jiaxi2002's picture
Upload folder using huggingface_hub
feb33a0 verified
import torch, math
from . import GeneralLoRALoader
from ..utils import ModelConfig
from ..models.utils import load_state_dict
from typing import Union
class FluxLoRALoader(GeneralLoRALoader):
def __init__(self, device="cpu", torch_dtype=torch.float32):
super().__init__(device=device, torch_dtype=torch_dtype)
self.diffusers_rename_dict = {
"transformer.single_transformer_blocks.blockid.attn.to_k.lora_A.weight":"single_blocks.blockid.a_to_k.lora_A.default.weight",
"transformer.single_transformer_blocks.blockid.attn.to_k.lora_B.weight":"single_blocks.blockid.a_to_k.lora_B.default.weight",
"transformer.single_transformer_blocks.blockid.attn.to_q.lora_A.weight":"single_blocks.blockid.a_to_q.lora_A.default.weight",
"transformer.single_transformer_blocks.blockid.attn.to_q.lora_B.weight":"single_blocks.blockid.a_to_q.lora_B.default.weight",
"transformer.single_transformer_blocks.blockid.attn.to_v.lora_A.weight":"single_blocks.blockid.a_to_v.lora_A.default.weight",
"transformer.single_transformer_blocks.blockid.attn.to_v.lora_B.weight":"single_blocks.blockid.a_to_v.lora_B.default.weight",
"transformer.single_transformer_blocks.blockid.norm.linear.lora_A.weight":"single_blocks.blockid.norm.linear.lora_A.default.weight",
"transformer.single_transformer_blocks.blockid.norm.linear.lora_B.weight":"single_blocks.blockid.norm.linear.lora_B.default.weight",
"transformer.single_transformer_blocks.blockid.proj_mlp.lora_A.weight":"single_blocks.blockid.proj_in_besides_attn.lora_A.default.weight",
"transformer.single_transformer_blocks.blockid.proj_mlp.lora_B.weight":"single_blocks.blockid.proj_in_besides_attn.lora_B.default.weight",
"transformer.single_transformer_blocks.blockid.proj_out.lora_A.weight":"single_blocks.blockid.proj_out.lora_A.default.weight",
"transformer.single_transformer_blocks.blockid.proj_out.lora_B.weight":"single_blocks.blockid.proj_out.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.add_k_proj.lora_A.weight":"blocks.blockid.attn.b_to_k.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.add_k_proj.lora_B.weight":"blocks.blockid.attn.b_to_k.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.add_q_proj.lora_A.weight":"blocks.blockid.attn.b_to_q.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.add_q_proj.lora_B.weight":"blocks.blockid.attn.b_to_q.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.add_v_proj.lora_A.weight":"blocks.blockid.attn.b_to_v.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.add_v_proj.lora_B.weight":"blocks.blockid.attn.b_to_v.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.to_add_out.lora_A.weight":"blocks.blockid.attn.b_to_out.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.to_add_out.lora_B.weight":"blocks.blockid.attn.b_to_out.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.to_k.lora_A.weight":"blocks.blockid.attn.a_to_k.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.to_k.lora_B.weight":"blocks.blockid.attn.a_to_k.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.to_out.0.lora_A.weight":"blocks.blockid.attn.a_to_out.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.to_out.0.lora_B.weight":"blocks.blockid.attn.a_to_out.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.to_q.lora_A.weight":"blocks.blockid.attn.a_to_q.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.to_q.lora_B.weight":"blocks.blockid.attn.a_to_q.lora_B.default.weight",
"transformer.transformer_blocks.blockid.attn.to_v.lora_A.weight":"blocks.blockid.attn.a_to_v.lora_A.default.weight",
"transformer.transformer_blocks.blockid.attn.to_v.lora_B.weight":"blocks.blockid.attn.a_to_v.lora_B.default.weight",
"transformer.transformer_blocks.blockid.ff.net.0.proj.lora_A.weight":"blocks.blockid.ff_a.0.lora_A.default.weight",
"transformer.transformer_blocks.blockid.ff.net.0.proj.lora_B.weight":"blocks.blockid.ff_a.0.lora_B.default.weight",
"transformer.transformer_blocks.blockid.ff.net.2.lora_A.weight":"blocks.blockid.ff_a.2.lora_A.default.weight",
"transformer.transformer_blocks.blockid.ff.net.2.lora_B.weight":"blocks.blockid.ff_a.2.lora_B.default.weight",
"transformer.transformer_blocks.blockid.ff_context.net.0.proj.lora_A.weight":"blocks.blockid.ff_b.0.lora_A.default.weight",
"transformer.transformer_blocks.blockid.ff_context.net.0.proj.lora_B.weight":"blocks.blockid.ff_b.0.lora_B.default.weight",
"transformer.transformer_blocks.blockid.ff_context.net.2.lora_A.weight":"blocks.blockid.ff_b.2.lora_A.default.weight",
"transformer.transformer_blocks.blockid.ff_context.net.2.lora_B.weight":"blocks.blockid.ff_b.2.lora_B.default.weight",
"transformer.transformer_blocks.blockid.norm1.linear.lora_A.weight":"blocks.blockid.norm1_a.linear.lora_A.default.weight",
"transformer.transformer_blocks.blockid.norm1.linear.lora_B.weight":"blocks.blockid.norm1_a.linear.lora_B.default.weight",
"transformer.transformer_blocks.blockid.norm1_context.linear.lora_A.weight":"blocks.blockid.norm1_b.linear.lora_A.default.weight",
"transformer.transformer_blocks.blockid.norm1_context.linear.lora_B.weight":"blocks.blockid.norm1_b.linear.lora_B.default.weight",
}
self.civitai_rename_dict = {
"lora_unet_double_blocks_blockid_img_mod_lin.lora_down.weight": "blocks.blockid.norm1_a.linear.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mod_lin.lora_up.weight": "blocks.blockid.norm1_a.linear.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_down.weight": "blocks.blockid.norm1_b.linear.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_up.weight": "blocks.blockid.norm1_b.linear.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_down.weight": "blocks.blockid.attn.a_to_qkv.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_up.weight": "blocks.blockid.attn.a_to_qkv.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_down.weight": "blocks.blockid.attn.b_to_qkv.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_up.weight": "blocks.blockid.attn.b_to_qkv.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_attn_proj.lora_down.weight": "blocks.blockid.attn.a_to_out.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_attn_proj.lora_up.weight": "blocks.blockid.attn.a_to_out.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_down.weight": "blocks.blockid.attn.b_to_out.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_up.weight": "blocks.blockid.attn.b_to_out.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_0.lora_down.weight": "blocks.blockid.ff_a.0.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_0.lora_up.weight": "blocks.blockid.ff_a.0.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_2.lora_down.weight": "blocks.blockid.ff_a.2.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_2.lora_up.weight": "blocks.blockid.ff_a.2.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_down.weight": "blocks.blockid.ff_b.0.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_up.weight": "blocks.blockid.ff_b.0.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_down.weight": "blocks.blockid.ff_b.2.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_up.weight": "blocks.blockid.ff_b.2.lora_B.default.weight",
"lora_unet_single_blocks_blockid_modulation_lin.lora_down.weight": "single_blocks.blockid.norm.linear.lora_A.default.weight",
"lora_unet_single_blocks_blockid_modulation_lin.lora_up.weight": "single_blocks.blockid.norm.linear.lora_B.default.weight",
"lora_unet_single_blocks_blockid_linear1.lora_down.weight": "single_blocks.blockid.to_qkv_mlp.lora_A.default.weight",
"lora_unet_single_blocks_blockid_linear1.lora_up.weight": "single_blocks.blockid.to_qkv_mlp.lora_B.default.weight",
"lora_unet_single_blocks_blockid_linear2.lora_down.weight": "single_blocks.blockid.proj_out.lora_A.default.weight",
"lora_unet_single_blocks_blockid_linear2.lora_up.weight": "single_blocks.blockid.proj_out.lora_B.default.weight",
}
def load(self, model: torch.nn.Module, state_dict_lora, alpha=1.0):
super().load(model, state_dict_lora, alpha)
def convert_state_dict(self,state_dict):
def guess_block_id(name,model_resource):
if model_resource == 'civitai':
names = name.split("_")
for i in names:
if i.isdigit():
return i, name.replace(f"_{i}_", "_blockid_")
if model_resource == 'diffusers':
names = name.split(".")
for i in names:
if i.isdigit():
return i, name.replace(f"transformer_blocks.{i}.", "transformer_blocks.blockid.")
return None, None
def guess_resource(state_dict):
for k in state_dict:
if "lora_unet_" in k:
return 'civitai'
elif k.startswith("transformer."):
return 'diffusers'
else:
None
model_resource = guess_resource(state_dict)
if model_resource is None:
return state_dict
rename_dict = self.diffusers_rename_dict if model_resource == 'diffusers' else self.civitai_rename_dict
def guess_alpha(state_dict):
for name, param in state_dict.items():
if ".alpha" in name:
for suffix in [".lora_down.weight", ".lora_A.weight"]:
name_ = name.replace(".alpha", suffix)
if name_ in state_dict:
lora_alpha = param.item() / state_dict[name_].shape[0]
lora_alpha = math.sqrt(lora_alpha)
return lora_alpha
return 1
alpha = guess_alpha(state_dict)
state_dict_ = {}
for name, param in state_dict.items():
block_id, source_name = guess_block_id(name,model_resource)
if alpha != 1:
param *= alpha
if source_name in rename_dict:
target_name = rename_dict[source_name]
target_name = target_name.replace(".blockid.", f".{block_id}.")
state_dict_[target_name] = param
else:
state_dict_[name] = param
if model_resource == 'diffusers':
for name in list(state_dict_.keys()):
if "single_blocks." in name and ".a_to_q." in name:
mlp = state_dict_.get(name.replace(".a_to_q.", ".proj_in_besides_attn."), None)
if mlp is None:
dim = 4
if 'lora_A' in name:
dim = 1
mlp = torch.zeros(dim * state_dict_[name].shape[0],
*state_dict_[name].shape[1:],
dtype=state_dict_[name].dtype)
else:
state_dict_.pop(name.replace(".a_to_q.", ".proj_in_besides_attn."))
if 'lora_A' in name:
param = torch.concat([
state_dict_.pop(name),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")),
mlp,
], dim=0)
elif 'lora_B' in name:
d, r = state_dict_[name].shape
param = torch.zeros((3*d+mlp.shape[0], 3*r+mlp.shape[1]), dtype=state_dict_[name].dtype, device=state_dict_[name].device)
param[:d, :r] = state_dict_.pop(name)
param[d:2*d, r:2*r] = state_dict_.pop(name.replace(".a_to_q.", ".a_to_k."))
param[2*d:3*d, 2*r:3*r] = state_dict_.pop(name.replace(".a_to_q.", ".a_to_v."))
param[3*d:, 3*r:] = mlp
else:
param = torch.concat([
state_dict_.pop(name),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")),
mlp,
], dim=0)
name_ = name.replace(".a_to_q.", ".to_qkv_mlp.")
state_dict_[name_] = param
for name in list(state_dict_.keys()):
for component in ["a", "b"]:
if f".{component}_to_q." in name:
name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.")
concat_dim = 0
if 'lora_A' in name:
param = torch.concat([
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")],
], dim=0)
elif 'lora_B' in name:
origin = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")]
d, r = origin.shape
# print(d, r)
param = torch.zeros((3*d, 3*r), dtype=origin.dtype, device=origin.device)
param[:d, :r] = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")]
param[d:2*d, r:2*r] = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")]
param[2*d:3*d, 2*r:3*r] = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")]
else:
param = torch.concat([
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")],
], dim=0)
state_dict_[name_] = param
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q."))
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k."))
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v."))
return state_dict_
class LoraMerger(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.weight_base = torch.nn.Parameter(torch.randn((dim,)))
self.weight_lora = torch.nn.Parameter(torch.randn((dim,)))
self.weight_cross = torch.nn.Parameter(torch.randn((dim,)))
self.weight_out = torch.nn.Parameter(torch.ones((dim,)))
self.bias = torch.nn.Parameter(torch.randn((dim,)))
self.activation = torch.nn.Sigmoid()
self.norm_base = torch.nn.LayerNorm(dim, eps=1e-5)
self.norm_lora = torch.nn.LayerNorm(dim, eps=1e-5)
def forward(self, base_output, lora_outputs):
norm_base_output = self.norm_base(base_output)
norm_lora_outputs = self.norm_lora(lora_outputs)
gate = self.activation(
norm_base_output * self.weight_base \
+ norm_lora_outputs * self.weight_lora \
+ norm_base_output * norm_lora_outputs * self.weight_cross + self.bias
)
output = base_output + (self.weight_out * gate * lora_outputs).sum(dim=0)
return output
class FluxLoraPatcher(torch.nn.Module):
def __init__(self, lora_patterns=None):
super().__init__()
if lora_patterns is None:
lora_patterns = self.default_lora_patterns()
model_dict = {}
for lora_pattern in lora_patterns:
name, dim = lora_pattern["name"], lora_pattern["dim"]
model_dict[name.replace(".", "___")] = LoraMerger(dim)
self.model_dict = torch.nn.ModuleDict(model_dict)
def default_lora_patterns(self):
lora_patterns = []
lora_dict = {
"attn.a_to_qkv": 9216, "attn.a_to_out": 3072, "ff_a.0": 12288, "ff_a.2": 3072, "norm1_a.linear": 18432,
"attn.b_to_qkv": 9216, "attn.b_to_out": 3072, "ff_b.0": 12288, "ff_b.2": 3072, "norm1_b.linear": 18432,
}
for i in range(19):
for suffix in lora_dict:
lora_patterns.append({
"name": f"blocks.{i}.{suffix}",
"dim": lora_dict[suffix]
})
lora_dict = {"to_qkv_mlp": 21504, "proj_out": 3072, "norm.linear": 9216}
for i in range(38):
for suffix in lora_dict:
lora_patterns.append({
"name": f"single_blocks.{i}.{suffix}",
"dim": lora_dict[suffix]
})
return lora_patterns
def forward(self, base_output, lora_outputs, name):
return self.model_dict[name.replace(".", "___")](base_output, lora_outputs)
@staticmethod
def state_dict_converter():
return FluxLoraPatcherStateDictConverter()
class FluxLoraPatcherStateDictConverter:
def __init__(self):
pass
def from_civitai(self, state_dict):
return state_dict
class FluxLoRAFuser:
def __init__(self, device="cuda", torch_dtype=torch.bfloat16):
self.device = device
self.torch_dtype = torch_dtype
def Matrix_Decomposition_lowrank(self, A, k):
U, S, V = torch.svd_lowrank(A.float(), q=k)
S_k = torch.diag(S[:k])
U_hat = U @ S_k
return U_hat, V.t()
def LoRA_State_Dicts_Decomposition(self, lora_state_dicts=[], q=4):
lora_1 = lora_state_dicts[0]
state_dict_ = {}
for k,v in lora_1.items():
if 'lora_A.' in k:
lora_B_name = k.replace('lora_A.', 'lora_B.')
lora_B = lora_1[lora_B_name]
weight = torch.mm(lora_B, v)
for lora_dict in lora_state_dicts[1:]:
lora_A_ = lora_dict[k]
lora_B_ = lora_dict[lora_B_name]
weight_ = torch.mm(lora_B_, lora_A_)
weight += weight_
new_B, new_A = self.Matrix_Decomposition_lowrank(weight, q)
state_dict_[lora_B_name] = new_B.to(dtype=torch.bfloat16)
state_dict_[k] = new_A.to(dtype=torch.bfloat16)
return state_dict_
def __call__(self, lora_configs: list[Union[ModelConfig, str]]):
loras = []
loader = FluxLoRALoader(torch_dtype=self.torch_dtype, device=self.device)
for lora_config in lora_configs:
if isinstance(lora_config, str):
lora = load_state_dict(lora_config, torch_dtype=self.torch_dtype, device=self.device)
else:
lora_config.download_if_necessary()
lora = load_state_dict(lora_config.path, torch_dtype=self.torch_dtype, device=self.device)
lora = loader.convert_state_dict(lora)
loras.append(lora)
lora = self.LoRA_State_Dicts_Decomposition(loras)
return lora