|
|
if vace_reference_image is not None: |
|
|
f = len(vace_reference_image) if isinstance(vace_reference_image, list) else 1 |
|
|
length += f |
|
|
shape = (1, pipe.vae.model.z_dim, length, height // pipe.vae.upsampling_factor, width // pipe.vae.upsampling_factor) |
|
|
noise = pipe.generate_noise(shape, seed=seed, rand_device=rand_device) |
|
|
if vace_reference_image is not None: |
|
|
noise = torch.concat((noise[:, :, -f:], noise[:, :, :-f]), dim=2) |
|
|
return {"noise": noise} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_InputVideoEmbedder(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("input_video", "noise", "tiled", "tile_size", "tile_stride", "vace_reference_image"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, input_video, noise, tiled, tile_size, tile_stride, vace_reference_image): |
|
|
if input_video is None: |
|
|
return {"latents": noise} |
|
|
pipe.load_models_to_device(["vae"]) |
|
|
input_video = pipe.preprocess_video(input_video) |
|
|
input_latents = pipe.vae.encode(input_video, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
if vace_reference_image is not None: |
|
|
if not isinstance(vace_reference_image, list): |
|
|
vace_reference_image = [vace_reference_image] |
|
|
vace_reference_image = pipe.preprocess_video(vace_reference_image) |
|
|
vace_reference_latents = pipe.vae.encode(vace_reference_image, device=pipe.device).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
input_latents = torch.concat([vace_reference_latents, input_latents], dim=2) |
|
|
if pipe.scheduler.training: |
|
|
return {"latents": noise, "input_latents": input_latents} |
|
|
else: |
|
|
latents = pipe.scheduler.add_noise(input_latents, noise, timestep=pipe.scheduler.timesteps[0]) |
|
|
return {"latents": latents} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_PromptEmbedder(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
seperate_cfg=True, |
|
|
input_params_posi={"prompt": "prompt", "positive": "positive"}, |
|
|
input_params_nega={"prompt": "negative_prompt", "positive": "positive"}, |
|
|
onload_model_names=("text_encoder",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, prompt, positive) -> dict: |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
prompt_emb = pipe.prompter.encode_prompt(prompt, positive=positive, device=pipe.device) |
|
|
return {"context": prompt_emb} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_ImageEmbedder(PipelineUnit): |
|
|
""" |
|
|
Deprecated |
|
|
""" |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("input_image", "end_image", "num_frames", "height", "width", "tiled", "tile_size", "tile_stride"), |
|
|
onload_model_names=("image_encoder", "vae") |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, input_image, end_image, num_frames, height, width, tiled, tile_size, tile_stride): |
|
|
if input_image is None or pipe.image_encoder is None: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
image = pipe.preprocess_image(input_image.resize((width, height))).to(pipe.device) |
|
|
clip_context = pipe.image_encoder.encode_image([image]) |
|
|
msk = torch.ones(1, num_frames, height//8, width//8, device=pipe.device) |
|
|
msk[:, 1:] = 0 |
|
|
if end_image is not None: |
|
|
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(pipe.device) |
|
|
vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1) |
|
|
if pipe.dit.has_image_pos_emb: |
|
|
clip_context = torch.concat([clip_context, pipe.image_encoder.encode_image([end_image])], dim=1) |
|
|
msk[:, -1:] = 1 |
|
|
else: |
|
|
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1) |
|
|
|
|
|
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) |
|
|
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) |
|
|
msk = msk.transpose(1, 2)[0] |
|
|
|
|
|
y = pipe.vae.encode([vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
y = torch.concat([msk, y]) |
|
|
y = y.unsqueeze(0) |
|
|
clip_context = clip_context.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
return {"clip_feature": clip_context, "y": y} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_ImageEmbedderCLIP(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("input_image", "end_image", "height", "width"), |
|
|
onload_model_names=("image_encoder",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, input_image, end_image, height, width): |
|
|
if input_image is None or pipe.image_encoder is None or not pipe.dit.require_clip_embedding: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
image = pipe.preprocess_image(input_image.resize((width, height))).to(pipe.device) |
|
|
clip_context = pipe.image_encoder.encode_image([image]) |
|
|
if end_image is not None: |
|
|
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(pipe.device) |
|
|
if pipe.dit.has_image_pos_emb: |
|
|
clip_context = torch.concat([clip_context, pipe.image_encoder.encode_image([end_image])], dim=1) |
|
|
clip_context = clip_context.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
return {"clip_feature": clip_context} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_ImageEmbedderVAE(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("input_image", "end_image", "num_frames", "height", "width", "tiled", "tile_size", "tile_stride"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, input_image, end_image, num_frames, height, width, tiled, tile_size, tile_stride): |
|
|
if input_image is None or not pipe.dit.require_vae_embedding: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
image = pipe.preprocess_image(input_image.resize((width, height))).to(pipe.device) |
|
|
msk = torch.ones(1, num_frames, height//8, width//8, device=pipe.device) |
|
|
msk[:, 1:] = 0 |
|
|
if end_image is not None: |
|
|
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(pipe.device) |
|
|
vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1) |
|
|
msk[:, -1:] = 1 |
|
|
else: |
|
|
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1) |
|
|
|
|
|
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) |
|
|
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) |
|
|
msk = msk.transpose(1, 2)[0] |
|
|
|
|
|
y = pipe.vae.encode([vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
y = torch.concat([msk, y]) |
|
|
y = y.unsqueeze(0) |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
return {"y": y} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_ImageEmbedderFused(PipelineUnit): |
|
|
""" |
|
|
Encode input image to latents using VAE. This unit is for Wan-AI/Wan2.2-TI2V-5B. |
|
|
""" |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("input_image", "latents", "height", "width", "tiled", "tile_size", "tile_stride"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, input_image, latents, height, width, tiled, tile_size, tile_stride): |
|
|
if input_image is None or not pipe.dit.fuse_vae_embedding_in_latents: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
image = pipe.preprocess_image(input_image.resize((width, height))).transpose(0, 1) |
|
|
z = pipe.vae.encode([image], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
latents[:, :, 0: 1] = z |
|
|
return {"latents": latents, "fuse_vae_embedding_in_latents": True, "first_frame_latents": z} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_FunControl(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("control_video", "num_frames", "height", "width", "tiled", "tile_size", "tile_stride", "clip_feature", "y", "latents"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, control_video, num_frames, height, width, tiled, tile_size, tile_stride, clip_feature, y, latents): |
|
|
if control_video is None: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
control_video = pipe.preprocess_video(control_video) |
|
|
control_latents = pipe.vae.encode(control_video, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
control_latents = control_latents.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
y_dim = pipe.dit.in_dim-control_latents.shape[1]-latents.shape[1] |
|
|
if clip_feature is None or y is None: |
|
|
clip_feature = torch.zeros((1, 257, 1280), dtype=pipe.torch_dtype, device=pipe.device) |
|
|
y = torch.zeros((1, y_dim, (num_frames - 1) // 4 + 1, height//8, width//8), dtype=pipe.torch_dtype, device=pipe.device) |
|
|
else: |
|
|
y = y[:, -y_dim:] |
|
|
y = torch.concat([control_latents, y], dim=1) |
|
|
return {"clip_feature": clip_feature, "y": y} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_FunReference(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("reference_image", "height", "width", "reference_image"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, reference_image, height, width): |
|
|
if reference_image is None: |
|
|
return {} |
|
|
pipe.load_models_to_device(["vae"]) |
|
|
reference_image = reference_image.resize((width, height)) |
|
|
reference_latents = pipe.preprocess_video([reference_image]) |
|
|
reference_latents = pipe.vae.encode(reference_latents, device=pipe.device) |
|
|
if pipe.image_encoder is None: |
|
|
return {"reference_latents": reference_latents} |
|
|
clip_feature = pipe.preprocess_image(reference_image) |
|
|
clip_feature = pipe.image_encoder.encode_image([clip_feature]) |
|
|
return {"reference_latents": reference_latents, "clip_feature": clip_feature} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_FunCameraControl(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("height", "width", "num_frames", "camera_control_direction", "camera_control_speed", "camera_control_origin", "latents", "input_image", "tiled", "tile_size", "tile_stride"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, height, width, num_frames, camera_control_direction, camera_control_speed, camera_control_origin, latents, input_image, tiled, tile_size, tile_stride): |
|
|
if camera_control_direction is None: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
camera_control_plucker_embedding = pipe.dit.control_adapter.process_camera_coordinates( |
|
|
camera_control_direction, num_frames, height, width, camera_control_speed, camera_control_origin) |
|
|
|
|
|
control_camera_video = camera_control_plucker_embedding[:num_frames].permute([3, 0, 1, 2]).unsqueeze(0) |
|
|
control_camera_latents = torch.concat( |
|
|
[ |
|
|
torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2), |
|
|
control_camera_video[:, :, 1:] |
|
|
], dim=2 |
|
|
).transpose(1, 2) |
|
|
b, f, c, h, w = control_camera_latents.shape |
|
|
control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3) |
|
|
control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2) |
|
|
control_camera_latents_input = control_camera_latents.to(device=pipe.device, dtype=pipe.torch_dtype) |
|
|
|
|
|
input_image = input_image.resize((width, height)) |
|
|
input_latents = pipe.preprocess_video([input_image]) |
|
|
input_latents = pipe.vae.encode(input_latents, device=pipe.device) |
|
|
y = torch.zeros_like(latents).to(pipe.device) |
|
|
y[:, :, :1] = input_latents |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
|
|
|
if y.shape[1] != pipe.dit.in_dim - latents.shape[1]: |
|
|
image = pipe.preprocess_image(input_image.resize((width, height))).to(pipe.device) |
|
|
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1) |
|
|
y = pipe.vae.encode([vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
msk = torch.ones(1, num_frames, height//8, width//8, device=pipe.device) |
|
|
msk[:, 1:] = 0 |
|
|
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) |
|
|
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) |
|
|
msk = msk.transpose(1, 2)[0] |
|
|
y = torch.cat([msk,y]) |
|
|
y = y.unsqueeze(0) |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
return {"control_camera_latents_input": control_camera_latents_input, "y": y} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_SpeedControl(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(input_params=("motion_bucket_id",)) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, motion_bucket_id): |
|
|
if motion_bucket_id is None: |
|
|
return {} |
|
|
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
return {"motion_bucket_id": motion_bucket_id} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_VACE(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("vace_video", "vace_video_mask", "vace_reference_image", "vace_scale", "height", "width", "num_frames", "tiled", "tile_size", "tile_stride"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process( |
|
|
self, |
|
|
pipe: WanVideoPipeline, |
|
|
vace_video, vace_video_mask, vace_reference_image, vace_scale, |
|
|
height, width, num_frames, |
|
|
tiled, tile_size, tile_stride |
|
|
): |
|
|
if vace_video is not None or vace_video_mask is not None or vace_reference_image is not None: |
|
|
pipe.load_models_to_device(["vae"]) |
|
|
if vace_video is None: |
|
|
vace_video = torch.zeros((1, 3, num_frames, height, width), dtype=pipe.torch_dtype, device=pipe.device) |
|
|
else: |
|
|
vace_video = pipe.preprocess_video(vace_video) |
|
|
|
|
|
if vace_video_mask is None: |
|
|
vace_video_mask = torch.ones_like(vace_video) |
|
|
else: |
|
|
vace_video_mask = pipe.preprocess_video(vace_video_mask, min_value=0, max_value=1) |
|
|
|
|
|
inactive = vace_video * (1 - vace_video_mask) + 0 * vace_video_mask |
|
|
reactive = vace_video * vace_video_mask + 0 * (1 - vace_video_mask) |
|
|
inactive = pipe.vae.encode(inactive, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
reactive = pipe.vae.encode(reactive, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
vace_video_latents = torch.concat((inactive, reactive), dim=1) |
|
|
|
|
|
vace_mask_latents = rearrange(vace_video_mask[0,0], "T (H P) (W Q) -> 1 (P Q) T H W", P=8, Q=8) |
|
|
vace_mask_latents = torch.nn.functional.interpolate(vace_mask_latents, size=((vace_mask_latents.shape[2] + 3) // 4, vace_mask_latents.shape[3], vace_mask_latents.shape[4]), mode='nearest-exact') |
|
|
|
|
|
if vace_reference_image is None: |
|
|
pass |
|
|
else: |
|
|
if not isinstance(vace_reference_image,list): |
|
|
vace_reference_image = [vace_reference_image] |
|
|
|
|
|
vace_reference_image = pipe.preprocess_video(vace_reference_image) |
|
|
|
|
|
bs, c, f, h, w = vace_reference_image.shape |
|
|
new_vace_ref_images = [] |
|
|
for j in range(f): |
|
|
new_vace_ref_images.append(vace_reference_image[0, :, j:j+1]) |
|
|
vace_reference_image = new_vace_ref_images |
|
|
|
|
|
vace_reference_latents = pipe.vae.encode(vace_reference_image, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
vace_reference_latents = torch.concat((vace_reference_latents, torch.zeros_like(vace_reference_latents)), dim=1) |
|
|
vace_reference_latents = [u.unsqueeze(0) for u in vace_reference_latents] |
|
|
|
|
|
vace_video_latents = torch.concat((*vace_reference_latents, vace_video_latents), dim=2) |
|
|
vace_mask_latents = torch.concat((torch.zeros_like(vace_mask_latents[:, :, :f]), vace_mask_latents), dim=2) |
|
|
|
|
|
vace_context = torch.concat((vace_video_latents, vace_mask_latents), dim=1) |
|
|
return {"vace_context": vace_context, "vace_scale": vace_scale} |
|
|
else: |
|
|
return {"vace_context": None, "vace_scale": vace_scale} |
|
|
|
|
|
class WanVideoUnit_VAP(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
take_over=True, |
|
|
onload_model_names=("text_encoder", "vae", "image_encoder") |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, inputs_shared, inputs_posi, inputs_nega): |
|
|
if inputs_shared.get("vap_video") is None: |
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
else: |
|
|
|
|
|
pipe.load_models_to_device(["text_encoder"]) |
|
|
vap_prompt, negative_vap_prompt = inputs_posi.get("vap_prompt", ""), inputs_nega.get("negative_vap_prompt", "") |
|
|
vap_prompt_emb = pipe.prompter.encode_prompt(vap_prompt, positive=inputs_posi.get('positive',None), device=pipe.device) |
|
|
negative_vap_prompt_emb = pipe.prompter.encode_prompt(negative_vap_prompt, positive=inputs_nega.get('positive',None), device=pipe.device) |
|
|
inputs_posi.update({"context_vap":vap_prompt_emb}) |
|
|
inputs_nega.update({"context_vap":negative_vap_prompt_emb}) |
|
|
|
|
|
pipe.load_models_to_device(["vae", "image_encoder"]) |
|
|
vap_video, end_image = inputs_shared.get("vap_video"), inputs_shared.get("end_image") |
|
|
|
|
|
num_frames, height, width, mot_num = inputs_shared.get("num_frames"),inputs_shared.get("height"), inputs_shared.get("width"), inputs_shared.get("mot_num",1) |
|
|
|
|
|
image_vap = pipe.preprocess_image(vap_video[0].resize((width, height))).to(pipe.device) |
|
|
|
|
|
vap_clip_context = pipe.image_encoder.encode_image([image_vap]) |
|
|
if end_image is not None: |
|
|
vap_end_image = pipe.preprocess_image(vap_video[-1].resize((width, height))).to(pipe.device) |
|
|
if pipe.dit.has_image_pos_emb: |
|
|
vap_clip_context = torch.concat([vap_clip_context, pipe.image_encoder.encode_image([vap_end_image])], dim=1) |
|
|
vap_clip_context = vap_clip_context.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
inputs_shared.update({"vap_clip_feature":vap_clip_context}) |
|
|
|
|
|
|
|
|
msk = torch.ones(1, num_frames, height//8, width//8, device=pipe.device) |
|
|
msk[:, 1:] = 0 |
|
|
if end_image is not None: |
|
|
msk[:, -1:] = 1 |
|
|
last_image_vap = pipe.preprocess_image(vap_video[-1].resize((width, height))).to(pipe.device) |
|
|
vae_input = torch.concat([image_vap.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image_vap.device), last_image_vap.transpose(0,1)],dim=1) |
|
|
else: |
|
|
vae_input = torch.concat([image_vap.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image_vap.device)], dim=1) |
|
|
|
|
|
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) |
|
|
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) |
|
|
msk = msk.transpose(1, 2)[0] |
|
|
|
|
|
tiled,tile_size,tile_stride = inputs_shared.get("tiled"), inputs_shared.get("tile_size"), inputs_shared.get("tile_stride") |
|
|
|
|
|
y = pipe.vae.encode([vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)], device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
y = torch.concat([msk, y]) |
|
|
y = y.unsqueeze(0) |
|
|
y = y.to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
|
|
|
vap_video = pipe.preprocess_video(vap_video) |
|
|
vap_latent = pipe.vae.encode(vap_video, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
|
|
|
vap_latent = torch.concat([vap_latent,y], dim=1).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
inputs_shared.update({"vap_hidden_state":vap_latent}) |
|
|
pipe.load_models_to_device([]) |
|
|
|
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_UnifiedSequenceParallel(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(input_params=()) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline): |
|
|
if hasattr(pipe, "use_unified_sequence_parallel"): |
|
|
if pipe.use_unified_sequence_parallel: |
|
|
return {"use_unified_sequence_parallel": True} |
|
|
return {} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_TeaCache(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
seperate_cfg=True, |
|
|
input_params_posi={"num_inference_steps": "num_inference_steps", "tea_cache_l1_thresh": "tea_cache_l1_thresh", "tea_cache_model_id": "tea_cache_model_id"}, |
|
|
input_params_nega={"num_inference_steps": "num_inference_steps", "tea_cache_l1_thresh": "tea_cache_l1_thresh", "tea_cache_model_id": "tea_cache_model_id"}, |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, num_inference_steps, tea_cache_l1_thresh, tea_cache_model_id): |
|
|
if tea_cache_l1_thresh is None: |
|
|
return {} |
|
|
return {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id)} |
|
|
|
|
|
|
|
|
|
|
|
class WanVideoUnit_CfgMerger(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(take_over=True) |
|
|
self.concat_tensor_names = ["context", "clip_feature", "y", "reference_latents"] |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, inputs_shared, inputs_posi, inputs_nega): |
|
|
if not inputs_shared["cfg_merge"]: |
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
for name in self.concat_tensor_names: |
|
|
tensor_posi = inputs_posi.get(name) |
|
|
tensor_nega = inputs_nega.get(name) |
|
|
tensor_shared = inputs_shared.get(name) |
|
|
if tensor_posi is not None and tensor_nega is not None: |
|
|
inputs_shared[name] = torch.concat((tensor_posi, tensor_nega), dim=0) |
|
|
elif tensor_shared is not None: |
|
|
inputs_shared[name] = torch.concat((tensor_shared, tensor_shared), dim=0) |
|
|
inputs_posi.clear() |
|
|
inputs_nega.clear() |
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
|
|
|
|
|
|
class WanVideoUnit_S2V(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
take_over=True, |
|
|
onload_model_names=("audio_encoder", "vae",) |
|
|
) |
|
|
|
|
|
def process_audio(self, pipe: WanVideoPipeline, input_audio, audio_sample_rate, num_frames, fps=16, audio_embeds=None, return_all=False): |
|
|
if audio_embeds is not None: |
|
|
return {"audio_embeds": audio_embeds} |
|
|
pipe.load_models_to_device(["audio_encoder"]) |
|
|
audio_embeds = pipe.audio_encoder.get_audio_feats_per_inference(input_audio, audio_sample_rate, pipe.audio_processor, fps=fps, batch_frames=num_frames-1, dtype=pipe.torch_dtype, device=pipe.device) |
|
|
if return_all: |
|
|
return audio_embeds |
|
|
else: |
|
|
return {"audio_embeds": audio_embeds[0]} |
|
|
|
|
|
def process_motion_latents(self, pipe: WanVideoPipeline, height, width, tiled, tile_size, tile_stride, motion_video=None): |
|
|
pipe.load_models_to_device(["vae"]) |
|
|
motion_frames = 73 |
|
|
kwargs = {} |
|
|
if motion_video is not None and len(motion_video) > 0: |
|
|
assert len(motion_video) == motion_frames, f"motion video must have {motion_frames} frames, but got {len(motion_video)}" |
|
|
motion_latents = pipe.preprocess_video(motion_video) |
|
|
kwargs["drop_motion_frames"] = False |
|
|
else: |
|
|
motion_latents = torch.zeros([1, 3, motion_frames, height, width], dtype=pipe.torch_dtype, device=pipe.device) |
|
|
kwargs["drop_motion_frames"] = True |
|
|
motion_latents = pipe.vae.encode(motion_latents, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
kwargs.update({"motion_latents": motion_latents}) |
|
|
return kwargs |
|
|
|
|
|
def process_pose_cond(self, pipe: WanVideoPipeline, s2v_pose_video, num_frames, height, width, tiled, tile_size, tile_stride, s2v_pose_latents=None, num_repeats=1, return_all=False): |
|
|
if s2v_pose_latents is not None: |
|
|
return {"s2v_pose_latents": s2v_pose_latents} |
|
|
if s2v_pose_video is None: |
|
|
return {"s2v_pose_latents": None} |
|
|
pipe.load_models_to_device(["vae"]) |
|
|
infer_frames = num_frames - 1 |
|
|
input_video = pipe.preprocess_video(s2v_pose_video)[:, :, :infer_frames * num_repeats] |
|
|
|
|
|
padding_frames = infer_frames * num_repeats - input_video.shape[2] |
|
|
input_video = torch.cat([input_video, -torch.ones(1, 3, padding_frames, height, width, device=input_video.device, dtype=input_video.dtype)], dim=2) |
|
|
input_videos = input_video.chunk(num_repeats, dim=2) |
|
|
pose_conds = [] |
|
|
for r in range(num_repeats): |
|
|
cond = input_videos[r] |
|
|
cond = torch.cat([cond[:, :, 0:1].repeat(1, 1, 1, 1, 1), cond], dim=2) |
|
|
cond_latents = pipe.vae.encode(cond, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
pose_conds.append(cond_latents[:,:,1:]) |
|
|
if return_all: |
|
|
return pose_conds |
|
|
else: |
|
|
return {"s2v_pose_latents": pose_conds[0]} |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, inputs_shared, inputs_posi, inputs_nega): |
|
|
if (inputs_shared.get("input_audio") is None and inputs_shared.get("audio_embeds") is None) or pipe.audio_encoder is None or pipe.audio_processor is None: |
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
num_frames, height, width, tiled, tile_size, tile_stride = inputs_shared.get("num_frames"), inputs_shared.get("height"), inputs_shared.get("width"), inputs_shared.get("tiled"), inputs_shared.get("tile_size"), inputs_shared.get("tile_stride") |
|
|
input_audio, audio_embeds, audio_sample_rate = inputs_shared.pop("input_audio", None), inputs_shared.pop("audio_embeds", None), inputs_shared.get("audio_sample_rate", 16000) |
|
|
s2v_pose_video, s2v_pose_latents, motion_video = inputs_shared.pop("s2v_pose_video", None), inputs_shared.pop("s2v_pose_latents", None), inputs_shared.pop("motion_video", None) |
|
|
|
|
|
audio_input_positive = self.process_audio(pipe, input_audio, audio_sample_rate, num_frames, audio_embeds=audio_embeds) |
|
|
inputs_posi.update(audio_input_positive) |
|
|
inputs_nega.update({"audio_embeds": 0.0 * audio_input_positive["audio_embeds"]}) |
|
|
|
|
|
inputs_shared.update(self.process_motion_latents(pipe, height, width, tiled, tile_size, tile_stride, motion_video)) |
|
|
inputs_shared.update(self.process_pose_cond(pipe, s2v_pose_video, num_frames, height, width, tiled, tile_size, tile_stride, s2v_pose_latents=s2v_pose_latents)) |
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
|
|
|
@staticmethod |
|
|
def pre_calculate_audio_pose(pipe: WanVideoPipeline, input_audio=None, audio_sample_rate=16000, s2v_pose_video=None, num_frames=81, height=448, width=832, fps=16, tiled=True, tile_size=(30, 52), tile_stride=(15, 26)): |
|
|
assert pipe.audio_encoder is not None and pipe.audio_processor is not None, "Please load audio encoder and audio processor first." |
|
|
shapes = WanVideoUnit_ShapeChecker().process(pipe, height, width, num_frames) |
|
|
height, width, num_frames = shapes["height"], shapes["width"], shapes["num_frames"] |
|
|
unit = WanVideoUnit_S2V() |
|
|
audio_embeds = unit.process_audio(pipe, input_audio, audio_sample_rate, num_frames, fps, return_all=True) |
|
|
pose_latents = unit.process_pose_cond(pipe, s2v_pose_video, num_frames, height, width, num_repeats=len(audio_embeds), return_all=True, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
pose_latents = None if s2v_pose_video is None else pose_latents |
|
|
return audio_embeds, pose_latents, len(audio_embeds) |
|
|
|
|
|
|
|
|
class WanVideoPostUnit_S2V(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(input_params=("latents", "motion_latents", "drop_motion_frames")) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, latents, motion_latents, drop_motion_frames): |
|
|
if pipe.audio_encoder is None or motion_latents is None or drop_motion_frames: |
|
|
return {} |
|
|
latents = torch.cat([motion_latents, latents[:,:,1:]], dim=2) |
|
|
return {"latents": latents} |
|
|
|
|
|
|
|
|
class WanVideoPostUnit_AnimateVideoSplit(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(input_params=("input_video", "animate_pose_video", "animate_face_video", "animate_inpaint_video", "animate_mask_video")) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, input_video, animate_pose_video, animate_face_video, animate_inpaint_video, animate_mask_video): |
|
|
if input_video is None: |
|
|
return {} |
|
|
if animate_pose_video is not None: |
|
|
animate_pose_video = animate_pose_video[:len(input_video) - 4] |
|
|
if animate_face_video is not None: |
|
|
animate_face_video = animate_face_video[:len(input_video) - 4] |
|
|
if animate_inpaint_video is not None: |
|
|
animate_inpaint_video = animate_inpaint_video[:len(input_video) - 4] |
|
|
if animate_mask_video is not None: |
|
|
animate_mask_video = animate_mask_video[:len(input_video) - 4] |
|
|
return {"animate_pose_video": animate_pose_video, "animate_face_video": animate_face_video, "animate_inpaint_video": animate_inpaint_video, "animate_mask_video": animate_mask_video} |
|
|
|
|
|
|
|
|
class WanVideoPostUnit_AnimatePoseLatents(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("animate_pose_video", "tiled", "tile_size", "tile_stride"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, animate_pose_video, tiled, tile_size, tile_stride): |
|
|
if animate_pose_video is None: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
animate_pose_video = pipe.preprocess_video(animate_pose_video) |
|
|
pose_latents = pipe.vae.encode(animate_pose_video, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
return {"pose_latents": pose_latents} |
|
|
|
|
|
|
|
|
class WanVideoPostUnit_AnimateFacePixelValues(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__(take_over=True) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, inputs_shared, inputs_posi, inputs_nega): |
|
|
if inputs_shared.get("animate_face_video", None) is None: |
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
inputs_posi["face_pixel_values"] = pipe.preprocess_video(inputs_shared["animate_face_video"]) |
|
|
inputs_nega["face_pixel_values"] = torch.zeros_like(inputs_posi["face_pixel_values"]) - 1 |
|
|
return inputs_shared, inputs_posi, inputs_nega |
|
|
|
|
|
|
|
|
class WanVideoPostUnit_AnimateInpaint(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("animate_inpaint_video", "animate_mask_video", "input_image", "tiled", "tile_size", "tile_stride"), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def get_i2v_mask(self, lat_t, lat_h, lat_w, mask_len=1, mask_pixel_values=None, device="cuda"): |
|
|
if mask_pixel_values is None: |
|
|
msk = torch.zeros(1, (lat_t-1) * 4 + 1, lat_h, lat_w, device=device) |
|
|
else: |
|
|
msk = mask_pixel_values.clone() |
|
|
msk[:, :mask_len] = 1 |
|
|
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) |
|
|
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) |
|
|
msk = msk.transpose(1, 2)[0] |
|
|
return msk |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, animate_inpaint_video, animate_mask_video, input_image, tiled, tile_size, tile_stride): |
|
|
if animate_inpaint_video is None or animate_mask_video is None: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
|
|
|
bg_pixel_values = pipe.preprocess_video(animate_inpaint_video) |
|
|
y_reft = pipe.vae.encode(bg_pixel_values, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0].to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
_, lat_t, lat_h, lat_w = y_reft.shape |
|
|
|
|
|
ref_pixel_values = pipe.preprocess_video([input_image]) |
|
|
ref_latents = pipe.vae.encode(ref_pixel_values, device=pipe.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
mask_ref = self.get_i2v_mask(1, lat_h, lat_w, 1, device=pipe.device) |
|
|
y_ref = torch.concat([mask_ref, ref_latents[0]]).to(dtype=torch.bfloat16, device=pipe.device) |
|
|
|
|
|
mask_pixel_values = 1 - pipe.preprocess_video(animate_mask_video, max_value=1, min_value=0) |
|
|
mask_pixel_values = rearrange(mask_pixel_values, "b c t h w -> (b t) c h w") |
|
|
mask_pixel_values = torch.nn.functional.interpolate(mask_pixel_values, size=(lat_h, lat_w), mode='nearest') |
|
|
mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b t c h w", b=1)[:,:,0] |
|
|
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, 0, mask_pixel_values=mask_pixel_values, device=pipe.device) |
|
|
|
|
|
y_reft = torch.concat([msk_reft, y_reft]).to(dtype=torch.bfloat16, device=pipe.device) |
|
|
y = torch.concat([y_ref, y_reft], dim=1).unsqueeze(0) |
|
|
return {"y": y} |
|
|
|
|
|
|
|
|
class WanVideoUnit_LongCatVideo(PipelineUnit): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
input_params=("longcat_video",), |
|
|
onload_model_names=("vae",) |
|
|
) |
|
|
|
|
|
def process(self, pipe: WanVideoPipeline, longcat_video): |
|
|
if longcat_video is None: |
|
|
return {} |
|
|
pipe.load_models_to_device(self.onload_model_names) |
|
|
longcat_video = pipe.preprocess_video(longcat_video) |
|
|
longcat_latents = pipe.vae.encode(longcat_video, device=pipe.device).to(dtype=pipe.torch_dtype, device=pipe.device) |
|
|
return {"longcat_latents": longcat_latents} |
|
|
|
|
|
|
|
|
class TeaCache: |
|
|
def __init__(self, num_inference_steps, rel_l1_thresh, model_id): |
|
|
self.num_inference_steps = num_inference_steps |
|
|
self.step = 0 |
|
|
self.accumulated_rel_l1_distance = 0 |
|
|
self.previous_modulated_input = None |
|
|
self.rel_l1_thresh = rel_l1_thresh |
|
|
self.previous_residual = None |
|
|
self.previous_hidden_states = None |
|
|
|
|
|
self.coefficients_dict = { |
|
|
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02], |
|
|
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01], |
|
|
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01], |
|
|
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02], |
|
|
} |
|
|
if model_id not in self.coefficients_dict: |
|
|
supported_model_ids = ", ".join([i for i in self.coefficients_dict]) |
|
|
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).") |
|
|
self.coefficients = self.coefficients_dict[model_id] |
|
|
|
|
|
def check(self, dit: WanModel, x, t_mod): |
|
|
modulated_inp = t_mod.clone() |
|
|
if self.step == 0 or self.step == self.num_inference_steps - 1: |
|
|
should_calc = True |
|
|
self.accumulated_rel_l1_distance = 0 |
|
|
else: |
|
|
coefficients = self.coefficients |
|
|
rescale_func = np.poly1d(coefficients) |
|
|
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) |
|
|
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: |
|
|
should_calc = False |
|
|
else: |
|
|
should_calc = True |
|
|
self.accumulated_rel_l1_distance = 0 |
|
|
self.previous_modulated_input = modulated_inp |
|
|
self.step += 1 |
|
|
if self.step == self.num_inference_steps: |
|
|
self.step = 0 |
|
|
if should_calc: |
|
|
self.previous_hidden_states = x.clone() |
|
|
return not should_calc |
|
|
|
|
|
def store(self, hidden_states): |
|
|
self.previous_residual = hidden_states - self.previous_hidden_states |
|
|
self.previous_hidden_states = None |
|
|
|
|
|
def update(self, hidden_states): |
|
|
hidden_states = hidden_states + self.previous_residual |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
class TemporalTiler_BCTHW: |
|
|
def __init__(self): |
|
|
pass |
|
|
|
|
|
def build_1d_mask(self, length, left_bound, right_bound, border_width): |
|
|
x = torch.ones((length,)) |
|
|
if border_width == 0: |
|
|
return x |
|
|
|
|
|
shift = 0.5 |
|
|
if not left_bound: |
|
|
x[:border_width] = (torch.arange(border_width) + shift) / border_width |
|
|
if not right_bound: |
|
|
x[-border_width:] = torch.flip((torch.arange(border_width) + shift) / border_width, dims=(0,)) |
|
|
return x |
|
|
|
|
|
def build_mask(self, data, is_bound, border_width): |
|
|
_, _, T, _, _ = data.shape |
|
|
t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0]) |
|
|
mask = repeat(t, "T -> 1 1 T 1 1") |
|
|
return mask |
|
|
|
|
|
def run(self, model_fn, sliding_window_size, sliding_window_stride, computation_device, computation_dtype, model_kwargs, tensor_names, batch_size=None): |
|
|
tensor_names = [tensor_name for tensor_name in tensor_names if model_kwargs.get(tensor_name) is not None] |
|
|
tensor_dict = {tensor_name: model_kwargs[tensor_name] for tensor_name in tensor_names} |
|
|
B, C, T, H, W = tensor_dict[tensor_names[0]].shape |
|
|
if batch_size is not None: |
|
|
B *= batch_size |
|
|
data_device, data_dtype = tensor_dict[tensor_names[0]].device, tensor_dict[tensor_names[0]].dtype |
|
|
value = torch.zeros((B, C, T, H, W), device=data_device, dtype=data_dtype) |
|
|
weight = torch.zeros((1, 1, T, 1, 1), device=data_device, dtype=data_dtype) |
|
|
for t in range(0, T, sliding_window_stride): |
|
|
if t - sliding_window_stride >= 0 and t - sliding_window_stride + sliding_window_size >= T: |
|
|
continue |
|
|
t_ = min(t + sliding_window_size, T) |
|
|
model_kwargs.update({ |
|
|
tensor_name: tensor_dict[tensor_name][:, :, t: t_:, :].to(device=computation_device, dtype=computation_dtype) \ |
|
|
for tensor_name in tensor_names |
|
|
}) |
|
|
model_output = model_fn(**model_kwargs).to(device=data_device, dtype=data_dtype) |
|
|
mask = self.build_mask( |
|
|
model_output, |
|
|
is_bound=(t == 0, t_ == T), |
|
|
border_width=(sliding_window_size - sliding_window_stride,) |
|
|
).to(device=data_device, dtype=data_dtype) |
|
|
value[:, :, t: t_, :, :] += model_output * mask |
|
|
weight[:, :, t: t_, :, :] += mask |
|
|
value /= weight |
|
|
model_kwargs.update(tensor_dict) |
|
|
return value |
|
|
|
|
|
|
|
|
|
|
|
def model_fn_wan_video( |
|
|
dit: WanModel, |
|
|
motion_controller: WanMotionControllerModel = None, |
|
|
vace: VaceWanModel = None, |
|
|
vap: MotWanModel = None, |
|
|
animate_adapter: WanAnimateAdapter = None, |
|
|
latents: torch.Tensor = None, |
|
|
timestep: torch.Tensor = None, |
|
|
context: torch.Tensor = None, |
|
|
clip_feature: Optional[torch.Tensor] = None, |
|
|
y: Optional[torch.Tensor] = None, |
|
|
reference_latents = None, |
|
|
vace_context = None, |
|
|
vace_scale = 1.0, |
|
|
audio_embeds: Optional[torch.Tensor] = None, |
|
|
motion_latents: Optional[torch.Tensor] = None, |
|
|
s2v_pose_latents: Optional[torch.Tensor] = None, |
|
|
vap_hidden_state = None, |
|
|
vap_clip_feature = None, |
|
|
context_vap = None, |
|
|
drop_motion_frames: bool = True, |
|
|
tea_cache: TeaCache = None, |
|
|
use_unified_sequence_parallel: bool = False, |
|
|
motion_bucket_id: Optional[torch.Tensor] = None, |
|
|
pose_latents=None, |
|
|
face_pixel_values=None, |
|
|
longcat_latents=None, |
|
|
sliding_window_size: Optional[int] = None, |
|
|
sliding_window_stride: Optional[int] = None, |
|
|
cfg_merge: bool = False, |
|
|
use_gradient_checkpointing: bool = False, |
|
|
use_gradient_checkpointing_offload: bool = False, |
|
|
control_camera_latents_input = None, |
|
|
fuse_vae_embedding_in_latents: bool = False, |
|
|
**kwargs, |
|
|
): |
|
|
if sliding_window_size is not None and sliding_window_stride is not None: |
|
|
model_kwargs = dict( |
|
|
dit=dit, |
|
|
motion_controller=motion_controller, |
|
|
vace=vace, |
|
|
latents=latents, |
|
|
timestep=timestep, |
|
|
context=context, |
|
|
clip_feature=clip_feature, |
|
|
y=y, |
|
|
reference_latents=reference_latents, |
|
|
vace_context=vace_context, |
|
|
vace_scale=vace_scale, |
|
|
tea_cache=tea_cache, |
|
|
use_unified_sequence_parallel=use_unified_sequence_parallel, |
|
|
motion_bucket_id=motion_bucket_id, |
|
|
) |
|
|
return TemporalTiler_BCTHW().run( |
|
|
model_fn_wan_video, |
|
|
sliding_window_size, sliding_window_stride, |
|
|
latents.device, latents.dtype, |
|
|
model_kwargs=model_kwargs, |
|
|
tensor_names=["latents", "y"], |
|
|
batch_size=2 if cfg_merge else 1 |
|
|
) |
|
|
|
|
|
if isinstance(dit, LongCatVideoTransformer3DModel): |
|
|
return model_fn_longcat_video( |
|
|
dit=dit, |
|
|
latents=latents, |
|
|
timestep=timestep, |
|
|
context=context, |
|
|
longcat_latents=longcat_latents, |
|
|
use_gradient_checkpointing=use_gradient_checkpointing, |
|
|
use_gradient_checkpointing_offload=use_gradient_checkpointing_offload, |
|
|
) |
|
|
|
|
|
|
|
|
if audio_embeds is not None: |
|
|
return model_fn_wans2v( |
|
|
dit=dit, |
|
|
latents=latents, |
|
|
timestep=timestep, |
|
|
context=context, |
|
|
audio_embeds=audio_embeds, |
|
|
motion_latents=motion_latents, |
|
|
s2v_pose_latents=s2v_pose_latents, |
|
|
drop_motion_frames=drop_motion_frames, |
|
|
use_gradient_checkpointing_offload=use_gradient_checkpointing_offload, |
|
|
use_gradient_checkpointing=use_gradient_checkpointing, |
|
|
use_unified_sequence_parallel=use_unified_sequence_parallel, |
|
|
) |
|
|
|
|
|
if use_unified_sequence_parallel: |
|
|
import torch.distributed as dist |
|
|
from xfuser.core.distributed import (get_sequence_parallel_rank, |
|
|
get_sequence_parallel_world_size, |
|
|
get_sp_group) |
|
|
|
|
|
|
|
|
if dit.seperated_timestep and fuse_vae_embedding_in_latents: |
|
|
timestep = torch.concat([ |
|
|
torch.zeros((1, latents.shape[3] * latents.shape[4] // 4), dtype=latents.dtype, device=latents.device), |
|
|
torch.ones((latents.shape[2] - 1, latents.shape[3] * latents.shape[4] // 4), dtype=latents.dtype, device=latents.device) * timestep |
|
|
]).flatten() |
|
|
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep).unsqueeze(0)) |
|
|
if use_unified_sequence_parallel and dist.is_initialized() and dist.get_world_size() > 1: |
|
|
t_chunks = torch.chunk(t, get_sequence_parallel_world_size(), dim=1) |
|
|
t_chunks = [torch.nn.functional.pad(chunk, (0, 0, 0, t_chunks[0].shape[1]-chunk.shape[1]), value=0) for chunk in t_chunks] |
|
|
t = t_chunks[get_sequence_parallel_rank()] |
|
|
t_mod = dit.time_projection(t).unflatten(2, (6, dit.dim)) |
|
|
else: |
|
|
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep)) |
|
|
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim)) |
|
|
|
|
|
|
|
|
if motion_bucket_id is not None and motion_controller is not None: |
|
|
t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim)) |
|
|
context = dit.text_embedding(context) |
|
|
|
|
|
x = latents |
|
|
|
|
|
if x.shape[0] != context.shape[0]: |
|
|
x = torch.concat([x] * context.shape[0], dim=0) |
|
|
if timestep.shape[0] != context.shape[0]: |
|
|
timestep = torch.concat([timestep] * context.shape[0], dim=0) |
|
|
|
|
|
|
|
|
if y is not None and dit.require_vae_embedding: |
|
|
x = torch.cat([x, y], dim=1) |
|
|
if clip_feature is not None and dit.require_clip_embedding: |
|
|
clip_embdding = dit.img_emb(clip_feature) |
|
|
context = torch.cat([clip_embdding, context], dim=1) |
|
|
|
|
|
|
|
|
x = dit.patchify(x, control_camera_latents_input) |
|
|
|
|
|
|
|
|
if pose_latents is not None and face_pixel_values is not None: |
|
|
x, motion_vec = animate_adapter.after_patch_embedding(x, pose_latents, face_pixel_values) |
|
|
|
|
|
|
|
|
f, h, w = x.shape[2:] |
|
|
x = rearrange(x, 'b c f h w -> b (f h w) c').contiguous() |
|
|
|
|
|
|
|
|
if reference_latents is not None: |
|
|
if len(reference_latents.shape) == 5: |
|
|
reference_latents = reference_latents[:, :, 0] |
|
|
reference_latents = dit.ref_conv(reference_latents).flatten(2).transpose(1, 2) |
|
|
x = torch.concat([reference_latents, x], dim=1) |
|
|
f += 1 |
|
|
|
|
|
freqs = torch.cat([ |
|
|
dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), |
|
|
dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), |
|
|
dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) |
|
|
], dim=-1).reshape(f * h * w, 1, -1).to(x.device) |
|
|
|
|
|
|
|
|
if vap is not None: |
|
|
|
|
|
x_vap = vap_hidden_state |
|
|
x_vap = vap.patchify(x_vap) |
|
|
x_vap = rearrange(x_vap, 'b c f h w -> b (f h w) c').contiguous() |
|
|
|
|
|
clean_timestep = torch.ones(timestep.shape, device=timestep.device).to(timestep.dtype) |
|
|
t = vap.time_embedding(sinusoidal_embedding_1d(vap.freq_dim, clean_timestep)) |
|
|
t_mod_vap = vap.time_projection(t).unflatten(1, (6, vap.dim)) |
|
|
|
|
|
|
|
|
freqs_vap = vap.compute_freqs_mot(f,h,w).to(x.device) |
|
|
|
|
|
|
|
|
vap_clip_embedding = vap.img_emb(vap_clip_feature) |
|
|
context_vap = vap.text_embedding(context_vap) |
|
|
context_vap = torch.cat([vap_clip_embedding, context_vap], dim=1) |
|
|
|
|
|
|
|
|
if tea_cache is not None: |
|
|
tea_cache_update = tea_cache.check(dit, x, t_mod) |
|
|
else: |
|
|
tea_cache_update = False |
|
|
|
|
|
if vace_context is not None: |
|
|
vace_hints = vace( |
|
|
x, vace_context, context, t_mod, freqs, |
|
|
use_gradient_checkpointing=use_gradient_checkpointing, |
|
|
use_gradient_checkpointing_offload=use_gradient_checkpointing_offload |
|
|
) |
|
|
|
|
|
|
|
|
if use_unified_sequence_parallel: |
|
|
if dist.is_initialized() and dist.get_world_size() > 1: |
|
|
chunks = torch.chunk(x, get_sequence_parallel_world_size(), dim=1) |
|
|
pad_shape = chunks[0].shape[1] - chunks[-1].shape[1] |
|
|
chunks = [torch.nn.functional.pad(chunk, (0, 0, 0, chunks[0].shape[1]-chunk.shape[1]), value=0) for chunk in chunks] |
|
|
x = chunks[get_sequence_parallel_rank()] |
|
|
if tea_cache_update: |
|
|
x = tea_cache.update(x) |
|
|
else: |
|
|
def create_custom_forward(module): |
|
|
def custom_forward(*inputs): |
|
|
return module(*inputs) |
|
|
return custom_forward |
|
|
|
|
|
def create_custom_forward_vap(block, vap): |
|
|
def custom_forward(*inputs): |
|
|
return vap(block, *inputs) |
|
|
return custom_forward |
|
|
|
|
|
for block_id, block in enumerate(dit.blocks): |
|
|
|
|
|
if vap is not None and block_id in vap.mot_layers_mapping: |
|
|
if use_gradient_checkpointing_offload: |
|
|
with torch.autograd.graph.save_on_cpu(): |
|
|
x, x_vap = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward_vap(block, vap), |
|
|
x, context, t_mod, freqs, x_vap, context_vap, t_mod_vap, freqs_vap, block_id, |
|
|
use_reentrant=False, |
|
|
) |
|
|
elif use_gradient_checkpointing: |
|
|
x, x_vap = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward_vap(block, vap), |
|
|
x, context, t_mod, freqs, x_vap, context_vap, t_mod_vap, freqs_vap, block_id, |
|
|
use_reentrant=False, |
|
|
) |
|
|
else: |
|
|
x, x_vap = vap(block, x, context, t_mod, freqs, x_vap, context_vap, t_mod_vap, freqs_vap, block_id) |
|
|
else: |
|
|
if use_gradient_checkpointing_offload: |
|
|
with torch.autograd.graph.save_on_cpu(): |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
x, context, t_mod, freqs, |
|
|
use_reentrant=False, |
|
|
) |
|
|
elif use_gradient_checkpointing: |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
x, context, t_mod, freqs, |
|
|
use_reentrant=False, |
|
|
) |
|
|
else: |
|
|
x = block(x, context, t_mod, freqs) |
|
|
|
|
|
|
|
|
if vace_context is not None and block_id in vace.vace_layers_mapping: |
|
|
current_vace_hint = vace_hints[vace.vace_layers_mapping[block_id]] |
|
|
if use_unified_sequence_parallel and dist.is_initialized() and dist.get_world_size() > 1: |
|
|
current_vace_hint = torch.chunk(current_vace_hint, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()] |
|
|
current_vace_hint = torch.nn.functional.pad(current_vace_hint, (0, 0, 0, chunks[0].shape[1] - current_vace_hint.shape[1]), value=0) |
|
|
x = x + current_vace_hint * vace_scale |
|
|
|
|
|
|
|
|
if pose_latents is not None and face_pixel_values is not None: |
|
|
x = animate_adapter.after_transformer_block(block_id, x, motion_vec) |
|
|
if tea_cache is not None: |
|
|
tea_cache.store(x) |
|
|
|
|
|
x = dit.head(x, t) |
|
|
if use_unified_sequence_parallel: |
|
|
if dist.is_initialized() and dist.get_world_size() > 1: |
|
|
x = get_sp_group().all_gather(x, dim=1) |
|
|
x = x[:, :-pad_shape] if pad_shape > 0 else x |
|
|
|
|
|
if reference_latents is not None: |
|
|
x = x[:, reference_latents.shape[1]:] |
|
|
f -= 1 |
|
|
x = dit.unpatchify(x, (f, h, w)) |
|
|
return x |
|
|
|
|
|
|
|
|
def model_fn_longcat_video( |
|
|
dit: LongCatVideoTransformer3DModel, |
|
|
latents: torch.Tensor = None, |
|
|
timestep: torch.Tensor = None, |
|
|
context: torch.Tensor = None, |
|
|
longcat_latents: torch.Tensor = None, |
|
|
use_gradient_checkpointing=False, |
|
|
use_gradient_checkpointing_offload=False, |
|
|
): |
|
|
if longcat_latents is not None: |
|
|
latents[:, :, :longcat_latents.shape[2]] = longcat_latents |
|
|
num_cond_latents = longcat_latents.shape[2] |
|
|
else: |
|
|
num_cond_latents = 0 |
|
|
context = context.unsqueeze(0) |
|
|
encoder_attention_mask = torch.any(context != 0, dim=-1)[:, 0].to(torch.int64) |
|
|
output = dit( |
|
|
latents, |
|
|
timestep, |
|
|
context, |
|
|
encoder_attention_mask, |
|
|
num_cond_latents=num_cond_latents, |
|
|
use_gradient_checkpointing=use_gradient_checkpointing, |
|
|
use_gradient_checkpointing_offload=use_gradient_checkpointing_offload, |
|
|
) |
|
|
output = -output |
|
|
output = output.to(latents.dtype) |
|
|
return output |
|
|
|
|
|
|
|
|
def model_fn_wans2v( |
|
|
dit, |
|
|
latents, |
|
|
timestep, |
|
|
context, |
|
|
audio_embeds, |
|
|
motion_latents, |
|
|
s2v_pose_latents, |
|
|
drop_motion_frames=True, |
|
|
use_gradient_checkpointing_offload=False, |
|
|
use_gradient_checkpointing=False, |
|
|
use_unified_sequence_parallel=False, |
|
|
): |
|
|
if use_unified_sequence_parallel: |
|
|
import torch.distributed as dist |
|
|
from xfuser.core.distributed import (get_sequence_parallel_rank, |
|
|
get_sequence_parallel_world_size, |
|
|
get_sp_group) |
|
|
origin_ref_latents = latents[:, :, 0:1] |
|
|
x = latents[:, :, 1:] |
|
|
|
|
|
|
|
|
context = dit.text_embedding(context) |
|
|
|
|
|
|
|
|
audio_emb_global, merged_audio_emb = dit.cal_audio_emb(audio_embeds) |
|
|
|
|
|
|
|
|
s2v_pose_latents = torch.zeros_like(x) if s2v_pose_latents is None else s2v_pose_latents |
|
|
x, (f, h, w) = dit.patchify(dit.patch_embedding(x) + dit.cond_encoder(s2v_pose_latents)) |
|
|
seq_len_x = seq_len_x_global = x.shape[1] |
|
|
|
|
|
|
|
|
ref_latents, (rf, rh, rw) = dit.patchify(dit.patch_embedding(origin_ref_latents)) |
|
|
grid_sizes = dit.get_grid_sizes((f, h, w), (rf, rh, rw)) |
|
|
x = torch.cat([x, ref_latents], dim=1) |
|
|
|
|
|
mask = torch.cat([torch.zeros([1, seq_len_x]), torch.ones([1, ref_latents.shape[1]])], dim=1).to(torch.long).to(x.device) |
|
|
|
|
|
pre_compute_freqs = rope_precompute(x.detach().view(1, x.size(1), dit.num_heads, dit.dim // dit.num_heads), grid_sizes, dit.freqs, start=None) |
|
|
|
|
|
x, pre_compute_freqs, mask = dit.inject_motion(x, pre_compute_freqs, mask, motion_latents, drop_motion_frames=drop_motion_frames, add_last_motion=2) |
|
|
|
|
|
x = x + dit.trainable_cond_mask(mask).to(x.dtype) |
|
|
|
|
|
|
|
|
timestep = torch.cat([timestep, torch.zeros([1], dtype=timestep.dtype, device=timestep.device)]) |
|
|
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep)) |
|
|
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim)).unsqueeze(2).transpose(0, 2) |
|
|
|
|
|
if use_unified_sequence_parallel and dist.is_initialized() and dist.get_world_size() > 1: |
|
|
world_size, sp_rank = get_sequence_parallel_world_size(), get_sequence_parallel_rank() |
|
|
assert x.shape[1] % world_size == 0, f"the dimension after chunk must be divisible by world size, but got {x.shape[1]} and {get_sequence_parallel_world_size()}" |
|
|
x = torch.chunk(x, world_size, dim=1)[sp_rank] |
|
|
seg_idxs = [0] + list(torch.cumsum(torch.tensor([x.shape[1]] * world_size), dim=0).cpu().numpy()) |
|
|
seq_len_x_list = [min(max(0, seq_len_x - seg_idxs[i]), x.shape[1]) for i in range(len(seg_idxs)-1)] |
|
|
seq_len_x = seq_len_x_list[sp_rank] |
|
|
|
|
|
def create_custom_forward(module): |
|
|
def custom_forward(*inputs): |
|
|
return module(*inputs) |
|
|
return custom_forward |
|
|
|
|
|
for block_id, block in enumerate(dit.blocks): |
|
|
if use_gradient_checkpointing_offload: |
|
|
with torch.autograd.graph.save_on_cpu(): |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
x, context, t_mod, seq_len_x, pre_compute_freqs[0], |
|
|
use_reentrant=False, |
|
|
) |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(lambda x: dit.after_transformer_block(block_id, x, audio_emb_global, merged_audio_emb, seq_len_x)), |
|
|
x, |
|
|
use_reentrant=False, |
|
|
) |
|
|
elif use_gradient_checkpointing: |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
x, context, t_mod, seq_len_x, pre_compute_freqs[0], |
|
|
use_reentrant=False, |
|
|
) |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(lambda x: dit.after_transformer_block(block_id, x, audio_emb_global, merged_audio_emb, seq_len_x)), |
|
|
x, |
|
|
use_reentrant=False, |
|
|
) |
|
|
else: |
|
|
x = block(x, context, t_mod, seq_len_x, pre_compute_freqs[0]) |
|
|
x = dit.after_transformer_block(block_id, x, audio_emb_global, merged_audio_emb, seq_len_x_global, use_unified_sequence_parallel) |
|
|
|
|
|
if use_unified_sequence_parallel and dist.is_initialized() and dist.get_world_size() > 1: |
|
|
x = get_sp_group().all_gather(x, dim=1) |
|
|
|
|
|
x = x[:, :seq_len_x_global] |
|
|
x = dit.head(x, t[:-1]) |
|
|
x = dit.unpatchify(x, (f, h, w)) |
|
|
|
|
|
x = torch.cat([origin_ref_latents, x], dim=2) |
|
|
return x |
|
|
|