feat: Add NPU export (TFLite, QNN, CoreML)
Browse files- optimization/npu_export.py +450 -0
optimization/npu_export.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
NPU Export Module for MiniMind Max2
|
| 3 |
+
Export to TFLite, QNN (Qualcomm), and other NPU formats.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import List, Optional, Dict, Any, Tuple, Union
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import json
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@dataclass
|
| 15 |
+
class NPUExportConfig:
|
| 16 |
+
"""Configuration for NPU export."""
|
| 17 |
+
# Target platforms
|
| 18 |
+
target_platform: str = "tflite" # tflite, qnn, coreml, nnapi
|
| 19 |
+
|
| 20 |
+
# Quantization
|
| 21 |
+
quantization: str = "int8" # float16, int8, int4
|
| 22 |
+
calibration_samples: int = 100
|
| 23 |
+
|
| 24 |
+
# Optimization
|
| 25 |
+
optimize_for_inference: bool = True
|
| 26 |
+
enable_xnnpack: bool = True # TFLite XNNPACK delegate
|
| 27 |
+
|
| 28 |
+
# Model settings
|
| 29 |
+
max_sequence_length: int = 2048
|
| 30 |
+
batch_size: int = 1
|
| 31 |
+
|
| 32 |
+
# QNN specific
|
| 33 |
+
qnn_target: str = "gpu" # cpu, gpu, dsp, htp
|
| 34 |
+
|
| 35 |
+
# Output
|
| 36 |
+
include_metadata: bool = True
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class TFLiteExporter:
|
| 40 |
+
"""Export MiniMind models to TensorFlow Lite format."""
|
| 41 |
+
|
| 42 |
+
def __init__(self, config: NPUExportConfig):
|
| 43 |
+
self.config = config
|
| 44 |
+
|
| 45 |
+
def export(
|
| 46 |
+
self,
|
| 47 |
+
model: nn.Module,
|
| 48 |
+
output_path: str,
|
| 49 |
+
sample_input: Optional[torch.Tensor] = None,
|
| 50 |
+
) -> str:
|
| 51 |
+
"""
|
| 52 |
+
Export model to TFLite format.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
model: PyTorch model to export
|
| 56 |
+
output_path: Path for output .tflite file
|
| 57 |
+
sample_input: Sample input for tracing
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
Path to exported model
|
| 61 |
+
"""
|
| 62 |
+
try:
|
| 63 |
+
import tensorflow as tf
|
| 64 |
+
except ImportError:
|
| 65 |
+
print("TensorFlow not installed. Install with: pip install tensorflow")
|
| 66 |
+
return self._export_via_onnx(model, output_path, sample_input)
|
| 67 |
+
|
| 68 |
+
model.eval()
|
| 69 |
+
|
| 70 |
+
# Get model config
|
| 71 |
+
if hasattr(model, 'config'):
|
| 72 |
+
vocab_size = model.config.vocab_size
|
| 73 |
+
hidden_size = model.config.hidden_size
|
| 74 |
+
else:
|
| 75 |
+
vocab_size = 102400
|
| 76 |
+
hidden_size = 1024
|
| 77 |
+
|
| 78 |
+
# Create sample input if not provided
|
| 79 |
+
if sample_input is None:
|
| 80 |
+
sample_input = torch.randint(
|
| 81 |
+
0, vocab_size,
|
| 82 |
+
(self.config.batch_size, self.config.max_sequence_length),
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Export via ONNX as intermediate
|
| 86 |
+
onnx_path = output_path.replace('.tflite', '.onnx')
|
| 87 |
+
self._export_to_onnx(model, onnx_path, sample_input)
|
| 88 |
+
|
| 89 |
+
# Convert ONNX to TFLite
|
| 90 |
+
try:
|
| 91 |
+
import onnx
|
| 92 |
+
from onnx_tf.backend import prepare
|
| 93 |
+
|
| 94 |
+
# Load ONNX model
|
| 95 |
+
onnx_model = onnx.load(onnx_path)
|
| 96 |
+
tf_rep = prepare(onnx_model)
|
| 97 |
+
|
| 98 |
+
# Save as SavedModel
|
| 99 |
+
saved_model_path = output_path.replace('.tflite', '_saved_model')
|
| 100 |
+
tf_rep.export_graph(saved_model_path)
|
| 101 |
+
|
| 102 |
+
# Convert to TFLite
|
| 103 |
+
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_path)
|
| 104 |
+
|
| 105 |
+
# Quantization settings
|
| 106 |
+
if self.config.quantization == "int8":
|
| 107 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
| 108 |
+
converter.target_spec.supported_types = [tf.int8]
|
| 109 |
+
elif self.config.quantization == "float16":
|
| 110 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
| 111 |
+
converter.target_spec.supported_types = [tf.float16]
|
| 112 |
+
|
| 113 |
+
# Enable optimizations
|
| 114 |
+
if self.config.optimize_for_inference:
|
| 115 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
| 116 |
+
|
| 117 |
+
tflite_model = converter.convert()
|
| 118 |
+
|
| 119 |
+
# Save
|
| 120 |
+
with open(output_path, 'wb') as f:
|
| 121 |
+
f.write(tflite_model)
|
| 122 |
+
|
| 123 |
+
print(f"Exported TFLite model to: {output_path}")
|
| 124 |
+
return output_path
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"TFLite conversion failed: {e}")
|
| 128 |
+
return onnx_path
|
| 129 |
+
|
| 130 |
+
def _export_to_onnx(
|
| 131 |
+
self,
|
| 132 |
+
model: nn.Module,
|
| 133 |
+
output_path: str,
|
| 134 |
+
sample_input: torch.Tensor,
|
| 135 |
+
) -> str:
|
| 136 |
+
"""Export to ONNX as intermediate format."""
|
| 137 |
+
torch.onnx.export(
|
| 138 |
+
model,
|
| 139 |
+
sample_input,
|
| 140 |
+
output_path,
|
| 141 |
+
export_params=True,
|
| 142 |
+
opset_version=14,
|
| 143 |
+
do_constant_folding=True,
|
| 144 |
+
input_names=['input_ids'],
|
| 145 |
+
output_names=['logits'],
|
| 146 |
+
dynamic_axes={
|
| 147 |
+
'input_ids': {0: 'batch_size', 1: 'sequence_length'},
|
| 148 |
+
'logits': {0: 'batch_size', 1: 'sequence_length'},
|
| 149 |
+
},
|
| 150 |
+
)
|
| 151 |
+
return output_path
|
| 152 |
+
|
| 153 |
+
def _export_via_onnx(
|
| 154 |
+
self,
|
| 155 |
+
model: nn.Module,
|
| 156 |
+
output_path: str,
|
| 157 |
+
sample_input: torch.Tensor,
|
| 158 |
+
) -> str:
|
| 159 |
+
"""Fallback: export to ONNX only."""
|
| 160 |
+
onnx_path = output_path.replace('.tflite', '.onnx')
|
| 161 |
+
return self._export_to_onnx(model, onnx_path, sample_input)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
class QNNExporter:
|
| 165 |
+
"""Export MiniMind models to Qualcomm QNN format."""
|
| 166 |
+
|
| 167 |
+
def __init__(self, config: NPUExportConfig):
|
| 168 |
+
self.config = config
|
| 169 |
+
|
| 170 |
+
def export(
|
| 171 |
+
self,
|
| 172 |
+
model: nn.Module,
|
| 173 |
+
output_path: str,
|
| 174 |
+
sample_input: Optional[torch.Tensor] = None,
|
| 175 |
+
) -> Dict[str, str]:
|
| 176 |
+
"""
|
| 177 |
+
Export model to QNN format for Qualcomm NPUs.
|
| 178 |
+
|
| 179 |
+
Returns:
|
| 180 |
+
Dictionary with paths to exported files
|
| 181 |
+
"""
|
| 182 |
+
model.eval()
|
| 183 |
+
|
| 184 |
+
# Get model config
|
| 185 |
+
if hasattr(model, 'config'):
|
| 186 |
+
vocab_size = model.config.vocab_size
|
| 187 |
+
else:
|
| 188 |
+
vocab_size = 102400
|
| 189 |
+
|
| 190 |
+
if sample_input is None:
|
| 191 |
+
sample_input = torch.randint(
|
| 192 |
+
0, vocab_size,
|
| 193 |
+
(self.config.batch_size, self.config.max_sequence_length),
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
output_dir = Path(output_path).parent
|
| 197 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 198 |
+
|
| 199 |
+
# Step 1: Export to ONNX
|
| 200 |
+
onnx_path = str(output_dir / "model.onnx")
|
| 201 |
+
torch.onnx.export(
|
| 202 |
+
model,
|
| 203 |
+
sample_input,
|
| 204 |
+
onnx_path,
|
| 205 |
+
export_params=True,
|
| 206 |
+
opset_version=14,
|
| 207 |
+
do_constant_folding=True,
|
| 208 |
+
input_names=['input_ids'],
|
| 209 |
+
output_names=['logits'],
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
outputs = {"onnx": onnx_path}
|
| 213 |
+
|
| 214 |
+
# Step 2: Generate QNN conversion script
|
| 215 |
+
qnn_script = self._generate_qnn_script(onnx_path, output_path)
|
| 216 |
+
script_path = str(output_dir / "convert_to_qnn.sh")
|
| 217 |
+
with open(script_path, 'w') as f:
|
| 218 |
+
f.write(qnn_script)
|
| 219 |
+
|
| 220 |
+
outputs["conversion_script"] = script_path
|
| 221 |
+
|
| 222 |
+
# Step 3: Generate model config for QNN
|
| 223 |
+
config_path = str(output_dir / "qnn_config.json")
|
| 224 |
+
qnn_config = {
|
| 225 |
+
"model_name": "minimind_max2",
|
| 226 |
+
"input_tensors": [{
|
| 227 |
+
"name": "input_ids",
|
| 228 |
+
"dims": [self.config.batch_size, self.config.max_sequence_length],
|
| 229 |
+
"data_type": "int32"
|
| 230 |
+
}],
|
| 231 |
+
"output_tensors": [{
|
| 232 |
+
"name": "logits",
|
| 233 |
+
"data_type": "float32"
|
| 234 |
+
}],
|
| 235 |
+
"backend": self.config.qnn_target,
|
| 236 |
+
"quantization": self.config.quantization,
|
| 237 |
+
}
|
| 238 |
+
with open(config_path, 'w') as f:
|
| 239 |
+
json.dump(qnn_config, f, indent=2)
|
| 240 |
+
|
| 241 |
+
outputs["config"] = config_path
|
| 242 |
+
|
| 243 |
+
print(f"QNN export prepared. Run {script_path} with QNN SDK installed.")
|
| 244 |
+
return outputs
|
| 245 |
+
|
| 246 |
+
def _generate_qnn_script(self, onnx_path: str, output_path: str) -> str:
|
| 247 |
+
"""Generate shell script for QNN conversion."""
|
| 248 |
+
return f'''#!/bin/bash
|
| 249 |
+
# QNN Conversion Script for MiniMind Max2
|
| 250 |
+
# Requires Qualcomm QNN SDK
|
| 251 |
+
|
| 252 |
+
# Check QNN SDK
|
| 253 |
+
if [ -z "$QNN_SDK_ROOT" ]; then
|
| 254 |
+
echo "Error: QNN_SDK_ROOT not set. Please install Qualcomm QNN SDK."
|
| 255 |
+
exit 1
|
| 256 |
+
fi
|
| 257 |
+
|
| 258 |
+
# Convert ONNX to QNN
|
| 259 |
+
$QNN_SDK_ROOT/bin/x86_64-linux-clang/qnn-onnx-converter \\
|
| 260 |
+
--input_network {onnx_path} \\
|
| 261 |
+
--output_path {output_path}.cpp
|
| 262 |
+
|
| 263 |
+
# Compile model library
|
| 264 |
+
$QNN_SDK_ROOT/bin/x86_64-linux-clang/qnn-model-lib-generator \\
|
| 265 |
+
-c {output_path}.cpp \\
|
| 266 |
+
-b {output_path}.bin \\
|
| 267 |
+
-t {self.config.qnn_target}
|
| 268 |
+
|
| 269 |
+
echo "QNN model exported to {output_path}.bin"
|
| 270 |
+
'''
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
class CoreMLExporter:
|
| 274 |
+
"""Export MiniMind models to Apple Core ML format."""
|
| 275 |
+
|
| 276 |
+
def __init__(self, config: NPUExportConfig):
|
| 277 |
+
self.config = config
|
| 278 |
+
|
| 279 |
+
def export(
|
| 280 |
+
self,
|
| 281 |
+
model: nn.Module,
|
| 282 |
+
output_path: str,
|
| 283 |
+
sample_input: Optional[torch.Tensor] = None,
|
| 284 |
+
) -> str:
|
| 285 |
+
"""Export model to Core ML format for Apple Neural Engine."""
|
| 286 |
+
try:
|
| 287 |
+
import coremltools as ct
|
| 288 |
+
except ImportError:
|
| 289 |
+
print("coremltools not installed. Install with: pip install coremltools")
|
| 290 |
+
return ""
|
| 291 |
+
|
| 292 |
+
model.eval()
|
| 293 |
+
|
| 294 |
+
# Get model config
|
| 295 |
+
if hasattr(model, 'config'):
|
| 296 |
+
vocab_size = model.config.vocab_size
|
| 297 |
+
else:
|
| 298 |
+
vocab_size = 102400
|
| 299 |
+
|
| 300 |
+
if sample_input is None:
|
| 301 |
+
sample_input = torch.randint(
|
| 302 |
+
0, vocab_size,
|
| 303 |
+
(self.config.batch_size, self.config.max_sequence_length),
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# Trace model
|
| 307 |
+
traced = torch.jit.trace(model, sample_input)
|
| 308 |
+
|
| 309 |
+
# Convert to Core ML
|
| 310 |
+
mlmodel = ct.convert(
|
| 311 |
+
traced,
|
| 312 |
+
inputs=[ct.TensorType(
|
| 313 |
+
name="input_ids",
|
| 314 |
+
shape=sample_input.shape,
|
| 315 |
+
dtype=int,
|
| 316 |
+
)],
|
| 317 |
+
compute_units=ct.ComputeUnit.ALL, # Use Neural Engine when available
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
# Quantization
|
| 321 |
+
if self.config.quantization == "float16":
|
| 322 |
+
mlmodel = ct.models.neural_network.quantization_utils.quantize_weights(
|
| 323 |
+
mlmodel, nbits=16
|
| 324 |
+
)
|
| 325 |
+
elif self.config.quantization == "int8":
|
| 326 |
+
mlmodel = ct.models.neural_network.quantization_utils.quantize_weights(
|
| 327 |
+
mlmodel, nbits=8
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
# Save
|
| 331 |
+
mlmodel.save(output_path)
|
| 332 |
+
print(f"Core ML model exported to: {output_path}")
|
| 333 |
+
return output_path
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
class NPUExporter:
|
| 337 |
+
"""Unified NPU export interface."""
|
| 338 |
+
|
| 339 |
+
def __init__(self, config: Optional[NPUExportConfig] = None):
|
| 340 |
+
self.config = config or NPUExportConfig()
|
| 341 |
+
|
| 342 |
+
self.exporters = {
|
| 343 |
+
"tflite": TFLiteExporter(self.config),
|
| 344 |
+
"qnn": QNNExporter(self.config),
|
| 345 |
+
"coreml": CoreMLExporter(self.config),
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
def export(
|
| 349 |
+
self,
|
| 350 |
+
model: nn.Module,
|
| 351 |
+
output_path: str,
|
| 352 |
+
target_platform: Optional[str] = None,
|
| 353 |
+
sample_input: Optional[torch.Tensor] = None,
|
| 354 |
+
) -> Union[str, Dict[str, str]]:
|
| 355 |
+
"""
|
| 356 |
+
Export model to specified NPU format.
|
| 357 |
+
|
| 358 |
+
Args:
|
| 359 |
+
model: PyTorch model
|
| 360 |
+
output_path: Output file path
|
| 361 |
+
target_platform: Target platform (tflite, qnn, coreml)
|
| 362 |
+
sample_input: Sample input for tracing
|
| 363 |
+
|
| 364 |
+
Returns:
|
| 365 |
+
Path(s) to exported model(s)
|
| 366 |
+
"""
|
| 367 |
+
platform = target_platform or self.config.target_platform
|
| 368 |
+
|
| 369 |
+
if platform not in self.exporters:
|
| 370 |
+
raise ValueError(f"Unknown platform: {platform}. Supported: {list(self.exporters.keys())}")
|
| 371 |
+
|
| 372 |
+
exporter = self.exporters[platform]
|
| 373 |
+
return exporter.export(model, output_path, sample_input)
|
| 374 |
+
|
| 375 |
+
def export_all(
|
| 376 |
+
self,
|
| 377 |
+
model: nn.Module,
|
| 378 |
+
output_dir: str,
|
| 379 |
+
sample_input: Optional[torch.Tensor] = None,
|
| 380 |
+
) -> Dict[str, Any]:
|
| 381 |
+
"""Export to all supported formats."""
|
| 382 |
+
output_dir = Path(output_dir)
|
| 383 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 384 |
+
|
| 385 |
+
results = {}
|
| 386 |
+
|
| 387 |
+
for platform, exporter in self.exporters.items():
|
| 388 |
+
try:
|
| 389 |
+
if platform == "tflite":
|
| 390 |
+
path = str(output_dir / "model.tflite")
|
| 391 |
+
elif platform == "qnn":
|
| 392 |
+
path = str(output_dir / "qnn" / "model")
|
| 393 |
+
elif platform == "coreml":
|
| 394 |
+
path = str(output_dir / "model.mlpackage")
|
| 395 |
+
else:
|
| 396 |
+
continue
|
| 397 |
+
|
| 398 |
+
result = exporter.export(model, path, sample_input)
|
| 399 |
+
results[platform] = {"success": True, "path": result}
|
| 400 |
+
except Exception as e:
|
| 401 |
+
results[platform] = {"success": False, "error": str(e)}
|
| 402 |
+
|
| 403 |
+
return results
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
def export_for_mobile(
|
| 407 |
+
model: nn.Module,
|
| 408 |
+
output_dir: str,
|
| 409 |
+
platforms: Optional[List[str]] = None,
|
| 410 |
+
config: Optional[NPUExportConfig] = None,
|
| 411 |
+
) -> Dict[str, Any]:
|
| 412 |
+
"""
|
| 413 |
+
High-level function to export model for mobile devices.
|
| 414 |
+
|
| 415 |
+
Args:
|
| 416 |
+
model: PyTorch model
|
| 417 |
+
output_dir: Output directory
|
| 418 |
+
platforms: List of target platforms (default: all)
|
| 419 |
+
config: Export configuration
|
| 420 |
+
|
| 421 |
+
Returns:
|
| 422 |
+
Dictionary with export results for each platform
|
| 423 |
+
"""
|
| 424 |
+
config = config or NPUExportConfig()
|
| 425 |
+
exporter = NPUExporter(config)
|
| 426 |
+
|
| 427 |
+
if platforms is None:
|
| 428 |
+
return exporter.export_all(model, output_dir)
|
| 429 |
+
|
| 430 |
+
results = {}
|
| 431 |
+
output_dir = Path(output_dir)
|
| 432 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 433 |
+
|
| 434 |
+
for platform in platforms:
|
| 435 |
+
try:
|
| 436 |
+
if platform == "tflite":
|
| 437 |
+
path = str(output_dir / "model.tflite")
|
| 438 |
+
elif platform == "qnn":
|
| 439 |
+
path = str(output_dir / "qnn" / "model")
|
| 440 |
+
elif platform == "coreml":
|
| 441 |
+
path = str(output_dir / "model.mlpackage")
|
| 442 |
+
else:
|
| 443 |
+
continue
|
| 444 |
+
|
| 445 |
+
result = exporter.export(model, path, target_platform=platform)
|
| 446 |
+
results[platform] = {"success": True, "path": result}
|
| 447 |
+
except Exception as e:
|
| 448 |
+
results[platform] = {"success": False, "error": str(e)}
|
| 449 |
+
|
| 450 |
+
return results
|