File size: 23,259 Bytes
feb33a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
# DiffSynth Training Framework
We have implemented a training framework for text-to-image Diffusion models, enabling users to easily train LoRA models using our framework. Our provided scripts come with the following advantages:
* **Comprehensive Functionality & User-Friendliness**: Our training framework supports multi-GPU and multi-machine setups, facilitates the use of DeepSpeed for acceleration, and includes gradient checkpointing optimizations for models with excessive memory demands.
* **Code Conciseness & Researcher Accessibility**: We avoid large blocks of complicated code. General-purpose modules are implemented in `diffsynth/trainers/text_to_image.py`, while model-specific training scripts contain only minimal code pertinent to the model architecture, making it researcher-friendly.
* **Modular Design & Developer Flexibility**: Built on the universal Pytorch-Lightning framework, our training framework is decoupled in terms of functionality, allowing developers to easily introduce additional training techniques by modifying our scripts to suit their needs.
Image Examples of fine-tuned LoRA. The prompt is "δΈεͺε°ηθΉ¦θΉ¦θ·³θ·³οΌε¨ε΄ζ―ε§Ήη΄«ε«£ηΊ’ηι²θ±οΌθΏε€ζ―ε±±θ" (for Chinese models) or "a dog is jumping, flowers around the dog, the background is mountains and clouds" (for English models).
||FLUX.1-dev|Kolors|Stable Diffusion 3|Hunyuan-DiT|
|-|-|-|-|-|
|Without LoRA|||||
|With LoRA|||||
## Install additional packages
```
pip install peft lightning pandas
```
## Prepare your dataset
We provide an example dataset [here](https://modelscope.cn/datasets/buptwq/lora-stable-diffusion-finetune/files). You need to manage the training images as follows:
```
data/dog/
βββ train
βββ 00.jpg
βββ 01.jpg
βββ 02.jpg
βββ 03.jpg
βββ 04.jpg
βββ metadata.csv
```
`metadata.csv`:
```
file_name,text
00.jpg,a dog
01.jpg,a dog
02.jpg,a dog
03.jpg,a dog
04.jpg,a dog
```
Note that if the model is Chinese model (for example, Hunyuan-DiT and Kolors), we recommend to use Chinese texts in the dataset. For example
```
file_name,text
00.jpg,δΈεͺε°η
01.jpg,δΈεͺε°η
02.jpg,δΈεͺε°η
03.jpg,δΈεͺε°η
04.jpg,δΈεͺε°η
```
## Train a LoRA model
General options:
```
--lora_target_modules LORA_TARGET_MODULES
Layers with LoRA modules.
--dataset_path DATASET_PATH
The path of the Dataset.
--output_path OUTPUT_PATH
Path to save the model.
--steps_per_epoch STEPS_PER_EPOCH
Number of steps per epoch.
--height HEIGHT Image height.
--width WIDTH Image width.
--center_crop Whether to center crop the input images to the resolution. If not set, the images will be randomly cropped. The images will be resized to the resolution first before cropping.
--random_flip Whether to randomly flip images horizontally
--batch_size BATCH_SIZE
Batch size (per device) for the training dataloader.
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.
--precision {32,16,16-mixed}
Training precision
--learning_rate LEARNING_RATE
Learning rate.
--lora_rank LORA_RANK
The dimension of the LoRA update matrices.
--lora_alpha LORA_ALPHA
The weight of the LoRA update matrices.
--use_gradient_checkpointing
Whether to use gradient checkpointing.
--accumulate_grad_batches ACCUMULATE_GRAD_BATCHES
The number of batches in gradient accumulation.
--training_strategy {auto,deepspeed_stage_1,deepspeed_stage_2,deepspeed_stage_3}
Training strategy
--max_epochs MAX_EPOCHS
Number of epochs.
--modelscope_model_id MODELSCOPE_MODEL_ID
Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.
--modelscope_access_token MODELSCOPE_ACCESS_TOKEN
Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.
```
### FLUX
The following files will be used for constructing FLUX. You can download them from [huggingface](https://huggingface.co/black-forest-labs/FLUX.1-dev) or [modelscope](https://www.modelscope.cn/models/ai-modelscope/flux.1-dev). You can use the following code to download these files:
```python
from diffsynth import download_models
download_models(["FLUX.1-dev"])
```
```
models/FLUX/
βββ FLUX.1-dev
βββ ae.safetensors
βββ flux1-dev.safetensors
βββ text_encoder
β βββ model.safetensors
βββ text_encoder_2
βββ config.json
βββ model-00001-of-00002.safetensors
βββ model-00002-of-00002.safetensors
βββ model.safetensors.index.json
```
Launch the training task using the following command (39G VRAM required):
```
CUDA_VISIBLE_DEVICES="0" python examples/train/flux/train_flux_lora.py \
--pretrained_text_encoder_path models/FLUX/FLUX.1-dev/text_encoder/model.safetensors \
--pretrained_text_encoder_2_path models/FLUX/FLUX.1-dev/text_encoder_2 \
--pretrained_dit_path models/FLUX/FLUX.1-dev/flux1-dev.safetensors \
--pretrained_vae_path models/FLUX/FLUX.1-dev/ae.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 100 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "bf16" \
--learning_rate 1e-4 \
--lora_rank 16 \
--lora_alpha 16 \
--use_gradient_checkpointing \
--align_to_opensource_format
```
By adding parameter `--quantize "float8_e4m3fn"`, you can save approximate 10G VRAM.
**`--align_to_opensource_format` means that this script will export the LoRA weights in the opensource format. This format can be loaded in both DiffSynth-Studio and other codebases.**
For more information about the parameters, please use `python examples/train/flux/train_flux_lora.py -h` to see the details.
After training, use `model_manager.load_lora` to load the LoRA for inference.
```python
from diffsynth import ModelManager, FluxImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda",
file_path_list=[
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
"models/FLUX/FLUX.1-dev/flux1-dev.safetensors"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = FluxImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
num_inference_steps=30, embedded_guidance=3.5
)
image.save("image_with_lora.jpg")
```
### Kolors
The following files will be used for constructing Kolors. You can download Kolors from [huggingface](https://huggingface.co/Kwai-Kolors/Kolors) or [modelscope](https://modelscope.cn/models/Kwai-Kolors/Kolors). Due to precision overflow issues, we need to download an additional VAE model (from [huggingface](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix) or [modelscope](https://modelscope.cn/models/AI-ModelScope/sdxl-vae-fp16-fix)). You can use the following code to download these files:
```python
from diffsynth import download_models
download_models(["Kolors", "SDXL-vae-fp16-fix"])
```
```
models
βββ kolors
β βββ Kolors
β βββ text_encoder
β β βββ config.json
β β βββ pytorch_model-00001-of-00007.bin
β β βββ pytorch_model-00002-of-00007.bin
β β βββ pytorch_model-00003-of-00007.bin
β β βββ pytorch_model-00004-of-00007.bin
β β βββ pytorch_model-00005-of-00007.bin
β β βββ pytorch_model-00006-of-00007.bin
β β βββ pytorch_model-00007-of-00007.bin
β β βββ pytorch_model.bin.index.json
β βββ unet
β β βββ diffusion_pytorch_model.safetensors
β βββ vae
β βββ diffusion_pytorch_model.safetensors
βββ sdxl-vae-fp16-fix
βββ diffusion_pytorch_model.safetensors
```
Launch the training task using the following command:
```
CUDA_VISIBLE_DEVICES="0" python examples/train/kolors/train_kolors_lora.py \
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder \
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16-mixed" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
```
For more information about the parameters, please use `python examples/train/kolors/train_kolors_lora.py -h` to see the details.
After training, use `model_manager.load_lora` to load the LoRA for inference.
```python
from diffsynth import ModelManager, SDXLImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/kolors/Kolors/text_encoder",
"models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
"models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SDXLImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="δΈεͺε°ηθΉ¦θΉ¦θ·³θ·³οΌε¨ε΄ζ―ε§Ήη΄«ε«£ηΊ’ηι²θ±οΌθΏε€ζ―ε±±θ",
negative_prompt="",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")
```
### Stable Diffusion 3.5 Series
You need to download the text encoders and DiT model files. Please use the following code to download these files:
```python
from diffsynth import download_models
download_models(["StableDiffusion3.5-large"])
```
```
models/stable_diffusion_3
βββ Put Stable Diffusion 3 checkpoints here.txt
βββ sd3.5_large.safetensors
βββ text_encoders
βββ clip_g.safetensors
βββ clip_l.safetensors
βββ t5xxl_fp16.safetensors
```
Launch the training task using the following command:
```
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion_3/train_sd3_lora.py \
--pretrained_path models/stable_diffusion_3/text_encoders/clip_g.safetensors,models/stable_diffusion_3/text_encoders/clip_l.safetensors,models/stable_diffusion_3/text_encoders/t5xxl_fp16.safetensors,models/stable_diffusion_3/sd3.5_large.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
```
For more information about the parameters, please use `python examples/train/stable_diffusion_3/train_sd3_lora.py -h` to see the details.
After training, use `model_manager.load_lora` to load the LoRA for inference.
```python
from diffsynth import ModelManager, SD3ImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/stable_diffusion_3/text_encoders/clip_g.safetensors",
"models/stable_diffusion_3/text_encoders/clip_l.safetensors",
"models/stable_diffusion_3/text_encoders/t5xxl_fp16.safetensors",
"models/stable_diffusion_3/sd3.5_large.safetensors"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SD3ImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
num_inference_steps=30, cfg_scale=7
)
image.save("image_with_lora.jpg")
```
### Stable Diffusion 3
Only one file is required in the training script. You can use [`sd3_medium_incl_clips.safetensors`](https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/sd3_medium_incl_clips.safetensors) (without T5 encoder) or [`sd3_medium_incl_clips_t5xxlfp16.safetensors`](https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/sd3_medium_incl_clips_t5xxlfp16.safetensors) (with T5 encoder). Please use the following code to download these files:
```python
from diffsynth import download_models
download_models(["StableDiffusion3", "StableDiffusion3_without_T5"])
```
```
models/stable_diffusion_3/
βββ Put Stable Diffusion 3 checkpoints here.txt
βββ sd3_medium_incl_clips.safetensors
βββ sd3_medium_incl_clips_t5xxlfp16.safetensors
```
Launch the training task using the following command:
```
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion_3/train_sd3_lora.py \
--pretrained_path models/stable_diffusion_3/sd3_medium_incl_clips.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
```
For more information about the parameters, please use `python examples/train/stable_diffusion_3/train_sd3_lora.py -h` to see the details.
After training, use `model_manager.load_lora` to load the LoRA for inference.
```python
from diffsynth import ModelManager, SD3ImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=["models/stable_diffusion_3/sd3_medium_incl_clips.safetensors"])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SD3ImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
negative_prompt="bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi, extra tails",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")
```
### Hunyuan-DiT
Four files will be used for constructing Hunyuan DiT. You can download them from [huggingface](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT) or [modelscope](https://www.modelscope.cn/models/modelscope/HunyuanDiT/summary). You can use the following code to download these files:
```python
from diffsynth import download_models
download_models(["HunyuanDiT"])
```
```
models/HunyuanDiT/
βββ Put Hunyuan DiT checkpoints here.txt
βββ t2i
βββ clip_text_encoder
β βββ pytorch_model.bin
βββ model
β βββ pytorch_model_ema.pt
βββ mt5
β βββ pytorch_model.bin
βββ sdxl-vae-fp16-fix
βββ diffusion_pytorch_model.bin
```
Launch the training task using the following command:
```
CUDA_VISIBLE_DEVICES="0" python examples/train/hunyuan_dit/train_hunyuan_dit_lora.py \
--pretrained_path models/HunyuanDiT/t2i \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16-mixed" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
```
For more information about the parameters, please use `python examples/train/hunyuan_dit/train_hunyuan_dit_lora.py -h` to see the details.
After training, use `model_manager.load_lora` to load the LoRA for inference.
```python
from diffsynth import ModelManager, HunyuanDiTImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin",
"models/HunyuanDiT/t2i/model/pytorch_model_ema.pt",
"models/HunyuanDiT/t2i/mt5/pytorch_model.bin",
"models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = HunyuanDiTImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="δΈεͺε°ηθΉ¦θΉ¦θ·³θ·³οΌε¨ε΄ζ―ε§Ήη΄«ε«£ηΊ’ηι²θ±οΌθΏε€ζ―ε±±θ",
negative_prompt="",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")
```
### Stable Diffusion
Only one file is required in the training script. We support the mainstream checkpoints in [CivitAI](https://civitai.com/). By default, we use the base Stable Diffusion v1.5. You can download it from [huggingface](https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors) or [modelscope](https://www.modelscope.cn/models/AI-ModelScope/stable-diffusion-v1-5/resolve/master/v1-5-pruned-emaonly.safetensors). You can use the following code to download this file:
```python
from diffsynth import download_models
download_models(["StableDiffusion_v15"])
```
```
models/stable_diffusion
βββ Put Stable Diffusion checkpoints here.txt
βββ v1-5-pruned-emaonly.safetensors
```
Launch the training task using the following command:
```
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion/train_sd_lora.py \
--pretrained_path models/stable_diffusion/v1-5-pruned-emaonly.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 512 \
--width 512 \
--center_crop \
--precision "16-mixed" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
```
For more information about the parameters, please use `python examples/train/stable_diffusion/train_sd_lora.py -h` to see the details.
After training, use `model_manager.load_lora` to load the LoRA for inference.
```python
from diffsynth import ModelManager, SDImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=["models/stable_diffusion/v1-5-pruned-emaonly.safetensors"])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SDImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
negative_prompt="bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi, extra tails",
cfg_scale=7.5,
num_inference_steps=100, width=512, height=512,
)
image.save("image_with_lora.jpg")
```
### Stable Diffusion XL
Only one file is required in the training script. We support the mainstream checkpoints in [CivitAI](https://civitai.com/). By default, we use the base Stable Diffusion XL. You can download it from [huggingface](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors) or [modelscope](https://www.modelscope.cn/models/AI-ModelScope/stable-diffusion-xl-base-1.0/resolve/master/sd_xl_base_1.0.safetensors). You can use the following code to download this file:
```python
from diffsynth import download_models
download_models(["StableDiffusionXL_v1"])
```
```
models/stable_diffusion_xl
βββ Put Stable Diffusion XL checkpoints here.txt
βββ sd_xl_base_1.0.safetensors
```
We observed that Stable Diffusion XL is not float16-safe, thus we recommend users to use float32.
```
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion_xl/train_sdxl_lora.py \
--pretrained_path models/stable_diffusion_xl/sd_xl_base_1.0.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "32" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
```
For more information about the parameters, please use `python examples/train/stable_diffusion_xl/train_sdxl_lora.py -h` to see the details.
After training, use `model_manager.load_lora` to load the LoRA for inference.
```python
from diffsynth import ModelManager, SDXLImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=["models/stable_diffusion_xl/sd_xl_base_1.0.safetensors"])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SDXLImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
negative_prompt="bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi, extra tails",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")
```
|