|
|
from typing import Dict, List, Any
|
|
|
import json
|
|
|
import base64
|
|
|
import numpy as np
|
|
|
import cv2
|
|
|
import torch
|
|
|
import insightface
|
|
|
from PIL import Image
|
|
|
import io
|
|
|
|
|
|
class EndpointHandler:
|
|
|
def __init__(self, path=""):
|
|
|
self.face_app = None
|
|
|
self.use_gpu = False
|
|
|
self._init_model()
|
|
|
|
|
|
def _init_model(self):
|
|
|
"""Initialize InsightFace model"""
|
|
|
self.use_gpu = torch.cuda.is_available()
|
|
|
|
|
|
if self.use_gpu:
|
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
|
|
ctx_id = 0
|
|
|
else:
|
|
|
providers = ['CPUExecutionProvider']
|
|
|
ctx_id = -1
|
|
|
|
|
|
self.face_app = insightface.app.FaceAnalysis(
|
|
|
providers=providers,
|
|
|
allowed_modules=['detection', 'recognition']
|
|
|
)
|
|
|
self.face_app.prepare(ctx_id=ctx_id, det_size=(640, 640))
|
|
|
print(f"Face model loaded: {'GPU' if self.use_gpu else 'CPU'}")
|
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
"""Handle the actual inference request"""
|
|
|
try:
|
|
|
|
|
|
if data.get("inputs") == "test":
|
|
|
return {
|
|
|
"status": "healthy",
|
|
|
"gpu_available": self.use_gpu,
|
|
|
"model_loaded": self.face_app is not None
|
|
|
}
|
|
|
|
|
|
|
|
|
if "images" in data:
|
|
|
return self._extract_embeddings_batch(data)
|
|
|
|
|
|
return {"error": "Unknown request format"}
|
|
|
|
|
|
except Exception as e:
|
|
|
return {"error": str(e)}
|
|
|
|
|
|
def _extract_embeddings_batch(self, data):
|
|
|
"""Extract embeddings from batch of images"""
|
|
|
images = data.get("images", [])
|
|
|
enhance_quality = data.get("enhance_quality", True)
|
|
|
aggressive = data.get("aggressive_enhancement", False)
|
|
|
|
|
|
embeddings = []
|
|
|
extraction_info = []
|
|
|
|
|
|
for idx, img_b64 in enumerate(images):
|
|
|
try:
|
|
|
|
|
|
img_data = base64.b64decode(img_b64)
|
|
|
img_array = np.frombuffer(img_data, dtype=np.uint8)
|
|
|
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
|
|
|
|
|
|
if img is None:
|
|
|
embeddings.append(None)
|
|
|
extraction_info.append({"error": "Failed to decode", "index": idx})
|
|
|
continue
|
|
|
|
|
|
|
|
|
if enhance_quality:
|
|
|
img = self._enhance_image(img, aggressive)
|
|
|
|
|
|
|
|
|
faces = self.face_app.get(img)
|
|
|
|
|
|
if len(faces) == 0:
|
|
|
embeddings.append(None)
|
|
|
extraction_info.append({
|
|
|
"face_count": 0,
|
|
|
"strategy_used": "gpu_batch" if self.use_gpu else "cpu_batch",
|
|
|
"enhancement_used": enhance_quality,
|
|
|
"index": idx
|
|
|
})
|
|
|
continue
|
|
|
|
|
|
|
|
|
face = max(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
|
|
|
embedding = face.embedding / np.linalg.norm(face.embedding)
|
|
|
|
|
|
embeddings.append(embedding.tolist())
|
|
|
|
|
|
|
|
|
bbox_area = (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1])
|
|
|
img_area = img.shape[0] * img.shape[1]
|
|
|
confidence = min((bbox_area / img_area) * 2.0, 1.0)
|
|
|
|
|
|
extraction_info.append({
|
|
|
"face_count": len(faces),
|
|
|
"confidence": float(confidence),
|
|
|
"strategy_used": "gpu_batch" if self.use_gpu else "cpu_batch",
|
|
|
"enhancement_used": enhance_quality,
|
|
|
"quality_score": float(confidence),
|
|
|
"index": idx
|
|
|
})
|
|
|
|
|
|
except Exception as e:
|
|
|
embeddings.append(None)
|
|
|
extraction_info.append({"error": str(e), "index": idx})
|
|
|
|
|
|
successful = len([e for e in embeddings if e is not None])
|
|
|
|
|
|
return {
|
|
|
"embeddings": embeddings,
|
|
|
"extraction_info": extraction_info,
|
|
|
"total_processed": len(images),
|
|
|
"successful": successful,
|
|
|
"processing_mode": "gpu" if self.use_gpu else "cpu"
|
|
|
}
|
|
|
|
|
|
def _enhance_image(self, img, aggressive=False):
|
|
|
"""Image enhancement logic"""
|
|
|
try:
|
|
|
if aggressive:
|
|
|
img = cv2.bilateralFilter(img, 15, 90, 90)
|
|
|
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
|
|
|
l, a, b = cv2.split(lab)
|
|
|
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8,8))
|
|
|
l = clahe.apply(l)
|
|
|
img = cv2.merge([l, a, b])
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)
|
|
|
else:
|
|
|
img = cv2.bilateralFilter(img, 9, 75, 75)
|
|
|
kernel = np.array([[-1,-1,-1], [-1, 9,-1], [-1,-1,-1]])
|
|
|
img = cv2.filter2D(img, -1, kernel)
|
|
|
|
|
|
return img
|
|
|
except:
|
|
|
return img |