| import torch, math | |
| from . import GeneralLoRALoader | |
| from ..utils import ModelConfig | |
| from ..models.utils import load_state_dict | |
| from typing import Union | |
| class FluxLoRALoader(GeneralLoRALoader): | |
| def __init__(self, device="cpu", torch_dtype=torch.float32): | |
| super().__init__(device=device, torch_dtype=torch_dtype) | |
| self.diffusers_rename_dict = { | |
| "transformer.single_transformer_blocks.blockid.attn.to_k.lora_A.weight":"single_blocks.blockid.a_to_k.lora_A.default.weight", | |
| "transformer.single_transformer_blocks.blockid.attn.to_k.lora_B.weight":"single_blocks.blockid.a_to_k.lora_B.default.weight", | |
| "transformer.single_transformer_blocks.blockid.attn.to_q.lora_A.weight":"single_blocks.blockid.a_to_q.lora_A.default.weight", | |
| "transformer.single_transformer_blocks.blockid.attn.to_q.lora_B.weight":"single_blocks.blockid.a_to_q.lora_B.default.weight", | |
| "transformer.single_transformer_blocks.blockid.attn.to_v.lora_A.weight":"single_blocks.blockid.a_to_v.lora_A.default.weight", | |
| "transformer.single_transformer_blocks.blockid.attn.to_v.lora_B.weight":"single_blocks.blockid.a_to_v.lora_B.default.weight", | |
| "transformer.single_transformer_blocks.blockid.norm.linear.lora_A.weight":"single_blocks.blockid.norm.linear.lora_A.default.weight", | |
| "transformer.single_transformer_blocks.blockid.norm.linear.lora_B.weight":"single_blocks.blockid.norm.linear.lora_B.default.weight", | |
| "transformer.single_transformer_blocks.blockid.proj_mlp.lora_A.weight":"single_blocks.blockid.proj_in_besides_attn.lora_A.default.weight", | |
| "transformer.single_transformer_blocks.blockid.proj_mlp.lora_B.weight":"single_blocks.blockid.proj_in_besides_attn.lora_B.default.weight", | |
| "transformer.single_transformer_blocks.blockid.proj_out.lora_A.weight":"single_blocks.blockid.proj_out.lora_A.default.weight", | |
| "transformer.single_transformer_blocks.blockid.proj_out.lora_B.weight":"single_blocks.blockid.proj_out.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.add_k_proj.lora_A.weight":"blocks.blockid.attn.b_to_k.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.add_k_proj.lora_B.weight":"blocks.blockid.attn.b_to_k.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.add_q_proj.lora_A.weight":"blocks.blockid.attn.b_to_q.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.add_q_proj.lora_B.weight":"blocks.blockid.attn.b_to_q.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.add_v_proj.lora_A.weight":"blocks.blockid.attn.b_to_v.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.add_v_proj.lora_B.weight":"blocks.blockid.attn.b_to_v.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_add_out.lora_A.weight":"blocks.blockid.attn.b_to_out.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_add_out.lora_B.weight":"blocks.blockid.attn.b_to_out.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_k.lora_A.weight":"blocks.blockid.attn.a_to_k.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_k.lora_B.weight":"blocks.blockid.attn.a_to_k.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_out.0.lora_A.weight":"blocks.blockid.attn.a_to_out.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_out.0.lora_B.weight":"blocks.blockid.attn.a_to_out.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_q.lora_A.weight":"blocks.blockid.attn.a_to_q.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_q.lora_B.weight":"blocks.blockid.attn.a_to_q.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_v.lora_A.weight":"blocks.blockid.attn.a_to_v.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.attn.to_v.lora_B.weight":"blocks.blockid.attn.a_to_v.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.ff.net.0.proj.lora_A.weight":"blocks.blockid.ff_a.0.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.ff.net.0.proj.lora_B.weight":"blocks.blockid.ff_a.0.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.ff.net.2.lora_A.weight":"blocks.blockid.ff_a.2.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.ff.net.2.lora_B.weight":"blocks.blockid.ff_a.2.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.ff_context.net.0.proj.lora_A.weight":"blocks.blockid.ff_b.0.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.ff_context.net.0.proj.lora_B.weight":"blocks.blockid.ff_b.0.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.ff_context.net.2.lora_A.weight":"blocks.blockid.ff_b.2.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.ff_context.net.2.lora_B.weight":"blocks.blockid.ff_b.2.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.norm1.linear.lora_A.weight":"blocks.blockid.norm1_a.linear.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.norm1.linear.lora_B.weight":"blocks.blockid.norm1_a.linear.lora_B.default.weight", | |
| "transformer.transformer_blocks.blockid.norm1_context.linear.lora_A.weight":"blocks.blockid.norm1_b.linear.lora_A.default.weight", | |
| "transformer.transformer_blocks.blockid.norm1_context.linear.lora_B.weight":"blocks.blockid.norm1_b.linear.lora_B.default.weight", | |
| } | |
| self.civitai_rename_dict = { | |
| "lora_unet_double_blocks_blockid_img_mod_lin.lora_down.weight": "blocks.blockid.norm1_a.linear.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mod_lin.lora_up.weight": "blocks.blockid.norm1_a.linear.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mod_lin.lora_down.weight": "blocks.blockid.norm1_b.linear.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mod_lin.lora_up.weight": "blocks.blockid.norm1_b.linear.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_qkv.lora_down.weight": "blocks.blockid.attn.a_to_qkv.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_qkv.lora_up.weight": "blocks.blockid.attn.a_to_qkv.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_qkv.lora_down.weight": "blocks.blockid.attn.b_to_qkv.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_qkv.lora_up.weight": "blocks.blockid.attn.b_to_qkv.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_proj.lora_down.weight": "blocks.blockid.attn.a_to_out.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_attn_proj.lora_up.weight": "blocks.blockid.attn.a_to_out.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_proj.lora_down.weight": "blocks.blockid.attn.b_to_out.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_attn_proj.lora_up.weight": "blocks.blockid.attn.b_to_out.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_0.lora_down.weight": "blocks.blockid.ff_a.0.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_0.lora_up.weight": "blocks.blockid.ff_a.0.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_2.lora_down.weight": "blocks.blockid.ff_a.2.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_img_mlp_2.lora_up.weight": "blocks.blockid.ff_a.2.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_0.lora_down.weight": "blocks.blockid.ff_b.0.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_0.lora_up.weight": "blocks.blockid.ff_b.0.lora_B.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_2.lora_down.weight": "blocks.blockid.ff_b.2.lora_A.default.weight", | |
| "lora_unet_double_blocks_blockid_txt_mlp_2.lora_up.weight": "blocks.blockid.ff_b.2.lora_B.default.weight", | |
| "lora_unet_single_blocks_blockid_modulation_lin.lora_down.weight": "single_blocks.blockid.norm.linear.lora_A.default.weight", | |
| "lora_unet_single_blocks_blockid_modulation_lin.lora_up.weight": "single_blocks.blockid.norm.linear.lora_B.default.weight", | |
| "lora_unet_single_blocks_blockid_linear1.lora_down.weight": "single_blocks.blockid.to_qkv_mlp.lora_A.default.weight", | |
| "lora_unet_single_blocks_blockid_linear1.lora_up.weight": "single_blocks.blockid.to_qkv_mlp.lora_B.default.weight", | |
| "lora_unet_single_blocks_blockid_linear2.lora_down.weight": "single_blocks.blockid.proj_out.lora_A.default.weight", | |
| "lora_unet_single_blocks_blockid_linear2.lora_up.weight": "single_blocks.blockid.proj_out.lora_B.default.weight", | |
| } | |
| def load(self, model: torch.nn.Module, state_dict_lora, alpha=1.0): | |
| super().load(model, state_dict_lora, alpha) | |
| def convert_state_dict(self,state_dict): | |
| def guess_block_id(name,model_resource): | |
| if model_resource == 'civitai': | |
| names = name.split("_") | |
| for i in names: | |
| if i.isdigit(): | |
| return i, name.replace(f"_{i}_", "_blockid_") | |
| if model_resource == 'diffusers': | |
| names = name.split(".") | |
| for i in names: | |
| if i.isdigit(): | |
| return i, name.replace(f"transformer_blocks.{i}.", "transformer_blocks.blockid.") | |
| return None, None | |
| def guess_resource(state_dict): | |
| for k in state_dict: | |
| if "lora_unet_" in k: | |
| return 'civitai' | |
| elif k.startswith("transformer."): | |
| return 'diffusers' | |
| else: | |
| None | |
| model_resource = guess_resource(state_dict) | |
| if model_resource is None: | |
| return state_dict | |
| rename_dict = self.diffusers_rename_dict if model_resource == 'diffusers' else self.civitai_rename_dict | |
| def guess_alpha(state_dict): | |
| for name, param in state_dict.items(): | |
| if ".alpha" in name: | |
| for suffix in [".lora_down.weight", ".lora_A.weight"]: | |
| name_ = name.replace(".alpha", suffix) | |
| if name_ in state_dict: | |
| lora_alpha = param.item() / state_dict[name_].shape[0] | |
| lora_alpha = math.sqrt(lora_alpha) | |
| return lora_alpha | |
| return 1 | |
| alpha = guess_alpha(state_dict) | |
| state_dict_ = {} | |
| for name, param in state_dict.items(): | |
| block_id, source_name = guess_block_id(name,model_resource) | |
| if alpha != 1: | |
| param *= alpha | |
| if source_name in rename_dict: | |
| target_name = rename_dict[source_name] | |
| target_name = target_name.replace(".blockid.", f".{block_id}.") | |
| state_dict_[target_name] = param | |
| else: | |
| state_dict_[name] = param | |
| if model_resource == 'diffusers': | |
| for name in list(state_dict_.keys()): | |
| if "single_blocks." in name and ".a_to_q." in name: | |
| mlp = state_dict_.get(name.replace(".a_to_q.", ".proj_in_besides_attn."), None) | |
| if mlp is None: | |
| dim = 4 | |
| if 'lora_A' in name: | |
| dim = 1 | |
| mlp = torch.zeros(dim * state_dict_[name].shape[0], | |
| *state_dict_[name].shape[1:], | |
| dtype=state_dict_[name].dtype) | |
| else: | |
| state_dict_.pop(name.replace(".a_to_q.", ".proj_in_besides_attn.")) | |
| if 'lora_A' in name: | |
| param = torch.concat([ | |
| state_dict_.pop(name), | |
| state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")), | |
| state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")), | |
| mlp, | |
| ], dim=0) | |
| elif 'lora_B' in name: | |
| d, r = state_dict_[name].shape | |
| param = torch.zeros((3*d+mlp.shape[0], 3*r+mlp.shape[1]), dtype=state_dict_[name].dtype, device=state_dict_[name].device) | |
| param[:d, :r] = state_dict_.pop(name) | |
| param[d:2*d, r:2*r] = state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")) | |
| param[2*d:3*d, 2*r:3*r] = state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")) | |
| param[3*d:, 3*r:] = mlp | |
| else: | |
| param = torch.concat([ | |
| state_dict_.pop(name), | |
| state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")), | |
| state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")), | |
| mlp, | |
| ], dim=0) | |
| name_ = name.replace(".a_to_q.", ".to_qkv_mlp.") | |
| state_dict_[name_] = param | |
| for name in list(state_dict_.keys()): | |
| for component in ["a", "b"]: | |
| if f".{component}_to_q." in name: | |
| name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.") | |
| concat_dim = 0 | |
| if 'lora_A' in name: | |
| param = torch.concat([ | |
| state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")], | |
| state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")], | |
| state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")], | |
| ], dim=0) | |
| elif 'lora_B' in name: | |
| origin = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")] | |
| d, r = origin.shape | |
| # print(d, r) | |
| param = torch.zeros((3*d, 3*r), dtype=origin.dtype, device=origin.device) | |
| param[:d, :r] = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")] | |
| param[d:2*d, r:2*r] = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")] | |
| param[2*d:3*d, 2*r:3*r] = state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")] | |
| else: | |
| param = torch.concat([ | |
| state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")], | |
| state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")], | |
| state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")], | |
| ], dim=0) | |
| state_dict_[name_] = param | |
| state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q.")) | |
| state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k.")) | |
| state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v.")) | |
| return state_dict_ | |
| class LoraMerger(torch.nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.weight_base = torch.nn.Parameter(torch.randn((dim,))) | |
| self.weight_lora = torch.nn.Parameter(torch.randn((dim,))) | |
| self.weight_cross = torch.nn.Parameter(torch.randn((dim,))) | |
| self.weight_out = torch.nn.Parameter(torch.ones((dim,))) | |
| self.bias = torch.nn.Parameter(torch.randn((dim,))) | |
| self.activation = torch.nn.Sigmoid() | |
| self.norm_base = torch.nn.LayerNorm(dim, eps=1e-5) | |
| self.norm_lora = torch.nn.LayerNorm(dim, eps=1e-5) | |
| def forward(self, base_output, lora_outputs): | |
| norm_base_output = self.norm_base(base_output) | |
| norm_lora_outputs = self.norm_lora(lora_outputs) | |
| gate = self.activation( | |
| norm_base_output * self.weight_base \ | |
| + norm_lora_outputs * self.weight_lora \ | |
| + norm_base_output * norm_lora_outputs * self.weight_cross + self.bias | |
| ) | |
| output = base_output + (self.weight_out * gate * lora_outputs).sum(dim=0) | |
| return output | |
| class FluxLoraPatcher(torch.nn.Module): | |
| def __init__(self, lora_patterns=None): | |
| super().__init__() | |
| if lora_patterns is None: | |
| lora_patterns = self.default_lora_patterns() | |
| model_dict = {} | |
| for lora_pattern in lora_patterns: | |
| name, dim = lora_pattern["name"], lora_pattern["dim"] | |
| model_dict[name.replace(".", "___")] = LoraMerger(dim) | |
| self.model_dict = torch.nn.ModuleDict(model_dict) | |
| def default_lora_patterns(self): | |
| lora_patterns = [] | |
| lora_dict = { | |
| "attn.a_to_qkv": 9216, "attn.a_to_out": 3072, "ff_a.0": 12288, "ff_a.2": 3072, "norm1_a.linear": 18432, | |
| "attn.b_to_qkv": 9216, "attn.b_to_out": 3072, "ff_b.0": 12288, "ff_b.2": 3072, "norm1_b.linear": 18432, | |
| } | |
| for i in range(19): | |
| for suffix in lora_dict: | |
| lora_patterns.append({ | |
| "name": f"blocks.{i}.{suffix}", | |
| "dim": lora_dict[suffix] | |
| }) | |
| lora_dict = {"to_qkv_mlp": 21504, "proj_out": 3072, "norm.linear": 9216} | |
| for i in range(38): | |
| for suffix in lora_dict: | |
| lora_patterns.append({ | |
| "name": f"single_blocks.{i}.{suffix}", | |
| "dim": lora_dict[suffix] | |
| }) | |
| return lora_patterns | |
| def forward(self, base_output, lora_outputs, name): | |
| return self.model_dict[name.replace(".", "___")](base_output, lora_outputs) | |
| def state_dict_converter(): | |
| return FluxLoraPatcherStateDictConverter() | |
| class FluxLoraPatcherStateDictConverter: | |
| def __init__(self): | |
| pass | |
| def from_civitai(self, state_dict): | |
| return state_dict | |
| class FluxLoRAFuser: | |
| def __init__(self, device="cuda", torch_dtype=torch.bfloat16): | |
| self.device = device | |
| self.torch_dtype = torch_dtype | |
| def Matrix_Decomposition_lowrank(self, A, k): | |
| U, S, V = torch.svd_lowrank(A.float(), q=k) | |
| S_k = torch.diag(S[:k]) | |
| U_hat = U @ S_k | |
| return U_hat, V.t() | |
| def LoRA_State_Dicts_Decomposition(self, lora_state_dicts=[], q=4): | |
| lora_1 = lora_state_dicts[0] | |
| state_dict_ = {} | |
| for k,v in lora_1.items(): | |
| if 'lora_A.' in k: | |
| lora_B_name = k.replace('lora_A.', 'lora_B.') | |
| lora_B = lora_1[lora_B_name] | |
| weight = torch.mm(lora_B, v) | |
| for lora_dict in lora_state_dicts[1:]: | |
| lora_A_ = lora_dict[k] | |
| lora_B_ = lora_dict[lora_B_name] | |
| weight_ = torch.mm(lora_B_, lora_A_) | |
| weight += weight_ | |
| new_B, new_A = self.Matrix_Decomposition_lowrank(weight, q) | |
| state_dict_[lora_B_name] = new_B.to(dtype=torch.bfloat16) | |
| state_dict_[k] = new_A.to(dtype=torch.bfloat16) | |
| return state_dict_ | |
| def __call__(self, lora_configs: list[Union[ModelConfig, str]]): | |
| loras = [] | |
| loader = FluxLoRALoader(torch_dtype=self.torch_dtype, device=self.device) | |
| for lora_config in lora_configs: | |
| if isinstance(lora_config, str): | |
| lora = load_state_dict(lora_config, torch_dtype=self.torch_dtype, device=self.device) | |
| else: | |
| lora_config.download_if_necessary() | |
| lora = load_state_dict(lora_config.path, torch_dtype=self.torch_dtype, device=self.device) | |
| lora = loader.convert_state_dict(lora) | |
| loras.append(lora) | |
| lora = self.LoRA_State_Dicts_Decomposition(loras) | |
| return lora | |